Permeation of β -lactamase inhibitors through the general porins of Gram-negative bacteria

Alessandro Pira,¹ Mariano Andrea Scorciapino,² Igor V. Bodrenko,³ Andrea Bosin,¹ Silvia Acosta-Gutierrez,⁴ Matteo Ceccarelli,^{1,3,*}

¹Department of Physics and ²Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P.8 km 0,700 – 09042 Monserrato (CA), Italy; ³CNR/IOM Sezione di Cagliari, Cittadella Universitaria, S.P. 8 km 0,700 – 09042 Monserrato (CA), Italy; ⁴Department of Chemistry, University College London - London, United Kingdom.

* To whom correspondence should be addressed

Supplementary Information

Figure S1. The *Enterobacteriaceae* family if divided into about 30 genera, among which *Escherichia, Enterobacter* and *Klebsiella*. In this simplified phylogenetic tree, for each of the four selected species, the two main outer membrane porins are reported. OmpF and OmpC orthologs are on the left- and on the right-hand side, respectively.

Figure S2. The OmpF trimer is shown, top-view (**A**) and side.view (**B**). One monomer is shown in (**C**), top-view, with the loop L3 highlighted, where negatively charged residues are shown in red. On the opposite side of the channel, the positively charged residues comprising the so-called basic ladder are shown in blue. This charge segregation is responsible for the intense electric field at the constriction region (CR). From (**D**) to (**G**), one monomer (side-view) of OmpF, Omp35, OmpE35 and OmpK35 is shown, respectively.

Figure S3. The OmpC trimer is shown, top-view (**A**) and side.view (**B**). One monomer is shown in (**C**), top-view, with the loop L3 highlighted, where negatively charged residues are shown in red. On the opposite side of the channel, the positively charged residues comprising the so-called basic ladder are shown in blue. This charge segregation is responsible for the intense electric field at the CR. From (**D**) to (**G**), one monomer (side-view) of OmpC, Omp36, OmpE36 and OmpK36 is shown, respectively.

