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Abstract: Phosphonopeptides are phosphorus analogues of peptides and have been widely applied
as enzyme inhibitors and antigens to induce catalytic antibodies. Phosphonopeptides generally
contain one aminoalkylphosphonic acid residue and include phosphonopeptides with C-terminal
aminoalkylphosphonic acids and phosphonopeptides with a phosphonamidate bond. The phosph-
onamidate bond in the phosphonopeptides is generally formed via phosphonylation with
phosphonochloridates, condensation with coupling reagents and enzymes, and phosphinylation
followed by oxidation. Pseudo four-component condensation reaction of amides, aldehydes,
alkyl dichlorophosphites, and amino/peptide esters is an alternative, convergent, and efficient strategy
for synthesis of phosphonopeptides through simultaneous construction of aminoalkylphosphonic
acids and formation of the phosphonamidate bond. This review focuses on the synthetic methods of
phosphonopeptides containing a phosphonamidate bond.

Keywords: phosphonamidate; phosphonopeptide; β-phosphonopeptide; γ-phosphonopeptide; peptide

1. Introduction

Phosphonopeptides are phosphorus analogues of peptides. They generally contain one
aminoalkylphosphonic acid residue and include phosphonopeptides with C-terminal aminoalkylph-
osphonic acids and phosphonopeptides containing a phosphonamidate bond [1,2]. Phosphonopeptides
have been used as antibacterial agents [3]. They have been widely applied as enzyme inhibitors [4–8]
and antigens for inducing catalytic antibodies [9–12] due to their tetrahedral structural feature.
Phosphonopeptides containing C-terminal aminoalkylphosphonic acids have been prepared via coupling
of N-protected amino acyl chlorides with aminoalkylphosphonic acids [13], condensation of N-protected
amino acids or peptides and aminoalkylphosphonic acids with coupling reagents [14,15], aminolysis of
N-chloroacetyl aminoalkylphosphonic acids [16], and the Mannich-type reactions of N-protected
amino amides or aminoalkanesulfonamides, aldehydes, and phosphorus trichloride followed by
hydrolysis [17,18]. Synthesis of phosphonopeptides with C-terminal aminoalkylphosphonic acids was
reviewed recently [19]. This review focuses on the synthetic methods of phosphonopeptides, including α-,
β-, γ-, and δ-phosphonopeptides (Figure 1), with a phosphonamidate bond, especially focuses on
the synthetic strategies for the formation of the phosphonamidate bond, excluding the modification
of phosphonopeptides.
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2. Synthesis of Phosphonopeptides via Phosphonochloridates

Phosphonylation of amino/peptide esters with alkyl N-protected aminoalkylphosphonochloridates
is a general and widely applied method for the synthesis of phosphonopeptides containing a
phosphonamidate bond. The phosphonochloridates are usually prepared via chlorination of the
corresponding dialkyl phosphonates with phosphorus pentachloride [13,20] or phosphorus
oxychloride [21], chlorination of phosphonic monoesters with thionyl chloride [22,23] or oxalyl
chloride [24,25], and chlorination of alkyl trimethylsilyl phosphonates [26] or alkyl phosphinates [27]
with carbon tetrachloride. Phosphonobromidates are seldom applied as intermediates in the synthesis
of phosphonopeptides and generated via bromination of alkyl phosphinates with bromine [28]. Each of
the above-mentioned methods will be presented as following.

