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Abstract: In this study, a centrifugal partition chromatography (CPC) separation was applied to
identify antioxidant-responsive element (ARE) induction molecules from the crude extract of Lindera
strychnifolia roots. CPC was operated with a two-phase solvent system composed of n-hexane-
methanol-water (10:8.5:1.5, v/v/v) in dual mode (descending to ascending), which provided a high
recovery rate (>95.5%) with high resolution. Then, ARE induction activity of obtained CPC fractions
was examined in ARE-transfected HepG2 cells according to the weight ratios of the obtained fractions.
The fraction exhibiting ARE-inducing activity was further purified by preparative HPLC that led to
isolation of two eudesmane type sesquiterpenes as active compounds. The chemical structures were
elucidated as linderolide U (1) and a new sesquiterpene named as linderolide V (2) by spectroscopic
data. Further bioactivity test demonstrated that compounds 1 and 2 enhanced ARE activity by
22.4-fold and 7.6-fold, respectively, at 100 µM concentration while 5 µM of sulforaphane induced
ARE activity 24.8-fold compared to the control.

Keywords: Lindera strychnifolia; centrifugal partition chromatography; linderolide V; eudesmane
sesquiterpenes

1. Introduction

Natural products are a pool of molecules that attract pharmaceutical interest. To search
interesting bioactive compounds from natural extracts, performing a bioassay-guided frac-
tionation that gears toward silica-based chromatographic steps is common. During the
isolation workflow, however, innate physicochemical properties of its solid-like packing
materials often bring about loss of activity or failure in isolation concomitant with insuf-
ficient concentration of target compounds for bioactivity test [1,2]. Thus, a fractionation
system that enhances separation efficiency and total sample recovery while lowering the
risk in sample denaturation is needed. For this purpose, counter-current separations are
an efficient chromatographic tool to combine with bioactivity tests. Centrifugal partition
chromatography (CPC) is a type of support-free liquid–liquid chromatography technique
that uses an immiscible two-phase solvent system to compose stationary and mobile phase.
CPC offers many advantages such as a higher sample loading capacity, the absence of
sample loss due to irreversible sample absorption to the solid column, a flexible operation
mode, and the choice of a wide range of solvent systems [3–12], so it can achieve the
fractionations with sufficient amount to further in vitro bioactivity tests [11,12].
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Lindera strychnifolia Fernandez-Villar (Lauraceae) is an evergreen shrub that is widely
distributed in Asia. As Lindera root is known to stimulate Qi circulation, eliminate cold
and pain, it has been used in the treatment of stomach and renal diseases, neuralgia, and
rheumatism in traditional Oriental medicine [13]. Recent studies also reported antioxidant,
anti-diabetic, and anti-inflammatory effects of Lindera root. Sesquiterpenes are major
constituents of this plant, and alkaloids and tannins are also isolated [14–17]. The crude
extract of the root of L. strychnifolia enhanced the antioxidant response element (ARE)
activity in an ongoing screening for natural products in HepG2-ARE luciferase assay.

In this study, the dual-mode CPC was applied to obtain high-resolution fractions
of L. strychnifolia extract and obtained fractions were tested in ARE-inducing activity in
accordance with the weight ratio of fractions. The active fraction was further purified
by preparative HPLC to isolate two eudesmane sesquiterpenes exhibiting ARE-inducing
activities.

2. Results
2.1. Isolation of Active Compounds Using Dual-Mode CPC and HPLC

When the preliminary experiment was carried out using linear-gradient CPC to iden-
tify active peaks from nonpolar to polar fractions, nonpolar fraction-exerted ARE induction
activity and comparison of an active fraction and n-hexane extract was revealed similar
HPLC chromatograms (Supplementary Materials Figures S1–S4). Therefore, n-hexane
extract was chosen for further purification. HPLC analysis in Figure 1 presented several
major peaks a–e, which were used for the calculation of partition coefficient (K value).
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Figure 1. HPLC chromatogram of n-hexane extract of L. strychnifolia.

After calculation of K values of major peaks a–e, a two-phase solvent system with
n-hexane-methanol-water (10:8.5:1.5, v/v/v) was selected (Table 1).

Table 1. The K values of major peaks a–e in n-hexane extract in different solvent systems.

