Supporting Info for

1,2- and 1,1-Migratory Insertion Reaction of Silylated Germylene Adducts

Małgorzata Walewska, Judith Baumgartner, Christoph Marschner

Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz,

Austria

	3	4	5	7	10	11
Empirical formula	Ge ₄ P ₂ Cl ₄ C ₄₂ H ₁₂₆ Si ₁₆	Ge ₃ PCl ₄ C ₂₅ H ₇₄ Si ₈	Ge ₂ PClC ₂₆ H ₆₀ Si ₇	Ge ₂ PCl ₂ C ₃₁ H ₈₃ Si ₁₀	Ge ₂ ON ₂ Cl ₂ C ₄₅ H ₈₆ Si ₈	Ge ₂ PCl ₂ C ₄₅ H ₈₁ Si ₈
M_w	1574.97	990.35	780.97	983.92	1111.96	1093.87
Temperature [K]	150(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Size [mm]	0.25×0.22×0.08	0.35×0.22×0.16	0.21×0.18×0.13	0.22×0.08×0.06	0.35×0.22×0.16	0.48×0.10×0.10
Crystal system	triclinic	orthorhombic	orthorhombic	monoclinic	monoclinic	orthorhombic
Space group	P-1	P2(1)2(1)2(1)	Pbca	P2(1)/c	P2(1)/n	Pccn
a [Å]	14.280(3)	10.694(2)	20.615(5)	12.424(3)	20.953(4)	26.870(5)
b [Å]	15.683(3)	16.314(3)	12.857(3)	27.226(6)	11.089(2)	36.690(7)
c [Å]	19.427(4)	30.352(6)	31.315(7)	18.602(3)	26.753(5)	12.656(3)
α [°]	90.23(3)	90	90	90	90	90
β[°]	103.57(3)	90	90	117.562	98.04(3)	90
γ [°]	92.27(3)	90	90	90	90	90
$V[Å^3]$	4225(2)	5295(2)	8300(3)	5578(2)	6155(2)	12477(4)
Z	2	4	8	4	4	8
$\rho_{calc} [gcm^{-3}]$	1.238	1.242	1.250	1.172	1.200	1.165
Absorption coefficient [mm ⁻¹]	1.826	2.121	1.769	1.437	1.250	1.255
F(000)	1656	2061	3280	2088	2352	4608
θ range	1.08< 0 <25.00	1.34<0<26.39	1.63< 0 <26.37	1.44<θ<26.27	1.54<θ<26.36	0.94<θ<26.37
Reflections collected/unique	29917/14683	42073/10817	52700/8486	14654/10304	48115/12539	74307/12615
Completeness to θ [%]	98.6	99.8	100	96.3	99.7	98.9
Data/restraints/parameters	14683/0/655	10817/0/415	8486/0/352	10304/6/473	12539/0/563	12615/0/544
Goodness of fit on F^2	1.05	1.02	1.03	0.89	1.15	1.04
Final R indices $[I>2\sigma(I)]$	R1=0.106	R1=0.052	R1=0.039	R1=0.090	R1=0.072	R1=0.049
	wR2=0.260	wR2=0.109	wR2=0.085	wR2=0.139	wR2=0.154	wR2=0.109
R indices (all data)	R1=0.152	R1=0.065	R1=0.052	R1=0.180	R1=0.086	R1=0.068
	wR2=0.278	wR2=0.114	wR2=0.090	wR2=0.190	wR2=0.162	wR2=0.116
Largest diff. Peak/hole [e ^{-/} Å ³]	1.72/-1.20	0.98/-0.41	0.91/-0.34	1.15/-0.55	1.23/-0.75	1.96/-0.58

Table 1. Crystallographic data for compounds 3, 4, 5, 7, 10, and 11.

Figure 1. Molecular structure of **3** (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg, two independent molecules in the asymmetric unit). Ge(1)-P(1) 2.380(3), Ge(1)-Si(1) 2.489(3), Ge(1)-Ge(2) 2.5210(18), Ge(2)-Cl(2) 2.208(4), Ge(2)-Cl(1) 2.253(3), Ge(2)-Si(6) 2.428(3), Si(1)-Si(2) 2.361(4), Si(2)-C(1) 1.864(14), P(1)-C(11) 1.807(13), P(1)-Ge(1)-Si(1) 99.69(11), P(1)-Ge(1)-Ge(2) 93.80(9), Si(1)-Ge(1)-Ge(2) 105.64(9), Cl(2)-Ge(2)-Cl(1) 99.49(17), Cl(2)-Ge(2)-Si(6) 102.67(14), Cl(1)-Ge(2)-Si(6) 101.21(12), Cl(2)-Ge(2)-Ge(1) 108.28(12), Cl(1)-Ge(2)-Ge(1) 116.19(10), Si(6)-Ge(2)-Ge(1) 125.38(10).