2.1. Chlorination of Dialkyl Phosphonates with Phosphorus Pentachloride

After aminomethylphosphonic acid was isolated from numerous organisms and animal
and human organs [29,30], to understand the biological significance of this new class of compounds,
phosphonodipeptide was synthesized in 1973. Diisopropyl N-phthalyl(Phth)aminomethylphosphonate
was prepared from phthalylaminomethyl chloride and triisopropyl phosphite and further
treated with phosphorus pentachloride to give the corresponding isopropyl N-phthalylaminome
thylphosphonochloridate, which reacted with ethyl glycinate in the presence of triethylamine to
give rise to protected phosphonopeptide (Scheme 1) [13]. This is the first chemical synthesis of
α-phosphonopeptide with a phosphonamidate linkage.
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Similarly, N-phthalylaminomethylphosphonochloridate was prepared and further coupled
with dipeptide esters to afford phosphonotripeptides. After hydrazinolysis and acetylation with
acetic anhydride and acylation with acyl chlorides or N-benzyloxycarbonyl(Cbz)-protected dipeptides,
the phosphonotripeptides were transformed into N-acetyl phosphonotripeptides, N-acyl phosphono
tripeptides, and phosphonopentapeptides after hydrogenolysis, respectively (Scheme 2). As inhibitors
of enkephalinase and angiotensin-converting enzyme (ACE), these phosphonopeptides exhibited
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good inhibitory potency against enkephalinase with several of the analogs having Ki values in the
submicromolar range as contrasted to micromolar or higher toward ACE [20]. Another series of
phosphonopeptides were synthesized as potential inhibitors of ACE [21]. The phosphonamide bond in
the phosphonopeptides is generally stable under weak acidic and basic conditions.
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2.2. Chlorination of Dialkyl Phosphonates with Phosphorus Oxychloride

Besides phosphorus pentachloride, phosphorus oxychloride was also applied in the conversion
of dialkyl phosphonates into phosphonochloridates. Phosphonopeptide was synthesized from ethyl
glycylglycinate hydroloride and ethyl phosphonochloridate derived from direct chlorination of diethyl
phosphonate with phosphorus oxychloride (Scheme 3) [21].
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2.3. Chlorination of Alkyl Phosphonic Acid Monoesters with Thionyl Chloride

To search for competitive inhibitors of d-alanine:d-alanine ligase, phosphonodipeptide was
prepared from methyl alaninate and N-Cbz-protected methyl 1-aminoethylphosphonochloridate,
which was prepared from N-Cbz-protected diphenyl 1-aminoethylphosphonate via transesterification,
selective hydrolysis, and chlorination with thionyl chloride (Scheme 4). The phosphonodipeptide was
the competitive inhibitor of d-alanine:d-alanine ligase, with Ki close to 10−6 M [22].
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Someα-phosphonodipeptides which simulated the transition state ofd-alanyl-d-alanine synthetase
(EC 6.3.2.4) reaction were synthesized (Scheme 5). The inhibition of the synthetase by these
phosphonopeptides was studied with the S. faecalis enzyme. The phosphonopeptides exhibited
time-dependent inhibition in the presence of ATP, suggesting that they underwent phosphorylation
prior to inactivating the enzyme [23].
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Scheme 5. Synthesis of phosphonopeptides from aminoalkylphosphintes.

N-Cbz-protected diethyl 1-aminoalkylphosphonates were prepared via three component
condensation reaction of benzyl carbamate, aldehydes, and diethyl phosphite in acetyl chloride.
After hydrogenolysis and coupled with N-protected amino esters, they were converted into
phosphonodipeptides with C-terminal 1-aminoalkylphosphonic acids. N-Cbz-protected diethyl
1-aminoalkylphosphonates were transformed to N-Cbz-protected 1-aminoalkylphosphonic monoesters
via basic hydrolysis and treatment with thionyl chloride and alcohol. N-Cbz-protected 1-amino
alkylphosphonic monoesters were treated with thionyl chloride followed by reactions with amino
esters or 1-aminoalkylphosphonates, affording phosphonopeptides composing of one or two
1-aminoalkylphosphonic acid residue(s) (Scheme 6) [31].
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To prepare novel inhibitors of VanX, a Zn(II) metalloenzyme that was required for high-level
vancomycin resistance in bacteria, N-[(1-aminoethyl)hydroxyphosphinyl]-d-alanine was synthesized via
coupling of N-Cbz protected methyl 1-aminoethylphosphonochloridate with methyl d-alaninate followed
by basic hydrolysis and hydrogenolysis (Scheme 7). Bioassay results indicated that phosphonodipeptide
was shown to be a partial competitive inhibitor of VanX with a Ki of 36 µM [7,32].
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Phosphonopeptides CbzNHCH2P(O)(OEt)-l-ProOBn, CbzNHCH2P(O)(OEt)-d-Pro, CbzNHCH2P
(O)(OEt)-l-thioProOMe, and H2NCH2P(O)(OEt)-l-Pro were prepared following similar method for
investigation on the relative catalytic efficiency ofβ-lactamase catalyzed acyl and phosphyl transfer [33].

