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Abstract: The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied
by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation.
Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed
structural parameters results were matched with the X-ray diffraction (XRD) crystallographic
parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered
as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal
lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular
electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals
(HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the
B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR,
NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR,
and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated
in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its
stability up to 95 ◦C.

Keywords: exo⇔endo isomerism; docking; density functional theory; thermal stability; X-ray
diffraction; 2,5-dimethoxybenzaldehyde

1. Introduction

Aldehydes and ketones are key building blocks for a wide range of synthetic and natural derivatives
and are used in several applications such as the Schiff base reaction [1–4]. In particular, aldehydes are
commonly used for the development of effective drugs due to their several biological activities resulting
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from the polar HC=O group [4–6]. Nevertheless, improvements in density functional theory (DFT) methods
have allowed the reliable theoretical application of larger molecules with even more 100 atoms in the
development of new pharmaceutical agents. Therefore, DFT is currently the most powerful tool for quantum
chemistry computations [7–10] and, along with X-ray single crystal analysis, has become particularly
valuable for structural optimizations [9–12]. Moreover, DFT has significantly contributed in the evaluation
and comparison of several experimental spectral analyses [11–13]. Molecular docking is also a suitable
method for understanding the binding mode of drugs with DNA via, e.g., noncovalent interactions [14–18],
and is usually applied for the design of novel drug structures. Besides, both experimental and theoretical
docking studies help to explore organic and inorganic complexes as potential drug candidates [18].

A literature survey revealed that the exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde at
the DFT/B3LYP level of theory, as well as quantum computations that have not yet been performed.
Therefore, in this study, the structure of the isomerization transition state was estimated by the QST2
method. The X-ray diffraction (XRD) structure of the exo-isomer was identified as the kinetically
favored isomer, indicating that the structure parameters determined by XRD and DFT studies were
in good agreement. To establish the intermolecular forces in the crystal lattice, the results of the
Hirshfeld surface analysis (HSA) and molecular electrostatic potential (MEP) computations were
compared with the experimental XRD packing results. In addition, the MEP, Mulliken and natural
population analysis (NPA) charges, frontier molecular orbital (HOMO/LUMO), and global reactivity
descriptor (GRD) quantum parameters were determined, while the computed electronic calculations
(TD-SCF/DFT/B3LYP, GIAO-NMR, and DFT-IR were matched to UV–Vis, the optical energy gap (Eg),
FTIR, and 1H NMR experimental spectra, respectively, under identical conditions. Moreover, the exo-
and endo-isomers of 2,5-dimethoxybenzaldehyde could be sufficiently reflected, docked against one
DNA helix DNA through the development of two strong hydrogen bonds.

2. Experimental Section

2.1. Computational Methodology

In order to determine the optimization, Mulliken, NPA, HOMO/LUMO, GRD, TD-SCF/DFT,
B3LYP-IR, NMR-DB, and GIAO-NMR quantum-chemical parameter calculations of the desired
molecule in a gaseous phase have been performed using Becke’s three parameter exchange
function (B3) with the Lee-Yang-Parr correlation function (LYP) with basis sets 6-311G(d,p) [19–21].
The DFT/B3LYP/6-311G(d,p) level of theory is found to be very suitable for pure organic compounds
like the desired molecule in this study [21]. Moreover, the QTS2 computation method was applied to
detect the transition state (TS) of the exo⇔endo isomerization reaction [21].

2.2. XRD and HSA

CrystalExplorer 3.1 was used for the HSA analysis [22] using a colorless 0.29 × 0.26 × 0.23-mm
single crystal of exo-2,5-dimethoxybenzaldehyde. The structure was solved using the SHELXL and
SHELXS programs [23]. Crystal refined parameters are illustrated in Table 1.
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Table 1. Crystallographic refined parameters of the desired molecular structure.