Solvent System (v/v/v)
n-Hexane:Methanol:Water

Partition Coefficient (K 1)

Peak a Peak b Peak c Peak d Peak e

10:9.5:0.5 5.47 4.22 3.90 2.86 0.67
10:9:1 5.02 3.51 3.67 2.15 0.45

10:8.5:1.5 4.28 2.65 2.78 1.84 0.29
10:8:2 2.29 1.54 1.46 1.06 0.17

1 K value = peak area of upper phase/peak area of lower phase.

Dual-mode CPC was applied to recover all introduced samples with high-resolution.
The upper organic phase was firstly eluted as the mobile phase. After 230 min operation in
ascending mode, elution was changed to descending mode to recover remaining samples
in the rotor and maintained to 345 min.

As shown in Figure 2, ten fractions (H1–H10) were obtained: H1 (30–45 min, 940.8 mg),
H2 (45–100 min, 964.1 mg), H3 (100–170 min, 89.1 mg), H4 (170–230 min, 114.0 mg), H5
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(230–235 min, 550.4 mg), H6 (235–250 min, 417.5 mg), H7 (250–255 min, 45.2 mg), H8
(255–270 min, 339.8 mg), H9 (270–305 min, 1226.5 mg), and H10 (305–345 min, 88.9 mg).
The total sum of each fraction was 4776.3 mg out of 5.0 g of crude sample, exhibiting
95.5% recovery rate. Next, each fraction was evaluated for the ARE-inducing activity at a
concentration of 30 µg/mL, and ten fractions were evaluated at the concentration applied
at each assigned weight ratio (Table 2).
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Table 2. Fraction weights and calculated concentrations.

Fractions H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Sum

Weight (mg) 940.8 964.1 89.1 114.0 550.4 417.5 45.2 339.8 1226.5 88.9 4776.3
Weight ratio (%) 19.7 20.2 1.9 2.4 11.5 8.7 0.9 7.1 25.7 1.9 100

Treatment (µg/mL) 5.91 6.06 0.56 0.72 3.46 2.62 0.28 2.13 7.70 1.86 30

As shown in Figure 3, the results showed that fraction H9 exerted the highest activity.
HPLC analysis revealed that H9 fraction contained two major peaks, 1 and 2. Further
purification by prep-HPLC led to the isolation of compounds 1 and 2. The following section
will describe structural elucidations.
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Figure 3. The relative antioxidant response element (ARE)-luciferase activities (A) of the CPC-fractions H1H10 and HPLC
chromatogram (B) of active fraction H9. The ARE induction activities were evaluated in ARE-HepG2 cells at concentrations
applied at each assigned weight ratio (based on 30 µg/mL of crude extract). Data are presented as the mean ± S.E. (n = 3).
** p < 0.01 (compared with the vehicle-treated control). 1 Sulforaphane was treated 5 µM as positive control.

2.2. Structural Elucidation of Compounds 1 and 2

Chemical structures of purified compounds were determined by spectroscopic meth-
ods, including NMR (1H, 13C NMR, COSY, HSQC, HMMC, NOESY and Mosher’s method)
and HR-ESI-MS spectral data (Table 3).

