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Abstract: We demonstrate that the finite difference grid method (FDM) can be simply modified
to satisfy the variational principle and enable calculations of both real and complex poles of the
scattering matrix. These complex poles are known as resonances and provide the energies and
inverse lifetimes of the system under study (e.g., molecules) in metastable states. This approach
allows incorporating finite grid methods in the study of resonance phenomena in chemistry. Possible
applications include the calculation of electronic autoionization resonances which occur when
ionization takes place as the bond lengths of the molecule are varied. Alternatively, the method
can be applied to calculate nuclear predissociation resonances which are associated with activated
complexes with finite lifetimes.

Keywords: variational principle; resonances; finite difference method; grid methods

1. Introduction

In 1978 Frank Weinhold together with Phil Certain and Nimrod Moiseyev, in their
work on the complex variational principle (a stationary point rather than an upper bound
as in Hermitian QM), paved the way for the use of electronic structure computational
algorithms to metastable (resonance) states [1]. In this framework, the energies and inverse
lifetimes of atoms and molecules are associated with the real and imaginary parts of the
complex eigenvalues of non-Hermitian Hamiltonians, respectively.

Recently, there is increasing interest among chemists concerning the use of non-
Hermitian QM for the calculations of molecular resonances. For example, the most recent
developments of the QCHEM quantum chemistry package enable calculations of shape
type and Feshbach molecular resonances [2–18]. In addition, such methods have been
employed in the study of RNA bases [19,20]. It is clear by now that in order to increase
the accuracy of ab-initio calculations, associated with resonances, grid methods should
be incorporated into the Gaussian basis set. See for example the hybrid Gaussian and
b-spline method recently developed by Fernando Martin and his group [21,22]. Specifically,
this will enable to improve the description of the outgoing ionized electrons. However,
the standard finite difference method (FDM), that enables calculation of the bound states
of a quantum system, is not applicable for the calculations of the complex poles associated
with metastable (resonance) states. The origin of this failure can be traced back to the fact
that the standard FDM does not satisfy the variational principle.

Here we show how a simple change in the selection of the grid points in FDM leads
to a variational principle and enables calculation of both real and complex poles of the
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scattering matrix. This approach opens the gate to evaluate the resonances by FDM for
atoms and molecules as well as mesoscopic systems. Illustrative numerical examples
will be given for a “toy” model, which was first presented in a paper published together
with Frank Weinhold many years ago and is used until now as a model for testing new
algorithms for calculating resonances [1].

Numerical approaches for the analysis of physical systems can be classified into two
prominent categories: grid and basis set approaches [23–29]. The basis set methods are
equivalent to the use of an approximate representation of the identity operator. As a result,
they provide upper bounds to the eigenvalues. Contrastly, in the grid based methods
one represents the continuous space by a quantized finite number of grid points. These
methods exhibit fast processing time, however, they generally do not provide an upper
bound to the eigenvalues [30–33].

The standard grid method is the traditional finite difference method, which is abun-
dantly used in the solution of second order partial differential equations, e.g., in the study
of heat transfer problems [34], as well as in solving the Maxwell [35,36] and Schrödinger
equations [37]. The crucial limitation of the standard FDM is that the convergence of
the numerical results requires refining the grid spacing (mesh), which in turn increases
the amount of storage and calculation. An important improvement of the accuracy and
stability of the FDM has been recently described in Ref. [38] by combining two high-order
exponential time differencing precise integration methods (PIMs) with a spatially global
sixth-order compact finite difference scheme (CFDS). In addition, by modifying the repre-
sentation of the Laplacian operator one can obtain a rigorous upper bound estimate of the
true kinetic energy [39].

The first goal of this paper is to show that upper bounds to the spectrum of any given
Hamiltonian can be obtained without modifying the representaion of the Laplacian and
by using the same set of coupled equations as are used in the standard FDM. We refer to
the proposed method as the “present” variational FDM, while the common approach is
termed the “standard” non-variational method. The standard FDM typically converges to
the exact spectrum from below (i.e., non-variational), this is attributed to the fact that the
obtained spectrum of the kinetic energy operator in the standard FDM serves as a lower
bound to the exact kinetic energies, see Figure 1 and also Ref. [39]. Note however that this
characteristic behaviour is not true for any potential.

Building upon the Hylleraas Undheim and MacDonald theorem we prove that the
proposed present FDM satisfies a variational principle with respect to the accurate solution
within the finite box approximation. The variational principle guarantees the stability of
the proposed scheme as the number of the grid points are increased. The stability of the
present FDM calculations is obtained by holding the grid spacing to be as small as possible
and constant, while increasing the number of grid points.