Empirical Formula C9H10O3

CCDC 1860213
Temperature 293(2) K

Formula weight 166.17
Wavelength 0.71073 Å

Crystal system, space group Monoclinic, p21/n
Volume 639.55(5) Å3

Unit cell dimensions a = 3.9469 (9), b = 11.580 (3), c = 17.886 (4) Å
β 91.442 (17)◦

V 817.2 (3) (Å)3

Crystal size 0.29 × 0.26 × 0.23 mm
Z 4

Absorption coefficient 0.1 mm−1

No. of reflections 1837
Refinement method Full-matrix least-squares on F2
R(int), (sin θ/λ)max 0.115, 0.650 (Å−1)

S 1.05
R[F2 > 2σ(F2)], wR(F2) 0.062, 0.190

Largest diff. peak and hole 0.14, −0.20 eÅ−3

2.3. 2,5-Dimethoxybenzaldehyde Crystallization

In order to obtain suitable crystals for XRD measurements, 100 mg of commercially available
2,5-dimethoxybenzaldehyde (C9H10O3, Aldrich, St. Louis, MO, USA, 99.0% pure) (100 mg) was
dissolved in 10-mL MeOH at room temperature. After 2 days of evaporation at this temperature,
colorless crystals were slowly formed.

2.4. BNA Docking

Docking studies were performed using the Autodock4.2 running on an Intel(R) Core(TM) i5 CPU
(3 GHz) processor with a Windows 2007 operating system, Palo Alto, California, USA. The isomer
structures were prepared using ChemDraw. The docking was performed using the Gasteiger charges,
the water molecules were erased, and the nonpolar hydrogen atoms were merged using AutoDock4 [24].
The X-ray crystal of PDB ID: 1BNA DNA was freely obtained from the Protein Data Bank [25].

3. Results and Discussion

3.1. XRD and DFT Structure Analysis

XRD analysis indicated that exo-2,5-dimethoxybenzaldehyde (A) was the kinetically favored
isomer with a dihedral angle (τO1–C2–C3–C4) of 179.95◦. In contrast, the thermodynamically favored
endo-isomer (B) with τO1–C2–C3–C4 = 0◦ was not detected by XRD (Scheme 1).

2,5-Dimethoxybenzaldehyde crystallized in the kinetically favored exo-isomer form (Figure 1a)
was monoclinic, with a p21/n space group, and four molecules were crystallized in a packing unit
cell (Figure 1b). In the gaseous phase, the B3LYP/6-311G(d,p)-optimized exo-isomer structure was
consistent with the XRD experimental result of the solid state, as shown in Figure 1c and Table 2.
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Figure 1. (a) ORTEP drawing of exo-2,5-dimethoxybenzaldehyde. (b) Packing unit cell with four
crystallized exo-2,5-dimethoxybenzaldehyde molecules. (c) B3LYP/6-311G(d,p)-optimized structure of
exo-2,5-dimethoxybenzaldehyde.

Table 2. Density functional theory (DFT)-calculated angles (o) and bond lengths (Å) compared to the
corresponding X-ray diffraction (XRD) experimental results (exp. XRD).

Bond No. Bonds Exp. XRD DFT Angle No. Angles (◦) Exp. XRD DFT

1 O3 C5 1.371(2) 1.3639 1 C5 O3 C9 117.3(2) 118.73
2 O3 C9 1.409(3) 1.4207 2 C2 O2 C8 117.7(2) 118.38
3 O2 C2 1.364(2) 1.3655 3 C5 C6 C1 120.6(2) 120.56
4 O2 C8 1.410(3) 1.4189 4 O2 C2 C1 116.5(2) 116.62
5 O1 C7 1.197(3) 1.2124 5 O2 C2 C3 123.9(2) 124.35
6 C6 C5 1.379(3) 1.393 6 C1 C2 C3 119.6(2) 119.03
7 C6 C1 1.384(3) 1.3978 7 O3 C5 C6 116.3(2) 116.2
8 C2 C1 1.391(3) 1.4138 8 O3 C5 C4 124.4(2) 124.95
9 C2 C3 1.384(3) 1.3964 9 C6 C5 C4 119.3(2) 119.73
10 C5 C4 1.377(3) 1.3919 10 C5 C4 C3 120.9(2) 120.58
11 C4 C3 1.379(3) 1.3939 11 C6 C1 C2 119.7(2) 120.39
12 C1 C7 1.465(3) 1.4838 12 C6 C1 C7 119.0(2) 118.88

