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Abstract: The first nickelacarborane with closo-nido structure [10′,11′-(Py)2-3,9′-Ni(1,2-C2B9H11)(7′,8′-
C2B8H8)] was isolated from the reaction of nickel(IV) bis(dicarbollide) with pyridine. The molecular
structure of this complex was determined by single crystal X-ray diffraction. The nickel atom
is a common vertex for the closo-NiC2B9 cluster and the nido-NC2B8 cluster where it is located
together with carbon atoms in the open NiC2B2 pentagonal face. It is assumed that its formation
proceeds through the nucleophile-induced removal of the B(6)H vertex followed by rearrangement
of the forming 11-vertex cluster, which most likely proceeds through a sequence of closing and
opening reactions.

Keywords: nickelacarboranes; nickel bis(dicarbollide); pyridine derivative; polyhedral contraction;
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1. Introduction

Due to the practically unlimited possibility of varying the structure of carboranes, including by
replacing hydrogen atoms with various groups, transition metal complexes with carborane ligands
are one of the most exciting areas of modern chemistry [1–3]. In addition to purely academic interest,
a number of them show excellent prospects for practical use. Thus, nickel bis(dicarbollide) and its
derivatives [4] attract interest of researchers due to their potential applications in materials science,
including molecular switches [5–8], solar cells [9,10] and conductive metal-organic frameworks [11].
At the same time, the available information on the stability of these complexes is fragmentary and
rather contradictory [12–15]. This prompted us to study the stability of nickel(IV) bis(dicarbollide)
under various conditions. Earlier, we found that boiling nickel bis(dicarbollide) in ethanol leads to its
decomposition with the formation of a mixture of nido-carborane and its 3-ethoxy derivative as the
main products [16].

In this contribution we report the formation of the first nickelacarborane with a closo-nido structure
in the reaction of nickel(IV) bis(dicarbollide) with boiling pyridine.

2. Results and Discussion

It was found that prolonged refluxing nickel(IV) bis(dicarbollide) (1) in pyridine leads to its
complete transformation into a mixture of various nickelacarboranes, mainly of paramagnetic nature.
The separation of this mixture by column chromatography on silica gave a diamagnetic nickelacarborane
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[10′,11′-(Py)2-3,9′-Ni(1,2-C2B9H11)(7′,8′-C2B8H8)] (2), the structure of which was established by single
crystal X-ray diffraction. The reaction is characterized by good reproducibility with an isolated yield of
2 ranging from 19 to 23% (Scheme 1).
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Scheme 1. Reaction of nickel(IV) bis(dicarbollide) with pyridine.

The 1H NMR spectrum of 2 contains a set of signals from two different N-substituted pyridines
in the range of 8.9–7.6 ppm and four signals from different CH groups of carborane ligands at 3.55,
3.33, 2.80 and 1.87 ppm, while the 11B NMR spectrum contains two sets of signals corresponding to
symmetrical and asymmetrical carborane ligands (See Supplementary Materials). It should be noted
that determination of the structure of metallacarboranes containing carborane ligands of different
geometry is a difficult task that normally cannot be solved using methods of NMR spectroscopy due to
signal overlap and, therefore, requires single crystal X-ray diffraction study [17–22].

An asymmetric unit cell of the complex 2 contains one molecule (Figure 1). In the structure of
the complex, the nickel atom is a common vertex for the closo-NiC2B9 cluster and the nido-NC2B8

cluster, where it is located together with carbon atoms in the open NiC2B2 pentagonal face. Each of the
remaining two boron atoms on the pentagonal face is bonded to a pyridine molecule.

The Ni-B bonds in the nido-fragment (2.093(3)–2.119(3) Å) are only slightly shorter than in the
closo-fragment (2.103(2)–2.127(3) Å), while the Ni-C bond lengths differ more significantly (2.002(2) and
2.105(2)–2.170(2) Å for the nido- and closo-fragments, respectively). The same trend is observed also for
the C-C bond lengths (1.508(3) and 1.573(3) Å for the nido- and closo-fragments, respectively). The B-N
lengths equal 1.553(3) and 1.561(3) Å, that are somewhat shorter than in a related cobaltacarborane
(Et4N)[11′-Py-3,9′-Co(1,2-C2B9H11)(7′,8′-C2B8H10)] (1.592(11) Å) [23], but close to those found in
pyridinium derivatives of nido-carborane [9-Py-7,8-C2B9H11] (1.546(2) Å) [24] and metallacarboranes
[4-Py-3-(C4Me4)-3,1,2-CoC2B9H10] (1.548(3) Å) [24], [8-Py-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)]
(1.556(5) Å) [25], [8-Py-3,3′-Fe(1,2-C2B9H10)(1′,2′-C2B9H11)] (1.548(6) and 1.553(6) Å) [25]. The relative
orientation of the carborane ligands can be described by the pseudotorsion angle C1 Centroid
(C1-C2-B7-B8-B4) Ni1-B10’ that is equal to 104.0 (2)◦. Slightly shortened intramolecular CH· · ·HB
contacts were found between the pyridine substituent closest to the metal atom and the dicarbollide
ligands. To assess their possible contribution to the stabilization of the observed conformation of
complex 2, we carried out its QTAIM (quantum theory of atoms in molecules) study [26,27]. Energy of
intramolecular noncovalent interactions was estimated based on their correlation with the energy density
function [28] that was found to be reliable for different types of weak noncovalent interactions [29–31].
Two CH· · ·HB noncovalent contacts (shown in Figure 1) were observed (B5’-H5’· · ·H3A-C3, 2.40Å,
−2.4 kcal/mol; B8-H8· · ·H7A-C7, 2.31Å, −2.6 kcal/mol).
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It should be noted that neither other transition metal bis(dicarbollide) complexes, nor ortho-carborane
itself, do not undergo deboronation with pyridine, whereas C-halogen derivatives were found to be
accessible for nucleophilic attack of pyridine and its derivatives [32]. Complex 2 is the first example
of a nickelacarborane in which the metal atom is common to both the closo-icosahedral cluster and
the nido-cluster formed by removing one vertex from the icosahedron. A related cobaltacarborane
[11′-Py-3,9′-Co(1,2-C2B9H11)(7′,8′-C2B8H10)]− (3) was earlier prepared by removing one BH vertex
on heating the parent cobalt bis(dicarbollide) [3,3′-Co(1,2-C2B9H11)2]− in a 25% aqueous solution of
potassium hydroxide at 95 ◦C, followed by the oxidation of the formed nido- structure to the closo- one
with 30% hydrogen peroxide, and the reaction with pyridine, which leads to the opening of the 11-vertex
metallacarborane the substitution of one hydrogen atom with pyridine [33,34]. In general, the formation
of complex 2 can be described as a polyhedral contraction reaction [33,35,36].