	β1	β2		1	β3	β4	
OmpF	AEIYNKDGNK	VDLYGKAVGL	HYFS-KGN	GENSYGGNGD	MTYARLGFKG	ETQINSDLTG	57
Omp35	AEIYNKNGNK	LDFYGKMVGE	HVWTTNGDTS	SDD	TTYA <mark>R</mark> IGL <mark>K</mark> G	ETQINDQLIG	53
OmpE35	AEIYNKDGNK	L <mark>D</mark> LYG <mark>K</mark> AVGL	HYFS-DND	- G NDGD	KTYARLGFKG	ETKINDQLTG	52
OmpK35	AEIYNKNGNK	LDFYG <mark>k</mark> mvg <mark>e</mark>	HVWTTNGDTS	S <mark>DD</mark>	TTYA <mark>R</mark> IGL <mark>K</mark> G	ETQINDQLIG	53
	β4	L2	β5	β6		L3	
OmpF	YGQWEYNFQG	NNSEGADAQT	GNKTRLAFAG	LKYADVGSFD	YGRNYGVVYD	ALGYTDMLPE	117
Omp35	YGQWEYNMDA	SNVEG-SQ	TTKTRLAFAG	LKAGEYGSFD	YGRNYGAIYD	VESATDMLVE	110
OmpE35	YGQWEYNFQG	NNSEGADAQS	GNKTRLAFAG	LKFGDAGSFD	YGRNYGLVYD	AIGITDMLPE	112
OmpK35	AEIYNKNGNK	LDFYGKMVGE	HVWTTNGDTS	SDD	TTYARIGLKG	ETQINDQLIG	53
		L3 β7		β8	L4	β9	
OmpF	FGGD-TAYSD	DFFVGRVGGV	ATYRNSNFFG	LVDGLNFAVQ	YLGKNERD-T	ARRSNGDGVG	175
Omp35	WGGDGWNYTD	NFMTG <mark>R</mark> TNGV	ATYRNSDFFG	LVDGLSFALQ	YQGKNDHDRS	IRKQNGDGFS	170
OmpE35	FGGD-TGVSD	NFFSGRTGGL	ATYRNSGFFG	LVDGLNFGVQ	YLGKNERT-D	ALRSNGDGWA	170
OmpK35	WGGDGWNYTD	NYMTGRTNGV	ATYRNSDFFG	LVDGLSFALQ	YQG <mark>KNDHD</mark> RA	I <mark>rk</mark> QNG <mark>D</mark> GFS	170
	β9	β10	L5	β	11	β12	
OmpF	GSISYEY-EG	FGIVGAYGAA	DRTNLQEAQP	LGNG <mark>KK</mark> AEQW	ATGL <mark>KYD</mark> ANN	IYLAANYG <mark>E</mark> T	234
Omp35	TAATYAFDNG	IALSAGYANS	NRSVDQKR-D	- GNGDKAEAW	ATSA <mark>KYD</mark> ANN	IYAAVMYSQT	228
OmpE35	TSLSYDF-DG	FGIVGAYGAA	DRTNAQQNLQ	WGKG <mark>DK</mark> AEQW	ATGL <mark>K</mark> Y <mark>D</mark> ANN	IYLAALYG<mark>E</mark>M	229
OmpK35	WGGDGWNYTD	NYMTGRTNGV	ATYRNSDFFG	LVDGLSFALQ	YQGKNDHDRA	IRKQNGDGFS	170
	L6		β13	β14		L7 β15	
OmpF	RNATPITNKF	TNTSGFANKT	QDVLLVAQYQ	FDFGLRPSIA	YTKSKAKDVE	GIGD	288
Omp35	YNMTPEE	DDHFAGKT	QNFEAVVQYQ	FDFGLRPSLG	YVQT <mark>KGK</mark> NLQ	ARGGFGG-GD	282
OmpE35	RNAARLD	N-GFANKT	QDFSVVAQYQ	FDFGLRPSIA	YYKSKAKDVE	GIG <mark>D</mark>	277
OmpK35	YNMTPEE	DNHFAGKT	QNFEAVVQYQ	FDFGLRPSIG	YVQT <mark>KGKD</mark> LQ	SRA-GFSGGD	282
	β15	β	16	L8	β1	➡	
OmpF	VDLVNYFEVG	ATYYFNKNMS	TYVDYIINQI	DSDNKL	GVGSDDTVAV	GIVYQF	340
Omp35	ADLVKYVELG	TWYYFNKNMN	VYAAYKFNQL	DD-NAYTRAA	GVATDDQAAV	GIVYQF	337
OmpE35	EDYINYIDIG	ATYYFNKNMS	TYVDYQINQL	KDDNKL	GINNDDTVAV	GLVYQF	329
Omp//2E	ADI VKYTEVG		VYAAYKENOL		GVATDDOAAV	GTVYOE	337

Figure S4. Structure alignment of the OmpF orthologs was obtained through the VMD software (https://www.ks.uiuc.edu/Research/vmd/).