13 C2 C1 C7 121.3(2) 121.25
14 C2 C3 C4 119.9(2) 118.84
15 C1 C7 O1 124.7(2) 123.68
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3.2. B3LYP/6-311G(d,p) Structures

The bond distances and angles determined by DFT and XRD were almost identical, as shown
in Table 2 and Figure 2. Specifically, the correlation (R2) between the calculated/experimental bond
lengths was found to be 0.9845 (Figure 2a,b) and that between the calculated and experimental angles
was 0.9357 (Figure 2c,d). Slight differences were only observed, because the DFT was performed in the
gaseous phase, while XRD in the solid state.Molecules 2020, 25, x 5 of 16 
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3.3. Exo⇔Endo Computational Isomerism

The exo-kinetic isomer did not favor the coordination of a metal ion, as the carbonyl oxygen
and 2-OCH3 oxygen atoms were in the opposite direction. Although its structure was sterically
favored, it did not serve as a good O∩O bidentate ligand. In contrast, the endo-isomer was expected
to be a good O∩O bidentate chelate ligand, as the two oxygen atoms were in the same direction.
Although the geometry of the exo-isomer was not appropriate for ligation, the formation of a stable
S6-fused metal–heterocyclic ring after isomerization was confirmed by XRD crystal analysis (Figure 3).

Therefore, here, we investigated the exo⇔endo isomerization based on theoretical measurements
to identify the energy required to switch between the two isomers. As shown in Scheme 1,
the stereochemical difference between the two isomers is controlled by a 90◦ single rotation around
the cited Csp2-Csp2 single bond, which leads to a significant change in the τO1_C2_C3_C4 dihedral angle
from 180◦ (exo) to 0◦ (endo). Based on this change, and ignoring all the intermolecular forces in both
isomers, high-level DFT/B3LYP/6-311G(d) optimization calculations were performed in the gaseous
state for both isomers. Moreover, the QTS2 computation method was applied to detect the transition
state (TS) of the exo⇔endo isomerization reaction (Figure 4).



Molecules 2020, 25, 5970 6 of 16

Molecules 2020, 25, x 5 of 16 

 

 
Figure 2. Histograms of (a) bond lengths and (c) angles determined by X-ray diffraction (XRD) and 
density functional theory (DFT). (b) and (d) Graphical correlations of the bond lengths and angles 
determined by XRD and DFT, respectively. 

3.3. Exo⇔ endo Computational Isomerism  

The exo-kinetic isomer did not favor the coordination of a metal ion, as the carbonyl oxygen and 
2-OCH3 oxygen atoms were in the opposite direction. Although its structure was sterically favored, 
it did not serve as a good OՈO bidentate ligand. In contrast, the endo-isomer was expected to be a 
good OՈO bidentate chelate ligand, as the two oxygen atoms were in the same direction. Although 
the geometry of the exo-isomer was not appropriate for ligation, the formation of a stable S6-fused 
metal–heterocyclic ring after isomerization was confirmed by XRD crystal analysis (Figure 3). 

 
Figure 3. Formation of a S6-fused metal–heterocyclic ring after the exo⬄endo isomerization of 2,5-
dimethoxybenzaldehyde. 