O-Phenyl phosphonamidates have been designed to bind covalently by nucleophilic substitution
to the serine residue in the active site of serine proteases. Phosphonodipeptide with O-phenyl on the
phosphorus atom was synthesized from phenyl N-Cbz 1-amino(phenyl)methylphosphonochloridate
and methyl l-valinate. The stability of the phosphonamidates as a model of phosphonopeptides in
aqueous solutions and their selectivity in the reaction against alcohols vs. thiols proved that they
constituted a class of potential inhibitors of serine proteases and valuable tools to study the mechanism
of inhibition. The transesterification of the phosphonopeptide phenyl ester with MeOH in the presence
of Et3N/KF gave the corresponding phosphonopeptide methyl ester (Scheme 8) [34].
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Scheme 8. Synthesis of phosphonopeptide and its transesterification.

By using similar synthetic method, this research group also prepared phosphonodipeptides as
new inhibitors of leucine aminopeptidase [35] and investigated the influence of the nature of the
N-terminal functional group on their hydrolysis [36].

Besides Cbz protecting group, Fmoc group was also used in the synthesis of phosphonopeptides.
Benzyl hydrogen α-(9-fluorenylmethoxycarbonyl(Fmoc)amino)alkylphosphonates were obtained
by the sodium metaperiodate oxidation of the corresponding phosphinates and converted to
the phosphonochloridates, which were coupled with Nε-protected lysine benzyl ester to afford
phosphonodipeptides containing a lysine residue (Scheme 9) [37].
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Scheme 9. Synthesis of N-Fmoc protected phosphonopeptides.

Cramer and Klebe described a procedure for the synthesis and purification of functionalized
phosphonopeptides that were able to generate inhibitors for the metalloprotease thermolysin for
use in biophysiological experiments. The method utilized an allyl ester/allyloxycarbonyl(Aloc)
protection strategy and showed advantage of a fast and effective solid-phase purification step.
They first prepared diallyl N-Cbz aminomethylphosphonate and transformed it into allyl N-Cbz
aminomethylphosphonochloridate, which was further reacted with dipeptide allyl esters or amino
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amide derivatives. After deprotection under the catalysis of Pd(PPh3)4 followed by treatment with LiOH,
phosphonopeptide lithium salts were obtained (Scheme 10). By using the strategy, they synthesized
a series of highly polar phosphonopeptide inhibitors with amino- and hydroxy-functionalized side
chains in excellent purity [38].
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Scheme 10. Synthesis of phosphonopeptides from diallyl N-Cbz aminomethylphosphonate.

To search for effective and stable inhibitors of cytosolic leucine aminopeptidase,
a β-phosphonopeptide containing aromatic N-terminal amino group was designed and synthesized.
Diethyl 2-nitrophenylphosphonate was prepared and converted to the corresponding phosphonochloridate,
which was coupled with methyl glycinate hydrochloride followed by reduction and basic hydrolysis,
affording β-phosphonopeptide. The decrease in basicity of the terminal amino moiety of the
β-phosphonopeptide resulted in satisfactory improvement of hydrolytic stability of the P−N bond.
However, it did not exhibit inhibition activity up to millimolar concentration in enzymic assays towards
leucine aminopeptidase possibly because diminishing the basic character of the terminal amino group
resulted in a change of its affinity towards the zinc ions in the aminopeptidase. On the other hand,
the decrease of the inhibition activity might also be ascribed to the steric constrain induced by the planar
phenyl ring (Scheme 11) [39].
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2.4. Chlorination of Alkyl Phosphonic Acid Monoesters with Oxalyl Chloride

Moroder’s research group tested different chlorination conditions and found that oxalyl
chloride-mediated preparation of phosphonochloridates allowed the improvement of the
synthesis of phosphonopeptides, in comparison with thionyl chloride. A catalytic amount of
N,N-dimethylformamide (DMF) promoted the chloridation. Particularly if AgCN was used as catalyst
or upon conversion of the corresponding phosphonochloridates into their 7-aza-1-hydroxybenzotriazole
(HOAt) ester, the yields of phosphonopeptides even reached 90% (Scheme 12) [24]. When peptide
hydrochlorides were utilized as amino components triethylamine or diisoproylethylamine was added
as base. However, triphosgene was an inefficient chloridating reagent. Furthermore, the Mukaiyama
procedure failed completely in the present case. The mixed anhydrides of aminoalkylphosphonic
acid monoesters with pivaloyl chloride generated, but affording exclusively to the N-pivaloylpeptide
derivatives instead phosphonopeptides, despite the steric bulk of the tert-butyl group [24].
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Scheme 12. Synthesis of phosphonopeptides under mild conditions.