Compound 1 was isolated as a brownish powder. Its molecular formula was deter-
mined as C16H20O4 by the HR-ESI-MS ion at m/z 299.1242 [M + Na]+. Analysis of the 13C
and HSQC spectra of 1 revealed 16 carbon signals that attributed to two methyls (at δC 17.9
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and 20.2), one methoxy (at δC 52.8), two methylenes (at δC 17.6, 54.4), one exo-methylene
(at δC 108.6), three methines (at δC 29.1, 24.4 and 67.2), one oxygenated methine (at δC 65.9),
and six quaternary carbons. In the 1H NMR spectrum, two methyl signals at δH 0.74 and
2.10 (each 3H), one methoxyl at δH 3.72 (3H, s), one hydroxymethine at δH 4.42 (1H, dd,
J = 11.0, 0.9), and three methines at δH 1.45 (1H, ddd, J = 8.0, 7.1, 3.6), 2.04 (1H, m) and
2.79 (1H, ddd, J = 11.0, 3.2. 2.2) were observed. Besides, the presence of exo-methylene
was easily deduced from resonances at δH 5.10 (1H, dt, J = 2.6, 1.4 Hz) and 5.24 (1H, d,
J = 1.4 Hz) connected to δC 108.6 in the HSQC spectrum. In the 1H-1H COSY spectrum,
the connections of -CH(H-1)-CH2(H-2)-CH(H-3)- and CH(H-5)-CH(H-6) were observed;
especially, long-range couplings of H-15 and H-5, H-13 and H-6 were detected. In the
HSQC spectrum, one oxymethine carbon was observed at δC 65.9, connected to δH 4.42
(1H, dd, J = 11.0, 0.9). Besides, three methines were also revealed at δC 29.1, 24.4 and 67.2,
corresponding to δH 1.45 (1H, dd, J = 11.0, 1.2), 2.04 and 2.79, respectively. In the HMBC
spectrum, correlations were observed between from H-15 to C-3/C-3/C-4, from H-14 to
C-1/C-5/C-9/C-10, from H-13 to C-7/C-11/C-12, from H-2 to C-1/C-3/C-10 and from
H-9 to C-8/C-10. The HMBC spectrum showed a correlation between δH 2.10 (H-13), 3.72
(OCH3) and a carbonyl resonance at δC 173.5 (C-12), and between δH 2.58 (H-9), 4.42 (H-6)
and a carbonyl signal at δC 202.36 (C-8), showing similarity to those of a side chain in
linderolides L and M [15]. The relative stereochemistry of 1 was determined by NOESY,
which showed correlations between Me-14 and H-6, which suggested that these protons
exist on the same side. The NOESY correlation between H-6 and CH3-13 suggested a
Z-configuration of the 7,11 double bond. The absolute configuration at the 6-position
of 1 was determined to be S by a modified Mosher’s method (Supplementary Materials
Figure S11) [18]. Based on the obtained data, compound 1 was determined as linderolide U
(Figure 4). Recently, linderolide U was identified in this plant [19].

Table 3. 1H (400 MHz) and 13C NMR (100 MHz) data for compounds 1 and 2 in CD3OD (δ in ppm, J values in parentheses).

No.
Linderolide U (1) Linderolide V (2)

1H (J in Hz) 13C 1H (J in Hz) 13C

1 1.45 (ddd, J = 8.0, 7.1, 3.6) 29.1 CH 1.52 (dt, J = 7.5, 3.9) 28.4 CH
2 0.90 (ddd, J = 8.9, 8.0, 5.2), 0.81 (dt, J = 5.2, 3.6) 17.6 CH2 0.88 (ddd, J = 10.7, 7.9, 4.2) 18.5 CH2
3 2.04 (m) 24.4 CH 1.98 (t, J = 9.4) 23.7 CH
4 152.0 C 151.3 C
5 2.79 (ddd, J = 11.0, 3.2, 2.2) 67.2 CH 2.69 (dt, J = 9.6, 2.6) 67.4 CH
6 4.42 (dd, J = 11.0, 0.9) 65.9 CH 4.10 (d, J = 9.6) 64.1 CH
7 139.9 C 120.9 C
8 202.3 C 151.2 C
9 2.58 (dd, J = 4.3, 0.9) 54.4 CH2 2.59 (dt, J = 16.3, 3.5), 2.36 (d, J = 16.3) 38.1 CH2

10 37.7 C 40.6 C
11 146.0 C 3.37 (m) 39.8 CH
12 173.5 C 181.7 C
13 2.10 (d, J = 0.9) 17.9 CH3 1.33 (d, J = 7.6) 14.3 CH3
14 0.74 (s) 20.2 CH3 0.71 (s) 17.3 CH3
15 5.24 (d, J = 1.4), 5.10 (dt, J = 2.7, 1.4) 108.6 CH2 5.20 (brs), 5.06 (d, J = 1.2) 108.6 CH2