Therefore, here, we investigated the exo⬄endo isomerization based on theoretical measurements 
to identify the energy required to switch between the two isomers. As shown in Scheme 1, the 
stereochemical difference between the two isomers is controlled by a 90° single rotation around the 
cited Csp2-Csp2 single bond, which leads to a significant change in the τO1_C2_C3_C4 dihedral angle from 
180° (exo) to 0° (endo). Based on this change, and ignoring all the intermolecular forces in both 

Figure 3. Formation of a S6-fused metal–heterocyclic ring after the exo⇔endo isomerization of
2,5-dimethoxybenzaldehyde.

Molecules 2020, 25, x 6 of 16 

 

isomers, high-level DFT/B3LYP/6-311G(d) optimization calculations were performed in the gaseous 
state for both isomers. Moreover, the QTS2 computation method was applied to detect the transition 
state (TS) of the exo⬄endo isomerization reaction (Figure 4). 

 
Figure 4. Energy profile and global minimum structures of the exo- and endo-2,5-
dimethoxybenzaldehyde isomers and the transition state (TS) of the exo⬄endo isomerization. 

Based on the energy profile of the exo⬄endo isomerization of 2,5-dimethoxybenzaldehyde 
(Figure 4), the exo-isomer energy was −574.76611449 a.u., Eexo = 0.0 kJ, whereas that of the endo-isomer 
was found at −574.76130900 a.u., Eendo = 12.62 kJ. Moreover, the TS energy was higher than that of 
both isomers (−574.75176736 a.u., ETS = 37.66 kJ), and its structure was between the structure of the 
endo- and exo-isomers with a dihedral angle of 84.3°. Therefore, we demonstrated that, energetically, 
the stable exo-isomer could give the unfavorable endo-isomer, since the energy required for 
isomerization was not too high and could be easily provided by the surrounding environment or 
solvents. 

3.4. Crystal Interactions and HSA Investigation 

Three main H∙∙∙O hydrogen bond interactions were detected in the crystal lattice of exo-2,5-
dimethoxybenzaldehyde molecules, while each molecule was bound to its surrounding molecules 
through six hydrogen bonding interactions (Figure 5a), and no other types of interactions were 
identified. The two shortest interactions were assigned to the C=O∙∙∙HMe hydrogen-bonding 
interactions with a distance of 2.669 Å, forming a semi-dimer S14 supramolecular system (Figure 5b), 
while two C=O∙∙∙HMe hydrogen bonds with 2.703 Å (Figure 5c) and two MeO∙∙∙Hph hydrogen bonds 
with 2.702 Å (Figure 5d) could also be detected. 

Figure 4. Energy profile and global minimum structures of the exo- and endo-2,5-dimethoxybenzaldehyde
isomers and the transition state (TS) of the exo⇔endo isomerization.

Based on the energy profile of the exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde
(Figure 4), the exo-isomer energy was −574.76611449 a.u., Eexo = 0.0 kJ, whereas that of the endo-isomer
was found at −574.76130900 a.u., Eendo = 12.62 kJ. Moreover, the TS energy was higher than that of both
isomers (−574.75176736 a.u., ETS = 37.66 kJ), and its structure was between the structure of the endo- and
exo-isomers with a dihedral angle of 84.3◦. Therefore, we demonstrated that, energetically, the stable
exo-isomer could give the unfavorable endo-isomer, since the energy required for isomerization was not
too high and could be easily provided by the surrounding environment or solvents.

3.4. Crystal Interactions and HSA Investigation

Three main H···O hydrogen bond interactions were detected in the crystal lattice of
exo-2,5-dimethoxybenzaldehyde molecules, while each molecule was bound to its surrounding molecules
through six hydrogen bonding interactions (Figure 5a), and no other types of interactions were identified.
The two shortest interactions were assigned to the C=O···HMe hydrogen-bonding interactions with a
distance of 2.669 Å, forming a semi-dimer S14 supramolecular system (Figure 5b), while two C=O···HMe