Various methods have been explored for the convergent synthesis of phosphonopeptides via
phosphonochloridates. PCl5 is an effective reagent for the conversion of diethyl and diisopropyl
phosphonates to the corresponding phosphonochloridates in the absence of complex functionality.
Subsequent reaction with amino and peptide esters generated the phosphonopeptides in good
yields. However, a milder method using oxalyl chloride to generate the phosphonochloridates from
phosphonic monoesters was required in the presence of more complex functionality. Aminolysis of the
dimethyl phosphonates or basic hydrolysis of diethyl phosphonates generated the requisite phosphonic
monoesters for the preparation of phosphonochloridates [40].
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New muramyl dipeptide (MDP) analogs related to LK 423 as potential immunomodulators was
synthesized by coupling of methyl N-Fmoc 1-aminoethylphosphonochloridate and dibenzyl d-glutamate
toluenesulfonate, followed by basic deprotection and coupling with 5-phthalimidopentanoic acid.
The dipeptide part of the lead compound was modified by introducing a phosphonamidate bond
instead of the amide bond between l-alanine and d-glutamic acid (Scheme 13) [25].
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The synthesis of different muramyl dipeptide analogue LK 415 derivatives as potential
immunomodulators was reported. The d-alanine and d-isoglutamine of LK 415 were replaced
by their phosphonic analogues l,d-phosphonoalanine [H2NCHMeP(O)(OMe)2] and H2NCH
[CH2CH2P(O)(OEt)2]COCH2Ph, yielding the LK 415 analogues N-[2-[2-[(1-adamantylcarbonyl)
amino]ethoxy]acetyl]-NHCHMeP(O)(OMe)-d-Glu(OEt)2 and N-[2-[2-[(1adamantylcarbonyl)amino]
ethoxy]acetyl]-l-Ala-NHCH[CH2CH2P(O)(OEt)2]COCH2Ph, respectively [41].

To prepare phosphorus analogues of γ-glutamyl peptide, N-Cbz l-glutamic acid was first
transformed to the corresponding dimethyl phosphonate. After aminolysis and chlorination it
was transformed to the corresponding phosphonochloridate, which was reacted with diethyl
glutamate, affording γ-phosphonodipeptide in 64% yield. After hydrogenolysis, N-terminal free
γ-phosphonopeptide was obtained in 87% yield. However, the coupling of the phosphonochloridate
with diethyl 2-hydroxyglutarate generated γ-phosphonodepsipeptide in only 6.7% yield, indicating the
strategy was not suitable for the synthesis of γ-phosphonodepsipeptide (Scheme 14) [42].
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2.5. Chlorination of Alkyl Trimethylsilyl Phosphonites or Alkyl Phosphinates with Carbon Tetrachloride

To minimize the side reactions (formation of oxazaphospholines) of N-Cbz protected
1-aminoalkylphosphonochloridates, a convenient method for the synthesis of phosphonopeptides
was described. N-Cbz protected 2-aminoalkylphosphinates were converted to their trimethylsilyl
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phosphonite tautomers with the treatment with bis(trimethylsilyl)acetamide. They were oxidized with
CCl4 to generate the corresponding phosphonochloridates as intermediates, which reacted with amino
acid esters to give rise to the desired phosphonopeptides. The oxidative activation was carried out in
the presence of the amine nucleophiles so that stoichiometric formation of the phosphonochloridates
were avoided and side reactions were minimized (Scheme 15) [26].
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Phosphonylation of amino acid esters with N-Cbz 1-aminoalkylphosphonochloridates was a
general method for the preparation of phosphonopeptides containing a phosphonamidate bond.
N-Cbz 1-aminoalkylphosphonochloridates were prepared from both N-Cbz 1-aminoalkylphosphinates
with carbon tetrachloride in the presence of trimethylamine through the Atherton–Todd reaction and the
corresponding N-Cbz 1-aminoalkylphosphonic acid monoesters with thionyl chloride (Scheme 16) [27].
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2.6. Bromination of Alkyl Phosphinates with Bromine

Yao and Yuan developed a general and efficient one-pot procedure for converting
1,1-diethoxyalkylphosphinates into phosphonates or phosphonamides by the use of bromine.
For α-aminoalkylphosphinates, the transformation could be realized without the protection of the
amino group. Enantiopure phosphinate reacted stereospecifically with bromine and subsequently
couples with nucleophile to generate the corresponding optically active derivatives with retention of
configuration at the phosphorus center (Scheme 17) [28]. The developed method was applied in the
synthesis of phosphonopeptides.