Taking into account that the BH group at position 6 is the most susceptible to nucleophilic attack
in the 3,1,2-MC2B9 metallacarboranes, we believe the formation of complex 2 should also proceed
through the removal of this vertex followed by rearrangement of the 11-vertex cluster, which most
likely proceeds through a sequence of closing and opening reactions, rather than via detachment
and reattachment of the carborane ligand. Therefore, it is reasonable to assume that other formed
nickelacarboranes are related to cobaltacarboranes, which are intermediate products of the formation
of complex 3. The identification of these products is in progress.

3. Materials and Methods

3.1. General Methods

Nickel(IV) bis(dicarbollide) (1) was prepared according to the published procedure [37].
The reaction progress was monitored by thin layer chromatography (Merck F254 silica gel on aluminum
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plates) and visualized using 0.5% PdCl2 in 1% HCl in aq. MeOH (1:10). Acros Organics silica gel
(0.060–0.200 mm) was used for column chromatography. The NMR spectra at 400 MHz (1H), 128 MHz
(11B) and 100 MHz (13C) in acetone-d6 were recorded with a Varian Inova 400 spectrometer. The residual
signal of the NMR solvent relative to tetramethylsilane was taken as the internal reference for 1H and
13C NMR spectra. 11B NMR spectra were referenced using BF3·Et2O as an external standard.

The X-ray diffraction experiment for compound 2 was carried out using a SMART APEX2
CCD diffractometer (λ(Mo-Kα) = 0.71073 Å, graphite monochromator, ω-scans) at 120 K. Collected
data were processed by the SAINT and SADABS programs incorporated into the APEX2 program
package [38]. The structure was solved by direct methods and refined by the full-matrix least-squares
procedure against F2 in anisotropic approximation. The refinement was carried out with the SHELXTL
program [39]. The CCDC number (2046492) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

3.2. Reaction of Nickel(IV) Bis(Dicarbollide) with Pyridine

A solution of nickel(IV) bis(dicarbollide) (50 mg, 0.3 mmol) in 30 mL of pyridine was stirred
under reflux for 50 h. Thereafter, solution was cooled to room temperature and concentrated under
reduced pressure. The crude product was subjected to column chromatography on silica using of
dichloromethane as eluent. The third boron-containing fraction gave dark crystals of 2 (17 mg, yield
23%). 1H NMR: δ 8.89 (d, 2H, J = 7.0 Hz, o-CHPy), 8.70 (2H, d, J = 6.8 Hz, o-CHPy), 8.46 (1H, t,
J = 7.0 Hz, p-CHPy), 8.19 (1H, t, J = 6.8 Hz, p-CHPy), 8.01 (2H, t, J = 7.0 Hz, m-CHPy), 7.60 (2H, t,
J = 6.8 Hz, m-CHPy), 4.0–0.4 (15H, br, BHCarb), 3.55 (1H, s, CHCarb), 3.33 (1H, s, CHCarb), 2.80 (1H, s,
CHCarb), 1.87 (1H, s, CHCarb) ppm; 11B NMR: δ 15.2 (1B, s, B-N), 7.7 (1B, d, J = 116 Hz), 2.3 (1B, d,
J = 149 Hz), 0.8 (1B, s, B-N), –2.1 (1B, d, J = 146 Hz), –4.6 (2B, d, J = 137 Hz), –6.4 (2B, d, J = 146 Hz),
–7.8 (1B, d, J = 114 Hz), –10.9 (1B, d, J = 133 Hz,), –17.4 (3B, d, J = 138 Hz), –20.2 (1B, d, J = 163 Hz),
–22.9 (1B, d, J = 163 Hz), –31.6 (1B, d, J = 139 Hz) ppm; 13C NMR: δ 149.8 (o-CHPy), 146.6 (o-CHPy),
143.5 (p-CHPy), 143.1 (p-CHPy), 128.6 (m-CHPy), 126.1 (m-CHPy), 54.1 (CHCarb), 45.7 (CHCarb), 40.9
(CHCarb), 40.2 (CHCarb) ppm. Crystallographic data: C14H29B17N2Ni are monoclinic, space group P21/n:
a = 13.0440(8) Å, b = 9.8669(6) Å, c = 18.6798(11) Å, β= 98.2660(10)◦, V = 2379.2(2) Å3, Z = 4, M = 467.87,
dcryst = 1.306 g·cm−3. wR2 = 0.0990 calculated on F2

hkl for all 6244 independent reflections with
2θ < 56.4◦, (GOF = 1.020, R = 0.0408 calculated on Fhkl for 4310 reflections with I > 2σ(I)).

Supplementary Materials: The following are available online, NMR spectra of compound 2.
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