hydrogen bonds with 2.703 Å (Figure 5c) and two MeO···Hph hydrogen bonds with 2.702 Å (Figure 5d)
could also be detected.
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During HSA, four red spots were detected on the dnorm surface of the computed molecule [26–30],
which were all attributed to the formation of H···O hydrogen bonds (Figure 6a). It should be noted that
the type and the number of the hydrogen bonds identified by HSA were consistent with those detected
by an XRD packing analysis (Figure 6b). In addition, the HSA 2D fingerprint plots over the computed
surface molecule indicated the presence of 65.9% total hydrogen interactions, which corresponded to
three types of hydrogen-bonding interactions, namely H···H (48.3%) > H···O (13.9%) > H···C (3.7%)
(Figure 6c).

3.5. MEP Analysis and Atomic Charge Populations

The MEP analysis suggested the presence of both electrophilic and nucleophilic sites on the
molecule surface (Figure 7a). The carbonyl oxygen atom was indicated as the strongest nucleophile
site (red), while the other oxygen atoms were less nucleophilic (yellow). Moreover, the phenyl and
methyl hydrogen atoms had strong electrophilic positions (blue). These findings strongly supported
the formation of H···O hydrogen bonds [31], as already confirmed by the XRD experimental results
and HSA computations.Molecules 2020, 25, x 7 of 16 
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The determination of the Mulliken and NPA atomic charges revealed the presence of digital
electron-poor and electron-rich atoms (Figure 7b). In general, the NPA atomic charges were higher
than the Mulliken atomic charges, while the Mulliken and NPA values confirmed that all the oxygen
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atoms, as well as the C4, C8, C12, C15, C17, and C18 carbon atoms, acted as nucleophilic sites (Table 3).
Accordingly, the electrophilic sites corresponded to the C13, C14, C20, and C21 carbon atoms. Moreover,
all hydrogen atoms showed positive charge values, with H5, H10, and H19 being the most electrophilic
(Table 3). A high correlation between Mulliken and NPA charge with R = 0.9614 was also observed
based on the plot of Figure 7c. It is worth noting that the Mulliken and NPA data were in good
agreement with the MEP, XRD packing, and HSA results.

The shape and energy diagram of HOMO and LUMO indicated that the electron donation
capacity in the UV region was ∆EHOMO/LUMO = 4.266 eV (Figure 8a). Moreover, by measuring the
B3LYP/6-311G(d,p) electron transfer in the gaseous state and in MeOH and DMSO (Figure 8b), two broad
maxima bands at λmax = 245 and 355 nm were observed, corresponding mainly to HOMO-2-to-LUMO
(76%) and HOMO-to-LUMO (96%) transitions, respectively. Similar electron transition results were
obtained by experimental UV spectra, as shown in Figure 8c. Specifically, two peaks with λmax at 250
and 350 nm were detected in MeOH and DMSO, which were assigned to π→π* and n→π* electron
transitions, respectively. Moreover, no solvatochromism effect was observed by changing the solvents
in both the experimental and theoretical studies. The small ∆λ shift (~5 nm) between the experimental
and DFT data could be attributed to the solute–solvent interaction [32]. In addition, the experimental
optical energy band gap (Eg) in MeOH and DMSO was determined using the Tauc equation [33].
Based also on Figure 8d, the direct Eg value was found to be ~4.51 eV in both solvents, which was close
to the ∆EHOMO/LUMO value (~4.3 eV).
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Figure 8. (a) HOMO/LUMO shapes and energy diagram. (b) TD-DFT. (c) Experimental UV spectra,
and (d) optical energy band gap (Eg) of the 2.2 × 10−6 M of 2,5-dimethoxybenzaldehyde in MeOH
and DMSO.
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Table 3. Mulliken (Mull) and natural population analysis (NPA) atomic charges.