Molecules 2020, 25, 5894 11 of 21

Molecules 2017, 22, x  11 of 23 

 

2.6. Bromination of Alkyl Phosphinates with Bromine 

Yao and Yuan developed a general and efficient one-pot procedure for converting 1,1-

diethoxyalkylphosphinates into phosphonates or phosphonamides by the use of bromine. For α-

aminoalkylphosphinates, the transformation could be realized without the protection of the amino 

group. Enantiopure phosphinate reacted stereospecifically with bromine and subsequently couples 

with nucleophile to generate the corresponding optically active derivatives with retention of 

configuration at the phosphorus center (Scheme 17) [28]. The developed method was applied in the 

synthesis of phosphonopeptides. 

 

Scheme 17. Synthesis of phosphonopeptides via phosphonobromidates. 

A new method for the synthesis of tert-butoxycarbonyl(Boc)-protected phosphonopeptides was 

developed with diethyl 1-azidoalkylphosphonates as starting materials. After partial hydrolysis and 

treatment with oxalyl chloride under the catalysis of DMF, diethyl 1-azidoalkylphosphonates were 

transformed to ethyl 1-azidoalkylphosphonochloridates, which were coupled with amino ester 

hydrochlorides to afford azidophosphonodipeptides. They were further converted N-Boc protected 

phosphonodipeptides under hydrogenolysis in the presence of Boc2O in ethyl acetate (Scheme 18) 

[43]. 

The click reaction of azidophosphonodipeptides and N-protected leucine/isoleucine propargyl 

esters with different protecting group (PG) under the catalysis of copper sulfate pentahydrate, 

affording triazole-containing phosphonopeptides (Scheme 18) [44]. 

Scheme 17. Synthesis of phosphonopeptides via phosphonobromidates.

A new method for the synthesis of tert-butoxycarbonyl(Boc)-protected phosphonopeptides was
developed with diethyl 1-azidoalkylphosphonates as starting materials. After partial hydrolysis
and treatment with oxalyl chloride under the catalysis of DMF, diethyl 1-azidoalkylphosphonates
were transformed to ethyl 1-azidoalkylphosphonochloridates, which were coupled with amino ester
hydrochlorides to afford azidophosphonodipeptides. They were further converted N-Boc protected
phosphonodipeptides under hydrogenolysis in the presence of Boc2O in ethyl acetate (Scheme 18) [43].Molecules 2017, 22, x  12 of 23 
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The click reaction of azidophosphonodipeptides and N-protected leucine/isoleucine propargyl
esters with different protecting group (PG) under the catalysis of copper sulfate pentahydrate,
affording triazole-containing phosphonopeptides (Scheme 18) [44].

3. Synthesis of Phosphonopeptides with Coupling Reagents

Condensation of N-protected amino acids or peptides with amino/peptide esters is a general
method for peptide synthesis. The method has also been applied in the synthesis of phosphonopeptides
with carbodiimides, N,N′-dicyclohexylcarbodiimide (DCC) and N,N′-diisopropylcarbodiimide
(DIC), diphenylphosphoryl azide (DPPA), and benzotriazole-1-yl-oxytripyrrolidinophosphonium
hexafluorophosphate (PyBop) as coupling reagents, respectively.

The diketopiperazine-derived diphosphonic monoethyl ester was condensed with ethyl glycinate
to afford diketopiperazine-derived phosphonodipeptide. Strict selectivity was observed upon
enzyme-catalyzed hydrolysis. Enzymeα-chymotrypsin catalyzed the hydrolysis of the diketopiperazine
ring and the ethyl ester group to give the free acids HO2CCH2NHCH2P(O)R1NHCH2CO2H.
While phosphodiesterase I catalyzed the hydrolysis of only the ethyl ester group (Scheme 19) [45].Molecules 2017, 22, x  13 of 23 
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Scheme 19. Synthesis of phosphonopeptides with N,N’-dicyclohexylcarbodiimide (DCC) as a
coupling reagent.