OCH3 3.72 (s, 3H) 52.8 CH3
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Linderolide V (2) was isolated as a brown powder, and its molecular formula was
determined to be C15H18O3 based on HR-QTOF/MS at m/z 269.1231 [M + Na]+. The 13C
and HSQC spectra revealed 15 carbon signals that attributed to two methyls (at δC 17.3
and 14.3), three methylenes (at δC 18.56, 38.1, 108.6), three methines (at δC 28.4, 23.7 and
67.4), one oxymethine (at δC 64.1), and five quaternary carbons. In the 1H NMR spectrum,
two methyl signals at δH 0.71 (s) and 1.33 (d), one hydroxymethine at δH 4.10 (1H, d,
J = 9.6), three methines at δH 1.52 (1H, dt, J = 7.5, 3.9), 1.98 (1H, t, 9.4) and 3.37 (1H, m), and
characteristic exo-methylene resonances at δH 5.06 and 5.20 were observed. The correlations
of –CH(H-1)–CH2(H-2)–CH(H-3)- and –CH(H-5)–CH(H-6) were observed in the 1H-1H
COSY spectrum.

In the HSQC spectrum, one oxymethine carbon was observed at δC 64.1, connected
to δH 4.10 (1H, d, J = 9.62). Besides, three methines were also revealed at δC 28.4, 23.7
and 67.4, corresponding to δH 1.52 (1H, dt, J = 7.5. 3.9), 1.98 and 2.69, respectively. In the
HMBC spectrum, correlations were observed from H-15 to C-3/C-5/C-4, from H-14 to
C-1/C-5/C-10, from H-13 to C-7/C-11/C-12, from H-2 to C-1/C-3/C-4/C-10 and from H-9
to C-2/C-5/C-7/C-8/C-10, from H-6 to C-7/C-8. The chemical structure of 2 was similar
to the previously reported compound, shizukanolide [20], but the double bond position
C-7/C11 was changed to C7/C8 (Figure 4). Based on the obtained data, compound 2 was
determined as shown in Figure 4 and was named linderolide V.

The relative stereochemistry of 2 was determined by NOESY, which showed corre-
lations between CH3-14 and H-6 which suggested that these protons exist on the same
side. CH3-13 and H-5 also showed a correlation that means these protons are on the same
side. However, CH3-13 and CH3-14 did not show any correlations that are located on
the opposite side (Figure 5). The coupling constant between H-5/H-6 was 9.6 Hz which
supported that H-5 and H-6 were located on the other side. In addition, the ∆δ values
between the (S) and (R)-MTPA esters indicated the 6S configuration for 2 (Supplementary
Materials Figure S19) [18].
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2.3. Induction of Antioxidant Response Element by Compounds 1 and 2

The ARE-inducing ability of the isolated compounds 1 and 2 from an active fraction
(H9) were assessed by luciferase assay in HepG2 cells at a serial concentration of 3, 10,
30, and 100 µM. Linderolide U (1) and linderolide V (2) enhanced ARE activity in a dose-
dependent manner (Figure 6). At 100 µM concentration, Compounds 1 and 2 enhanced
ARE activity 22.4-fold and 7.6-fold, respectively, while 5 µM of sulforaphane induced ARE
activity 24.8-fold. These results indicated that compounds 1 and 2 were active principles
for ARE induction of L. strychnifolia.
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Figure 6. The relative antioxidant response element (ARE)-luciferase activities of isolated compounds
1 and 2. The ARE induction activities were evaluated in ARE-HepG2 cells at concentrations applied at
each assigned weight ratio (based on 30 µg/mL crude extract. Data are presented as the mean ± S.E.
(n = 3). ** p < 0.01 (compared with the vehicle-treated control). SUL: Sulforaphane was treated as a
positive control.

3. Materials and Methods
3.1. Apparatus

An Armen fully integrated SCPC-100 + 1000 CPC spot instrument (Armen Instruments,
St-Ave, France) was used in this study. This instrument is a fully automated system
consisting of a CPC column compartment (1000 mL rotor made of 21 stacked disks with
a total of 1512 twin cells), a pump, an injector, a UV/vis detector, a fraction collector, a
digital screen flat PC and Armen Glider CPC software. The HPLC analysis was performed
by an Agilent 1260 HPLC system (Agilent Technologies, Palo Alto, CA, USA): G1312C
binary pump, a G1329B autosampler, a G1315D DAD detector, a G1316A column oven,
and ChemStation software.