We first focus on the calculation of the bound discrete states of Hermitian Hamiltoni-
ans. Following, we show how the the present FDM can be utilized to calculate the energies
and widths (inverse lifetimes) of mestasbale states states, embedded in the continuous
part of the spectrum (so called resonances), which are associated with the poles of the
scattering matrix.

We introduce the finite box quantization condition, assuming that this restriction does
not serve as a limitation to obtain the bound state spectrum in the desired accuracy. That is,
the exact result is considered as the result obtained by fixing the spatial range of the system
and infinitely increasing the precision of the calculation. Physically, this is motivated
by the fact that any realistic computation is conducted by using a finite number of grid
points or basis states, i.e., finite size computers. Moreover, any realistic measurement has a
corresponding fundamental uncertainty. Therefore, one can replace infinite space by a box
of finite dimension, without practically effecting the physical description.

Within the finite-box approximation, the considered exact solution is determined by
two parameters: the box size Lmax and the maximum number of grid points Nmax. In the
present approach the grid spacing is defined by δx = Lmax/Nmax, where the box-size L is
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varied with the number of grid points N, i.e., for L = δxN. This should be distinguished
from the standard method, where the grid spacing ∆x = Lmax/N varies with the number
of grid points where N ≤ Nmax.

The paper is organized as follows. First, we describe the two FDMs procedures,
leading to the spectrum of the Hamiltonian under study. We then provide a proof that the
proposed FDM produces an upper bound to the spectrum of the Hamiltonian within the
box quantization condition. Following, we present the numerical results for the calculation
of the bound and metastable states (resonances), and compare to the exact results. Finally,
we conclude by emphasizing the generality of our approach.

2. Methodology

When conducting a numerical calculation utilizing a grid based method, the Hamilto-
nian operator Ĥ is represented by a N × N dimensional matrix,

H = T + V , (1)

where N is the number of grid points and T and V are matrix representations of the kinetic
and potential energies operators. The matrix T is calculated by utilizing m (m = 2l + 1;
l = 1, 2 . . .) grid points to evaluate the Laplacian (second-order derivative). Specifically,
we employ the central finite grid method, where m values of the wavefunction around the
grid point xi (identical number on both sides) are used to approximate the second order
derivative of the wave function (cf. Appendix A for further details). This leads to the
following relation

(∆x)2 d2ψ

dx2

∣∣∣∣
xi

=
l

∑
j=−l

wjψi+j , (2)

where wj = A−1
3,j+l+1, and A is a m × m matrix, with elements Aj+l+1,k+1 = jk/k! and

j ∈ [−l, l]. This relation determines the matrix elements of the (2l + 1)-diagonal matrix T
whose elements are given by

Ti,i+j = −
h̄2wj

2µ(∆x)2 with j ∈ [−l, l], (3)

while zero otherwise and i = 1, 2, . . . , N. Here h̄ is Planck’s constant and µ is the particle’s
mass. Table 1 gives the coefficients for different values of m. We emphasize that the
coefficients are symmetric wj = w−j; this entails that the kinetic energy matrix is symmetric
and real, which in turn implies that it is positive definite.

Table 1. The weights wj in (2) for different values of m. Here we present only wj for j ≥ 0 as the
weights remain symmetric for every j, e.g., wj = w−j.

wj w0 w1 w2 w3 w4 w5

m = 3 −2 1

m = 5 − 5
2

4
3 − 1

12

m = 7 − 49
18

3
2 − 3

20
1

90

m = 9 − 205
72

8
5 − 1

5
8

315 − 1
560

m = 11 − 5269
1800

5
3 − 5

12
5

126 − 5
1008 − 1

3150

The number of grid points included in the calculation of T (m) has a significant effect
on the eigenvalues of the matrix. This can be witnessed by analyzing the convergence to
the exact solution with increasing n, see Appendix B for a graphical representation.
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Alternatively, the present (variational) FDM can also provide an upper bound to the
spectrum of the Hamiltonian. For a properly defined grid, when the grid-difference is held
fixed δx ≡ ∆x(Nmax), and the box-size is increased with N: L(N) = δxN, the numerical
result converges to the exact spectrum from above. In this case, as seen in Figure 1,
the eigenvalues of T provide a curve which approaches the parabolic function y(n) =
c(n/Lmax)2, with Lmax = L(Nmax), from above. As N approaches the maximal value
Nmax, the obtained spectrum approaches the same converged numerical result of the
kinetic energy, leading to the converged Hamiltonian spectrum.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30
201