	01	0.2		00	<u> </u>	0.4	
	рт	p∠		po		p4	
OmpC	AEVYNKDGNK	LDLYGKVDGL	HYFSDNKDVD	GDQTYMRLGF	KGETQVTDQL	TGYGQWEYQI	60
Omp36	AEIYNKDGNK	LDLYGKIDGL	HYFSSDDSVD	GDQTYMRIGV	KGETQINDQL	TGYGQWEYNV	60
OmpE36	AEIYNKDGNK	LDLYGKVDGL	HYFSDDDSQD	GDQTYMRLGF	KGETQVNDQL	TGYGQWEYQI	60
OmpK36	AEIYNKDGNK	LDLYG <mark>KID</mark> GL	HYFSDDKSVD	GDQTYMRVGV	KGETQINDQL	TGYGQWEYNV	60
	β4 L2	β5	β	6	L3	L3	;
OmpC	QGNSAENEN -	NSWTRVAFAG		YGRNYGVVYD	VTSWTDVLPE	FGGDTYGSDN	119
Omp36	QANNTESSSD	QAWTRLAFAG	LKFGDAGSFD	YGRNYGVVYD	VTSWTDVLPE	FGGDTYGSDN	120
OmpE36	OGNSGENEN -	NSWTRVAFAG		YGRNYGVVYD	VTSWTDVLPE	FGGDTYGSDN	119
OmpK36	QANNTESSSD	QAWTRLAFAG	LKFGDAGSFD	YGRNYGVVYD	VTSWTDVLPE	FGGDTYGSDN	120
	-	27	ßß		14		RQ
			μο	*	64	_	ps
OmpC	FMQQRGNGFA	TYRNTDFFGL	VDGLNFAVQY	QGKNGNPSGE	GFTSGVTNNG	RDALRQNGDG	179
Omp36	FLQS <mark>R</mark> ANGVA	TYRNSDFFGL	VDGLNFALQY	QG <mark>K</mark> NGSV	S-GEDQTNNG	RDFQKQNGEG	176
OmpE36	FMQQRGNGFA	TYRNSDFFGL	VDGLNFAVQY	QG <mark>K</mark> NGSA	S-GEDQTNNG	RTELRQNGDG	175
OmpK36	FLQS <mark>R</mark> ANGVA	TYRNSDFFGL	VDGLNFALQY	QG <mark>K</mark> NGSV	S-GEGATNNG	RGWSKQNGDG	176
	β9	β10		L5		β11	
OmpC	VGGSITYD-Y	-EGFGIGGAI	SSSKRTDAON	ΤΑΑ	Y-IGN	GDRAETYTGG	224
Omp36	FGTSVTYDIW	-DGISAGFAY	SSSKRTDEON	N-STEVSKTD	GGRYGV - LGE	GDHAETYTGG	233
OmpE36	VGGSITYN-L	GEGEGIGTAV	SSSKRTSSON	D	LTYGN	GDRAETYTGG	220
OmpK36	FGTSLTYDIW	-DGISAGFAY	SHSKRTDEON	s-v	PALGR	GDNAETYTGG	222
·	B11	ß12	L6	ß13		β14	
0			TOVICCI CHAN	KAONEEAWAO			204
Ompc		ΑΑΟΥΤΟΤΥΝΑ	TRYGSLGWAN	KAQNFEAVAQ	YOFDECLARS		284
0111236		AIQTIQITNA	TRIGNIGFAN	KAQNFEVVAQ	YOFDFOLRPS	VATLUSKGKD	293
OmpE36		AAQYIQIYNA	TRVGNLGWAN	KAQNFEVVAQ	YQFDFGLRPS	VAYLQSKGKD	280
Отркзб		ASRYIQIYNA	TRAGSLGFAN	KAQNFEVVAQ	YUFDFGLRPS	VAYLQSKGKD	282
	L7	β15		β16	L8	β1	
OmpC	LG <mark>R</mark> GYDDEDI	L <mark>K</mark> YVDVGATY	YFNKNMSTYV	DYKINLLDDN	QFTRDAGINT	DNIVALGLVY	QF 346
Omp36	MG- <mark>R</mark> YGDQDI	L <mark>K</mark> YVDLGATY	YFNKNMSTYV	DYKINLLDDN	KFTKD ASIST	DNVVALGLVY	QF 354
OmpE36	LENGYGDQDL	LKYVDVGATY	YFNKNMSTYV	DYKINLLDDK	EFTRNAGIST	DDIVALGLVY	QF 340
OmpK36	LERGYGDQDI	LKYVDVGATY	YFNKNMSTYV	DYKINLLDDN	SFTRNAGIST	DDVVALGLVY	QF 344

Figure S5. Structure alignment of the OmpC orthologs was obtained through the VMD software (https://www.ks.uiuc.edu/Research/vmd/).

Figure S6 RMSD of the eight porins with respect to the starting X-ray structure, during the last 300 ns of equilibration simulations at 300 K in the NVT ensemble.

Figure S7. Distribution on the xy-plane of the difference between the density of positively and negatively charged residues, colored in blue and red, respectively. The channel was divided into 5 cross sections along the main axis, namely, +16 Å > z > +10 Å; +11 Å > z > +5 Å; +6 Å > z > 0 Å (POR, the pre-orientation region); +1 Å > z > -5 Å (CR, the constriction region); -4 Å > z > -10 Å. The circles highlight the major difference found among OmpF orthologs and OmpC orthologs.

Figure S8. The same FES shown in figure 4 are reported here (**A**,**D**,**G**) with differently colored circles to indicate the energy minima and the saddle point analyzed along the minimum energy path in the region 10 Å > z > -10 Å. The same colors are used to show the corresponding representative conformer of the three inhibitors under investigation together with the electric dipole. These structures are shown inside one of the monomers of OmpF from the top view (**B**,**E**,**H**) and side view (**C**,**F**,**I**).