Figure 2. Molecular structure of **4** (thermal ellipsoid plot drawn at the 30% probability level, one only partially (ca 75%) occupied pentane molecule was observed in the asymmetric unit). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Ge(1)-P(1) 2.3900(16), Ge(1)-Ge(2) 2.4980(9), Ge(1)-Ge(3) 2.5114(9), Ge(2)-Cl(1) 2.2177(15), Ge(2)-Cl(2) 2.2228(15), Ge(2)-Si(1) 2.3966(15), Ge(3)-Cl(3) 2.2149(15), Ge(3)-Cl(4) 2.2397(16), Ge(3)-Si(5) 2.4101(18), P(1)-C(20) 1.810(6), Si(1)-Si(2) 2.339(2), Si(2)-C(1) 1.860(8), P(1)-Ge(1)-Ge(2) 96.91(5), Ge(2)-Ge(1)-Ge(3) 97.31(3), Si(1)-Ge(2)-Ge(1) 126.78(4), Si(5)-Ge(3)-Ge(1) 128.04(5).

Figure 3. Molecular structure of **5** (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Ge(1)-C(17) 1.997(2), Ge(1)-Cl(1) 2.2725(8), Ge(1)-Si(1) 2.4285(8), Ge(1)-Ge(2) 2.5052(5), Ge(2)-P(1) 2.3610(9), Ge(2)-Si(5) 2.4409(9), P(1)-C(25) 1.814(3), Si(1)-Si(2) 2.3645(12), Si(2)-C(1) 1.879(3), Si(5)-C(16) 1.891(3), C(17)-Ge(1)-Cl(1) 103.05(8), C(17)-Ge(1)-Si(1) 118.48(8), C(17)-Ge(1)-Ge(2) 106.59(7), Si(1)-Ge(1)-Ge(2) 115.24(2), Si(5)-Ge(2)-Ge(1) 84.97(3).

Figure 4. Molecular structure of 7 (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Ge(1)-C(1) 1.981(9), Ge(1)-Cl(1) 2.214(3), Ge(1)-Cl(2) 2.225(3), Ge(1)-Ge(2) 2.5178(14), Ge(2)-C(21) 2.016(8), Ge(2)-P(1) 2.431(2), P(1)-C(28) 1.815(9), Si(1)-C(2) 1.925(9), Si(1)-Si(2) 2.343(4), Si(5)-C(22) 1.872(9), Si(10)-C(1) 1.893(9), C(1)-C(2) 1.342(11), C(21)-C(22) 1.371(10), C(1)-Ge(1)-Ge(2) 120.6(3), Cl(1)-Ge(1)-Ge(2) 122.41(9), Cl(2)-Ge(1)-Ge(2) 101.26(9), C(21)-Ge(2)-P(1) 96.8(2), C(21)-Ge(2)-Ge(1) 110.0(3), P(1)-Ge(2)-Ge(1) 91.77(7).

Figure 5. Molecular structure of **10** (thermal ellipsoid plot drawn at the 30% probability level, an additional THF molecule was found in the asymmetric unit). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Ge(1)-C(26) 1.995(4), Ge(1)-C(8) 1.999(4), Ge(1)-C(1) 2.006(4), Ge(1)-Ge(2) 2.5628(8), Ge(2)-Cl(2) 2.2997(14), N(1)-C(1) 1.354(6), Si(1)-C(9) 1.890(5), Si(1)-Si(2) 2.3539(19), Si(5)-C(27) 1.897(4), C(8)-C(9) 1.344(6), C(26)-C(27) 1.336(6), C(26)-Ge(1)-C(8) 111.56(17), C(26)-Ge(1)-C(1) 96.80(17), C(8)-Ge(1)-C(1) 105.12(18), C(26)-Ge(1)-Ge(2) 122.36(12), C(8)-Ge(1)-Ge(2) 101.24(13), C(1)-Ge(2) 119.04(13), N(2)-C(1)-N(1) 105.9(4), C(8)-C(9)-Si(1) 143.6(4), C(26)-C(27)-Si(5) 132.7(3).

Figure 6. Molecular structure of **11** (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Ge(1)-C(17) 1.942(3), Ge(1)-C(9) 1.961(3), Ge(1)-C(7) 1.963(3), Ge(1)-Cl(3) 2.1662(9), Ge(2)-C(18) 2.031(3), Ge(2)-Cl(1) 2.2962(11), Ge(2)-P(1) 2.4306(10), P(1)-C(43) 1.802(4), Si(1)-C(8) 1.905(3), Si(1)-Si(2) 2.3654(14), Si(5)-C(10) 1.897(3), C(7)-C(8) 1.340(4), C(9)-C(10) 1.329(4), C(17)-C(18) 1.327(4), C(17)-Ge(1)-C(9) 116.70(13), C(17)-Ge(1)-C(7) 104.41(13), C(9)-Ge(1)-C(7) 113.29(13), C(7)-C(8)-Si(1) 142.8(3), C(9)-C(10)-Si(5) 144.3(3).

Figure 7. ²⁹Si{H} INEPT NMR spectrum of 3 in C₆D₆

Figure 8. ${}^{31}P{H}$ NMR spectrum of 3 in C₆D₆

Figure 9. ²⁹Si{H} INEPT NMR spectrum of 4 in C₆D₆

Figure 10. ${}^{31}P{H}$ NMR spectrum of 4 in C₆D₆

Figure 11. ²⁹Si{H} INEPT NMR spectrum of 5 in C₆D₆

Figure 12. $^{31}P\{H\}$ NMR spectrum of 5 in C_6D_6

Figure 13. ²⁹Si{H} INEPT NMR spectrum of 7/8a in C₆D₆

Figure 14. ²⁹Si{H} INEPT NMR spectrum of 10 in C₆D₆