251

301

351
9

1.52

1.54

1.56

 Converge 

Figure 1. Eigenvalues of the kinetic energy operator {En}n=1,2,... as obtained by the standard FDM
and by the present (variational) FDM. Red curves are obtained by the standard FDM for fixed value
of L = 16 for growing number of grid points N such that ∆X = 16/N. The blue curves are obtained
by the present (variational) FDM for a fixed small grid spacing δx and increasing number of grid
points. The kinetic energy matrix is calculated by using m = 3 (see Appendix A) and therefore is
a tri-diagonal matrix. It is evident that the standard method provides lower bounds for the kinetic
energy spectrum for every n ≥ 0 as N is increased (N = 201, 251, . . .), whereas the present (variational)
FDM, first presented here, provides upper bounds to the exact values. In this case, the standard FDM
converges faster than the present FDM but it is not a variational method.

3. The Variational Principle for Finite Difference Method

We consider a system confined in a finite box which is represented by Hamiltonian
Ĥ. The box size, utilized in the calculation, is chosen so to not limit the accuracy of the
calculated eigenstates. This is a common approximation, which is implicitly included in
any numerical calculation, including all quantum chemistry packages used to obtain the
electronic spectrum. In such calculations, the molecular Hamiltonian Ĥ is replaced by a
finite dimensional matrix H. Similarly, in the FDM we limit the 1D space to a < x < b.
The exact Hamiltonian under study within the box quantization framework is obtained by
the FDM when ∆x = (b− a)/N as N → ∞.

Based on the Hylleraas, Undheim and MacDonald theorem [40–42], we prove that the
eigenvalues of the N-grid point representation matrix of the Hamiltonian, H(N), serves as
an upper bound to the exact spectrum. The N by N matrix H(N) satisfies the following
eigenvalue equation

H(N)C(N) = C(N)Ediag(N) , (4)

where the columns of C(N) are the eigenstates of H(N) and Ediag is a diagonal matrix
containing the corresponding eigenvalues. Clearly, the N + 1 by N + 1 matrix H(N + 1)
satisfies a similar eigenvalue equation. This matrix can be expressed in terms of H(N)
matrix as follows

H(N + 1) =

[
H(N) ~M
~M† HN+1,N+1

]
, (5)
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where ~M = (H1,N+1, . . . , HN,N+1)
T with Hij are the corresponding matrix elements of

H(N + 1). Note that in the present case, where the system is represented by a grid, ~M
never vanishes.

After some algebraic manipulations one obtains the relation

ε(N + 1) − HN+1,N+1 = ~MTC(N)
[
ε(N + 1)I − Ediag(N)

]−1
C†(N) ~M∗ (6)

where ε(N + 1) is one of the eigenvalues of H(N + 1). Equation (6) can be now solved by
replacing ε(N + 1) by a parameter x and plotting both sides of the equation as a function
of x. The intersection between the two curves are values of x = ε(N + 1) for which
Equation (6) is satisfied.

Poles of Equation (6) are obtained whenever ε(N + 1) is one of the eigenvalues of
H(N), i.e., one of the elements on the diagonal of Ediag(N). In Figure 2 a schematic
representation of the left hand side (l.h.s) and r.h.s of Equation (6) are plotted as function
of the parameter x. By observing Figure 2 it is evident that

En−1(N) < En(N + 1) < En(N). (7)

This equation shows that the eigenvalues converge from above. Hence, the eigenvalues
obtained using a finite number of grid points upper-bound the exact eigenvalues. The strict
inequality between the eigenvalues of Equation (7) emerges from the fact that when the
vector ~M does not vanish and the eigenvalue of a matrix with N + 1 dimensions coincides
with an eigenvalue of a matrix with N dimension, there is a singularity. This result
completes the proof showing that the present FDM produces an upper bound for the
exact solution, in the desired chosen accuracy, i.e., the exact solution within the finite box
approximation. Upper bounds to the eigenvalues of the Hamiltonian beyond the finite box
approximation are obtained for δx → 0.

x x x

l.h.s

r.h.s

x

Energy

E3(N)E2(N)E1(N)
E1(N+1)

E2(N+1)
E3(N+1)

E4(N+1)

Figure 2. A schematic representation of the both sides of Equation (6) as a function of x. Singularities
are obtained when x equals one of the eigenvalues of H(N) (crosses on the x axis), while the
intersection are achieved when x corresponds to one of the eigenvalues of H(N + 1) (orange points).