Kitamura’s group developed a sulfonamide-based protecting group, (9H-fluoren-9-yl)
methanesulfonyl (Fms). It was used in a similar way to the well-established Fmoc protecting group.
It was demonstrated in the successful formation of a phosphonamidate between an N-Fms-protected
α-aminoethylphosphonic monoester with amino or dipeptide esters, including (S)-phenylalanine
tert-butyl ester (H-Phe-OtBu), H-Pro-Gly-OtBu, and H-Phe-Phe-OtBu, without formation of
oxazaphospholine byproduct, which was a serious problem associated with the Fmoc and Cbz
protecting groups during the formation of the phosphonamidate bond in both coupling reagent
method [46] and phosphonochloridate method [24] (Scheme 20).
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Scheme 20. Synthesis of phosphonopeptides with N,N’-diisopropylcarbodiimide (DIC) as a
coupling reagent.

MDP phosphorus analogs related to LK 423 as potential immunomodulators were synthesized
by coupling of methyl 1-(N-benzyloxycarbonyl)aminoethylphosphonate and methyl d-isoglutamate
hydrochloride with DPPA as coupling reagent, followed by hydrogenolysis and coupling with
2-(2-phthalimidoethoxy)acetic acid. The dipeptide part of the lead compound was modified by
introducing a phosphonamidate isostere instead of the amide bond between l-alanine and
d-isoglutamine (Scheme 21) [25].
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Scheme 21. Synthesis of phosphonopeptides with diphenylphosphoryl azide (DPPA) as coupling reagent.

To investigate the ligand–protein binding thermodynamics of the hydration waters of
ligand-thermolysin complexes and hydrophobic binding, various thermolysin phosphonopeptide
inhibitors were synthesized via the PyBop coupling of N-Cbz-protected aminomethylphosphonic
methyl monoester with dipeptide esters or amino amides. The thermodynamic study provided
important understanding on the water role in ligand–protein binding (Scheme 22) [47–49].
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Scheme 22. Synthesis of phosphonopeptides with benzotriazole-1-yl-oxytripyrrolidinophosphonium
hexafluorophosphate (PyBop) as a coupling reagent.

4. Synthesis of Phosphonopeptides Catalyzed by Enzyme

Natchev investigated the enzyme-catalyzed synthesis of phosphonopeptides. The alkaline
phosphatase-catalyzed reaction of 1-aminomethylphosphonate and amino acid esters gave rise
to the corresponding phosphonodipeptide esters, while the bee venom-catalyzed reaction of
1-aminomethylphosphonate and amino acid esters generated free phosphonodipeptides (Scheme 23) [50].
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Alkaline mesintericopeptidase selectively hydrolyzed N-acetyl protection group to afford
N-terminal free phosphonodipeptide, which was further reacted with phosphonate under the catalysis
of phosphodiesterase I to give protected phosphonotripeptide. After deprotection under the catalysis
of bee venom, free phosphonotripeptide was obtained (Scheme 24) [50].
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5. Synthesis of Phosphonopeptides via Phosphonochloridite Followed by Oxidation

Hammer’s group developed a new strategy to synthesize phosphonopeptides via coupling of
phosphonochloridites and amino esters and subsequent sulfur oxidation. They used N-Boc protected
1-aminoalkylphosphinate as starting material and converted it into the corresponding phosphonochloridite
with dichlorotriphenylphosphorane. The phosphonochloridite was further coupled with ethyl glycinate
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hydrochloride followed by sulfurization with sulfur, affording phosphonothiopeptide in one-pot
activation-coupling-oxidation procedure. They mentioned that the phosphonochloridites were more
active species than the corresponding phosphonochloridates (Scheme 26) [51].
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Rushing and Hammer further applied the new strategy in the synthesis of N-Cbz protected
phosphonodipeptides and phosphonothiopeptides using their P(III) one-pot activation-coupling-
oxidation procedure. After treatment with dichlorophosphorane, N-Cbz protected 1-amino
(cyclohexyl)methylphosphinate was transformed to the P(III) intermediate, N-Cbz protected
1-amino(cyclohexyl)methylphosphonochloridite, which was reacted with d-tryptophan derivatives
in the presence of diisopropylethylamine (DIPEA) followed by oxidation with tertial butyl
peroxide and sulfur, affording phosphonopeptides and phosphonothiopeptides, respectively.
It was found that base DIPEA could cyclize the N-Cbz 1-aminomethylphosphonochloridite into
5-(benzyloxy)-2,3-dihydro-1,4,2-oxazaphosphole. However, it was further reacted with d-tryptophan
derivatives to generate the same intermediate phosphinamides in the reaction system (Scheme 27) [52].Molecules 2017, 22, x  18 of 23 
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6. Synthesis of Phosphonopeptides via Pseudo Four-Component Condensation Reaction