Atom No. Atom Mull NPA Atom No. Atom Mull NPA

1 O −0.37563 −0.53238 12 C −0.10245 −0.27906
2 O −0.31227 −0.53113 13 H 0.111993 0.2103
3 O −0.36585 −0.5234 14 C 0.191826 0.33756
4 C −0.12813 −0.19544 15 C −0.10028 −0.24795
5 H 0.128088 0.1876 16 H 0.113917 0.20922
6 H 0.107874 0.16505 17 C −0.1867 −0.18217
7 H 0.11955 0.16505 18 C −0.03829 −0.17568
8 C −0.12758 −0.19749 19 H 0.126519 0.23468
9 H 0.102642 0.16179 20 C 0.151051 0.30193
10 H 0.126294 0.18724 21 C 0.23168 0.41763
11 H 0.115255 0.16178 22 H 0.110488 0.12487

HOMO-LUMO, TD-SCF-B3LYP, absorbance, optical energy gap (Eg), and global reactivity descriptors (GRD).

The GRD quantum parameters of the ligand, including softness (σ), hardness (η), chemical potential
(µ), electrophilicity (ω), and electronegativity (χ), were also calculated by the following equations
(Table 4):

I: Ionization potential = −EHOMO (1)

A: Electron affinity = −ELUMO (2)

∆Egap: Energy gap = EHOMO − ELUMO (3)

χ: Absolute electronegativity = (I + A)/2 (4)

η: Global hardness = (I − A)/2 (5)

σ: Global softness = l/η (6)

µ: Chemical potential = − χ (7)

ω: Electrophilicity = µ2/2η (8)

Table 4. Global reactivity descriptor (GRD) quantum parameters calculated for exo-2,5-
dimethoxybenzaldehyde.

GRD Value

Global total energy ET −574.76611449 a.u
Low unoccupied molecular orbital LUMO −0.05678 a.u
High occupied molecular orbital HOMO −0.21354 a.u

Energy difference ∆Egap
0.15676 a.u
4.26565 eV

Electron affinity A 1.545063 eV
Ionization potential I 5.810721 eV

Global hardness η 2.13505 eV
Global softness σ 0.468372 eV

Chemical potential µ −3.67789 eV
Electronegativity χ 3.67789 eV
Electrophilicity ω 3.16781 eV
Dipole moment u 6.4226 D

3.6. FTIR Investigations

The experimental FTIR spectrum of 2,5-dimethoxybenzaldehyde in a solid state indicated the
presence of several functional groups, which were consistent with its chemical formula. In particular,
the peaks at ~3050, 2950-2840, and 1620 cm−1 were attributed to the C–Hph, C–HCH3, and C=O
stretching vibrations, respectively (Figure 9a). Moreover, it is clear from Figure 9b that the experimental
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and DFT-calculated spectra were very similar, while their high compatibility was further confirmed by
their excellent correlation with R2 = 0.998 (Figure 9c).
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3.7. Computed and Experimental 1H NMR

The experimental 1H-NMR spectrum of 2,5-dimethoxybenzaldehyde was recorded in CDCl3
(Figure 10a). In the aliphatic region, two broad peaks were detected at 3.65 and 3.76 ppm corresponding
to OCH3, while the peaks at 6.91 (d), 7.11 (d), and 7.31 (s) ppm were assigned to the three aromatic
protons. The aldehyde proton was detected at 10.45 ppm as a singlet. The theoretical NMR-DB [16]
(Figure 10b) and GIAO-NMR (Figure 10c) in CDCl3 were similar to the experimental spectrum, while the
calculated and experimental proton chemical shifts showed a very good correlation, with R2 values of
0.9975 and 0.9929, respectively.

3.8. Molecular Docking

Both exo- and endo-isomers of 2,5-dimethoxybenzaldehyde were docked to DNA (PDB ID: 1BNA)
under the same level of theory based on the existing data [25]. Interestingly, both isomers showed
good and similar docking behaviors and were cross-linked to one DNA helix via two hydrogen bonds
to form a (DNA:isomer) complex. No π–π stacking interactions were observed (Figure 11), while the
polar 3-OCH3 functional group of both isomers did not develop hydrogen-bonding interactions with
DNA, as it did not interfere with the DNA helix in the crystal lattice, which supported the minor
groove DNA intercalation.