To demonstrate how the two FDM schemes can be combined together to evaluate the
system spectrum, we compare the FDM results to the analytical solution for two cases:
the harmonic and Rosen-Morse potentials. The harmonic potential, VHO(x) = 1

2 µω2x2,

includes an infinite number of bounded states with energies En = h̄ω
(

n + 1
2

)
, where

n = 0, 1, 2, . . ., µ is the particle mass and ω is the oscillator frequency. In contrast, the Rosen-
Morse has finite number of bounded states nmax with energies

En = − h̄2a2

2µ

[
−(1 + 2n) +

√
1 +

8µV0

a2h̄2

]
,
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where n ≤ nmax, and the potential is of the form VRM = −V0/cosh2(ax) [43].
The calculation is performed by the following procedure: First, we evaluate the

maximum box size Lmax utilizing a semi-classical approximation. The semi-classical bound
state function is well described when the box quantization condition is imposed on the
quantum solution, such that |A(x = Lmax)| = | exp

(
−
∫ √

2µ(V(x)− Emax)dx
)
| ≈ 0,

where the eigenenergies of interest lie in the range [minx(V(x)), Emax]. This evaluation
is equivalent to employing the WKB method in order to recast the wavefunction in an
exponential form [44–46]. Technically, this approximation is valid only for large action
relative to h̄ and smooth potentials, nevertheless, this condition is sufficient to evaluate Lmax
even beyond this regime. In our calculations we take A ≈ 10−7. For higher dimensional
space the box-size should be evaluated in a similar way, by choosing the spatial coordinates
according to the classical turning points of the potential in the energy range under study.

We now compare the eigenenergies of the two FDM schemes for a varying number
of grid points N. The standard procedure (L = const), typically, produces a lower bound,
while keeping the grid density constant with increasing grid size gives an upper bound
to the spectrum. This can be observed in Figures 3 and 4, which present the energy error,
error(En) =

(
Enumerical

n − Eexact
n

)
/|Eexact

n |, as a function of quantum number n for the two
potentials. The two cases demonstrate the varying convergence behaviour. In the case of
the harmonic potential, the standard FDM shows a faster convergence from below relative
to the present method. In contrast, the later method shows a rapid convergence for the
Rosen-Morse potential from above. This demonstrates the utility of applying both methods,
and combining them to evaluate the exact spectrum.

Figure 3. Error of the energy eigenvalues, n = 0, 1, 2, . . ., for the harmonic potential using the
standard (non variational) FDM (red curves) and the present (variational) FDM (blue curves). Red
curves for fixed value of Lmax = 36 for growing number of grid points N (N = 100, 150, . . . , 250),
and blue curves ∆x = δx = Lmax/Nmax. The parameters values are: ω = µ = h̄ = 1 and the kinetic
energy is evaluated utilizing m = 7 grid points. For the harmonic potential, the upper variational
solutions obtained by the present FDM converge much slower relative to the non-variational solutions,
obtained by the standard FDM. On the scale of this graph it is not possible to follow the convergence
of the non-variation (red) results obtained for N ≥ 100.
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Figure 4. Error of the energy eigenvalues, n = 0, 1, 2, 3 for the Rosen-Morse potential for different
number of grid points N using the standard (non variational) FDM (red curves) and the present
(variational) FDM (blue curves). Red curves for fixed value of Lmax = 36 with growing number of grid
points N (from N = 100 to N = 250) where ∆x(N) = Lmax/N, and blue curves ∆x = δx = Lmax/Nmax.
The parameters values are: V0 = 10, a = µ = h̄ = 1 and the kinetic energy is evaluated utilizing
m = 7 grid points (i.e., 7th diagonal matrix). As witnessed in the plot, for this unharmonic potential
the upper variational solutions obtained by the present FDM converge much faster than the non-
variational solutions which where obtained by the standard FDM. On the scale of this graph it is not
possible to fully follow the convergence of the variation (blue) results obtained for N ≥ 150.

4. Illustrative Numerical Examples for the Calculations of Energies and Widths
of Resonances

We now apply the present FDM to calculate the spectrum of a model potential

Vr(x) =
(

x2/2− 0.8
)

exp
(
−0.1x2

)
. (8)

Such a potential has been used to study new computational algorithms for calculating
the energies and widths (inverse lifetimes) of shape type resonances [1]. The spectrum
is characterized by a single bound state and metastable states with higher energies. In
addition, in Ref. [47] this model was employed to calculate upper and lower bounds to the
complex decay poles of the scattering matrix (resonances).