Previously the Mannich-type reaction of benzyl carbamate, aldehydes, and trialkyl phosphites in
acetyl chloride gave rise to N-Cbz-1-aminoalkylphosphonates [31]. We further developed the method as a
pseudo-four-component condensation reactions for synthesis of N-Cbz 1-aminoalkylphosphonic acid
derivatives, including phosphonamidates [53], mixed esters [54,55], and phosphonodepsipeptides [56–59].
The four-component condensation was applied as a direct method for the preparation of
phosphonopeptides in construction of 1-aminoalkylphosphonic acids simultaneously formed the
phosphonamidate bond. Using this method, phosphonopeptides were prepared in acceptable yields
directly from simple and commercially available chemicals in one-pot reactions of benzyl carbamate,
aldehydes, and methyl dichlorophosphite, followed by aminolysis with amino acid esters (Scheme 28) [60].
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The pseudo four-component condensation reaction mechanism is proposed as following.
Benzyl carbamate first nucleophilically attack aldehydes followed by proton transfer to generate
α-amino alcohols B, which undergo a nucleophilic substitution with methyl dichlorophosphite on
the phosphorus atom, yielding chlorophosphites C. Chlorophosphites C undergo an elimination to
give rise imines D and chlorophosphonous acid E in the presence of HCl. Chlorophosphonous acid
E can exist as E and H-phosphonic chloride F. However, chlorophosphonous acid E is efficient
species to nucleophilically add to the C=N bond or protonated C=N bond of imines D to
produce the phophonochloridates as intermediates. After aminolysis with amino esters, the desired
phosphonopeptides were obtained (Scheme 29) [54,57].
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The pseudo four-component condensation method is an efficient and convergent strategy for
the synthesis of phosphonopeptides from simple and commercially available chemicals, such as,
benzyl carbamate, aldehydes, methyl dichlorophosphite, and amino acid esters. Compared with
other strategies, the strategy combines the construction of α-aminoalkylphosphonic acids and the
formation of the phosphonamidate bond in a one-pot mode. However, other reported methods
construct α-aminoalkylphosphonic acid derivatives first and then form the phosphonamidate bond.

7. Synthesis by Nucleophilic Addition

Gololobov and Nesterova synthesized cyclic phosphonodipeptides via the annulation of
N-benzylidenemethylamine and alkyl N-(dialkoxyphosphanyl)-N-alkylglycinates, which were
prepared from alkyl N-(dichlorophosphanyl)-N-alkylglycinates with alcohols R2OH. The annulation
was a sequence of P-nucleophilic addition and intramolecular aminolysis accompanying an
N-nucleophilic addition followed by intramolecular aminolysis to yield imidazolidin-4-ones as
byproducts (Scheme 30) [61].
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8. Conclusions

Phosphonopeptides are a class of phosphorus analogues of peptides containing a
tetrahedral phosphonamidate bond, which can mimic the transition state of amide hydrolysis.
Thus, phosphonopeptides have been widely applied as enzyme inhibitors and antigens for catalytic
antibodies. They have been utilized as antibacterial agents as well. Various synthetic methods of
phosphonopeptides have been developed, mainly including phosphonylation of amino/peptide
esters with N-protected aminoalkylphosphonochloridates, condensation of N-protected phosphonic
monoesters and amino/peptide ester with coupling reagents and enzyme, phosphinylation of
amino/peptide esters with N-protected aminoalkylphosphonochloridites followed by oxidation.
Pseudo four-component condensation is a convergent and efficient strategy for synthesis of
phosphonopeptides from simple starting materials. The synthetic methods of phosphonopeptides will
show wide application in understanding biological function of biomacromolecules and development
of medicines in the future.
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