In addition, the binding affinity of the exo-isomer indicated its close contact with the DNA
surface through a minor groove intercalation mode (Figure 11a) and two short hydrogen bonds to the
adenosines of the one DNA helix (Figure 11b). The hydrogen-bonding interactions were assigned to
DNA DA17: H···OMe (ligand) with 1.984 Å and DNA DA18: H···O=C (ligand) with 1.665 Å (Figure 11c).
The docking results were consistent with the hydrogen bonds detected in the crystal lattice of the
solved structure. In general, the docking effect can be considered a good result when the root mean
square deviation (RMSD) value is below 2 Å [32]. The theoretical binding constant (Kb) and free energy
change for the exo-isomer were found to be 1.63 × 104 and −5.72 kcal/mol, respectively.
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Similar to the exo-isomer, the endo-isomer was also in contact with DNA via a minor groove
intercalation mode (Figure 12a), and one helix binding was observed (Figure 12b). However, this isomer
developed two longer hydrogen-bonding interactions with the DNA adenosines, i.e., DA17:H···OMe
(ligand) with 2.481 Å and DNA DA18:H···O=C (ligand) with 1.927 Å (Figure 12c). According to the
RMSD, one bond was considered to be a good interaction. The theoretical Kb and free energy change
were determined at 1.10 × 104 and −5.49 kcal/mol, respectively.

The study showed significant convergence in the docking behavior of both isomers. However,
the exo-isomer seemed to be slightly more active than the endo-isomer, since its hydrogen bonds were
stronger, and its binding energy and Kb values were higher. These results could be expected, as the
exo-isomer is more stable, and its structural shape selectivity is more suitable for structure-based drug
discovery [16].

3.9. Thermal Analysis

The thermal properties of 2,5-dimethoxybenzaldehyde were also evaluated by
thermogravimetric–derivative thermogravimetric (TG/DTG) analysis. The TG/DTG curves
were obtained at a temperature range of 0–300 ◦C at a heating rate of 5 ◦C/min in an open atmosphere
(Figure 13). The ligand exhibited acceptable stability up to = 95 ◦C, while, at temperatures above 95 ◦C,
the ligand was gradually decomposed, and its weight decreased from 100 wt% to 0 wt% via a single
broad-step reaction mechanism with Toff ≈ 200 ◦C and complete thermal decomposition.
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positional binding and hydrogen-bonding interactions of the exo-isomer with DNA adenosines (DA17:
H···OMe and DA18: H···O=C).
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4. Conclusions

In this study, we explored the exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde based on
DFT studies, and the results were compared and confirmed by experimental studies. The formation
of the exo-isomer was confirmed by the XRD crystallographic analysis structure, while the DFT/XRD
structure parameters reflected semi-unity graphical correlations. The hydrogen bonds computed by
HSA and MEP analyses were in excellent agreement with the experimental XRD packing results,
while the Mulliken and NPA population charge analyses indicated the presence of both nucleophilic
and electrophilic sites on the ligand surface. Moreover, the DFT/B3LYP/6-311G(d,p) computational
study of the exo⇔endo isomerization process allowed the identification of the QST2 TS. Furthermore,
the TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR calculations were similar to the experimental
UV–Vis, direct Eg, FTIR, and 1H NMR spectra, respectively. The calculated Mulliken and NPA
population charges, along with the HOMO/LUMO and GRD quantum parameters, further supported the
exo-isomer formation. The ligand also exhibited good thermal stability, with a one-step decomposition
mechanism in the range of 100–200 ◦C. In addition, both isomers showed a very good DNA docking
effect, where one helix minor grove with two hydrogen bonds was observed for both isomers.
Such compounds can be used in future works as DNA-binding promising drugs.
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