In the following, the two finite different methods are applied to solve for the spectrum
of Hr = T + Vr and the eigenenergies are plotted as a function of the number of grid points
in Figure 5. The convergence of the standard (non-variational) method is characterized by
non-intersecting lines, Figure 5a. As a result, this plot does not indicate which states are
metastable. In contrast, the present variational FDM produces an informative picture of
a typical stabilization graph, Figure 5b, allowing to distinguish the resonances from the
other states in the quasi-discrete spectrum of the continuum. The possibility to isolate the
resonances from the other states in the quasi-continuum can be utilized to calculate the
resonance widths. See for example, the calculation of resonance widths (inverse lifetimes)
and energies for L2 methods [48], spherical-box quantization [49] and from the analytical
continuation of real stabilization graphs, utilizing a Gaussian basis [19,20,50–70]. This
is the primary result of our work, demonstrating that resonances can be calculated from
stabilization graphs obtained by utilizing grid methods and not only by applying basis
sets, as previously done.
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Figure 5. Stabilization graphs for the (a) standard (non-variational) and (b) present (variational)
finite difference methods. The plots show the spectrum, En; n = 1, 2, . . ., as a function of the number
of grid points N for a model potential Vr(x), Equation (8). The full dark points on the right hand
side indicate the exact values of the bound and the two nearest resonance energies as calculated
by the uniform complex scaling approach. Both methods lead to accurate values as N increases,
however, in the standard method, Panel (a), does not allow to distinguish between the resonances
and the other quasi-discrete continuum states. In contrast, the variational principle of the present
FDM leads to a typical stabilization graph. The stability of the metastable states in the continuum
enables identifying them. Their positions (i.e., energies) is determined by the stable region. Model
parameters: δx = Lmax/Nmax ≈ 8.5× 10−2, Lmax = 60 and Nmax = 700. These numerical parameters
lead to an error of 10−9 in the value of bound state, as well as 10−5 and 10−2 in the values of the two
first metastable states, respectively.

In order to obtain the resonance energies (in an improved accuracy) and the corre-
sponding resonance widths we repeat on the FDM calculations with a uniformly rotated
coordinate in the complex plane. Formally, the procedure maps the x coordinates to
{xi → xi exp(iθ)}i=1,2,...,N , leading to complex eigenvalues. The real part of the eigenval-
ues that are invariant under the mapping (invariant under a change of θ) are the resonance
energies (positions). While the resonance widths are associated with the imaginary parts of
the complex eigenvalues multiplied by −2 (En → εn − iΓ/2).

For a formal justification for calculating the resonances by a rotation of the coordinated
in the complex plane see the text book on non-Hermitian quantum mechanics and the
references therein [71]. Specifically, the works of Aguilar and Combes [72], and Balslev
and Combes [73], should be highlighted along with the work of Barry Simon that put the
computations of resonances by the complex scaling transformations on a solid mathematical
ground [74,75].

The results presented in Figure 6 were obtained by following the complex eigenvalues
which their real parts are closest to the resonance values obtained in Figure 5 (θ = 0). This
is a crucial property of the present method, as it enables following the convergence of the
complex poles as the number of grid points N is increased. This cannot be achieved by the
standard FDM. The stability which results from introducing absorbing boundary condition
(here obtained by employing complex scaling) has been observed before for the helium
resonances in Ref. [76], utilizing Hylleraas basis functions. Therefore, it is expected that
similar stabilization graphs will be obtained by grid methods in combination with complex
absorbing potentials.



Molecules 2021, 26, 5248 9 of 14

Figure 6. Stabilization graph of the complex scaled spectrum {En = εn − iΓn/2} as obtained by the
present FDM. (a) Real part and (b) imaginary part of the spectrum. The grid points were rotated
to the complex coordinate plane by an angle θ = 0.5, leading to {xi → xi exp(iθ)}i=1,2,...,N . Exact
values of the energies and widths are presented by large black circles on the right hand side. Model
parameters: δx = Lmax/Nmax ≈ 0.15, Lmax = 60 and Nmax = 400.

5. Concluding Remarks

We show that by fixing the grid spacing in the finite difference method one obtains a
variational principle within the finite box approximation. This property allows obtaining a
stabilization graphs for the spectrum, which produces an accurate estimation for both the
bound ground, excited states as well as the positions of narrow resonances. The stabilization
graphs obtained by the presented FDM enable one to distinguish between the metastable
(resonance) states that are localized in the interaction region and the other states in the
continuum. The later states are not localized and have large amplitudes outside the
interaction region. To obtain the resonance width (inverse lifetimes), we preformed a
rotation of the grid points in the complex plane. This procedure also increases the accuracy
of the the resonance positions. The calculation accuracy is determined by the grid spacing.
As the grid spacing decreases the accuracy increases at the expense of increasing the
number of grid points required for convergence.

Overall, the present study demonstrates how a simple change in a known numerical
method (FDM in our case) might increase the broadness of its application. Our results
suggest that grid methods should be added to the Gaussian basis set in the electronic
structure quantum chemistry packages. This will allow introducing complex absorbing
boundary conditions in the non-interacting region of the Hamiltonian. This approach
paves the way for the calculations of the complex poles of the scattering matrix. Such poles
can be associated with the peaks in measured reaction rates in cold molecular collisions.
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Appendix A. Derivation of the Representation of the Laplacian by the Standard Finite
Difference Method

The kinetic energy operator T is presented by a N × N matrix, which employs m
(where m = 3, 5, . . .) grid points to approximate the representation of the Laplacian opera-
tor at each point. This approximation results in a discretized spectrum of the kinetic energy
operator, given by En = c(n/L)2, where n ∈ N is the quantum number, L = xN − x1 is
the size of the box which discretizes the kinetic energy spectrum and the proportionality
constant c is problem dependent. In the solution of the time-independent Schrödinger
equation the proportionality constant equals to π2h̄2/(2µ). Commonly, in a grid represen-
tation, the matrix representing the potential energy is diagonal with values V(xi), where xi
denotes the coordinate of the ith nodal point.

For the sake of clarity we give below a short description of the derivation of the
approximate matrix representation of the Laplacian operator. Consider a 1–dimensional
evenly spaced grid made up of N nodal points with a total length L. The spacing between
adjacent nodal points is given by ∆x = L

N−1 . We wish to approximate the second order
derivative of the wave function ψ(x) at x = xi, compactly denoted as ψi. For this purpose,
we write the truncated Taylor series expansion around xi using j nodal steps, explicitly
written as

ψi+j =
m−1

∑
k=0

(j∆x)k

k!
dkψ

dxk

∣∣∣∣∣
xi

, (A1)

where j ∈ [−l, l] and m = 2l + 1. This results in a linear system of equations which relates
the vector of the nodal values of the function ~ψ and the vector of its derivatives ~ψ(D)

~ψ =
{

ψi+j
}l

j=−l , ~ψ(D) =

(∆x)k dkψ

dxk

∣∣∣∣∣
xi


m−1

k=0

. (A2)

Notice that the first and last elements of ~ψ are ψi−l and ψi+l , respectively. The nodal values
and its derivatives are related through the matrix Am×m, with elements Aj+l+1,k+1 = jk/k!:

~ψ = A~ψ(D). (A3)

By inverting Equation (A3), we isolate the second order derivative, which is proportionate
to the third element of ~ψ(D). This leads to a linear combination of the nodal values,
with weights wj = A−1

3,j+l+1. The derivative is then explicitly written as

(∆x)2 d2ψ

dx2

∣∣∣∣
xi

=
l

∑
j=−l

wjψi+j. (A4)

Appendix B. Convergence of the Kinetic Energy Representation by the Standard
Finite Difference Method

The eigenvalues of T converge towards the analytical result with an increase in the
number of grid points included in the calculation m. The different matrices T(m) are
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diagonalized for a constant number of grid points N, to obtain the eigenenergies En for
different values of m. Figure A1 presents the eigenvalues of the matrices T(m) in increasing
order. As the m increases the representation of the kinetic energy operator becomes more
accurate and the corresponding eigenenergy curves converge to the exact result. Therefore,
the value of m has a major influence on the derivation of the upper bound within a
specific potential.

0 50 100 150 200
0

5

10

15

20

Figure A1. Eigenvalues of the kinetic energy operator En, n = 1, 2, . . ., as a function of the quantum
number n as obtained by the standard FDM. The different plots correspond to different values of grid
points employed to calculate the second order derivative, m (Equation (A1)), while keeping the total
number of grid points and the box size constant. As m increases the accuracy of the second order
derivative is increased. The chosen parameters are: h̄ = 1, µ = 1, N = 201 and L = 100. Note that
this figure is given for illustration reasons and is not novel (see for example Figure 1 in Ref. [39]).
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