3.2. Chemicals and Reagents

All solvents used for the CPC were of analytical grade and purchased from Dae-
jung Chemical (Korea). The HPLC-grade solvents were obtained from Fisher Scientific
(Pittsburgh, PA, USA). The L. strychnifolia roots, well dried and sliced around 2 mm, were
purchased from the Kyungdong Oriental herbal market, Seoul, Republic of Korea, in Jan-
uary 2018. A voucher specimen (HYUP-LS-001) was deposited in the Herbarium of the
College of Pharmacy, Hanyang University (Supplementary Materials Figure S1).

3.3. Preparation of Crude Samples

Dried and coarsely ground sample (600 g of L. strychnifolia roots) was extracted with
methanol by reflux for 2 h. The extraction was repeated three times and combined. The
filtrate was evaporated under reduced pressure using a rotary evaporator to obtain 12.5 g
of crude extract. Ten grams of crude extract was dissolved in water and extracted with
500 mL n-hexane three times. After dryness, 5.4 g of n-hexane extract was obtained.

3.4. HPLC Analysis

The crude extract and its CPC peak fraction were profiled by HPLC equipped with a
Capcellpak UG120 C18 column (4.6 × 250 mm, 5 µm, Shiseido, Tokyo, Japan). The mobile
phase was composed of acetonitrile containing 0.1% formic acid (A) and water containing
0.1% formic acid (B). The gradient elution conditions were as follows: 0–10 min, 10–50% A;
10–45 min, 50–95% A; and 50 min, 95% A. The column temperature was 40 ◦C, the mobile
phase flow rate was 1 mL/min, the detection wavelength was 230 and 254 nm and the
injection volume was 10 µL.
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3.5. Selection of Solvent System

Because n-hexane extract was nonpolar, a series of solvent systems of n-hexane–
methanol-water were tested. Briefly, approximately 2 mg of the sample was added to each
test tube, 2 mL of each phase of a pre-equilibrated two-phase solvent system was added,
and they were thoroughly mixed. After equilibration, 100 µL of the upper and lower
phases were added to 900 µL methanol, and 10 µL were analyzed by HPLC at 230 nm. The
K values of major peaks (a–e) were described as the peak area of each compound in the
upper stationary phase divided by that of the lower mobile phase.

3.6. CPC Operation for Active n-Hexane Extract

n-Hexane extract was purified by CPC operation with a two-phase solvent system
composed of n-hexane-methanol-water (10:8.5:1.5, v/v/v) according to the K values of
major peaks a–e (Table 1). The lower aqueous phase was used as mobile phase and the
upper organic phase as stationary phase with ascending mode. The 1000 mL volume of
the CPC rotor was filled with a lower layer at 50 mL/min in ascending mode at a speed
of 500 rpm. Then, the rotation speed of the rotor was accelerated to 1000 rpm, and the
upper layer as the mobile phase was carried into the rotor in descending mode at a flow
rate of 10 mL/min. After the equilibration between the upper phase and lower phase was
established, the sample solution (5.0 g) was loaded into CPC system, and the effluents were
continuously monitored by a UV detector at 230 and 254 nm. After 230 min operation in
ascending mode, elution was changed to descending mode to recover remaining samples
in the rotor and maintain to 330 min.

3.7. Isolation and Structural Elucidation of Active Compounds 1 and 2

After CPC operation and evaluation of ARE-inducing activity, subfraction H9 was
further purified by preparative HPLC. HPLC was carried out using a Gilson 321 pump,
a Waters 2487 detector, an RS Tech HECTOR C18 column (5 µm, 250 × 21.2 mm, RS Tech
Corp, Cheongju, South Korea). Isocratic elution mode (40% acetonitrile) at a flow rate of
10 mL/min was used and monitored at 230 and 254 nm. Compounds 1 (42.6 mg) and 2
(13.8 mg) were obtained at a retention time of 23.8 and 35.5 min, respectively. 1D- (1H,
400 MHz, 13C, 100 MHz) and 2D-NMR (1H-1H COSY, HSQC, HMBC, and NOESY) were
measured on a Bruker model digital Advance III 400 NMR for structural elucidation. The
NMR data were described in Table 3.

3.8. Preparation of the (R)- and (S)-MTPA Ester Derivatives

To assign the absolute configuration to the molecules, the (S)- and (R)-methoxy-α-
(trifluoromethyl)phenylacetyl (MTPA) ester derivatives of 1 and 2 were synthesized in
deuterated pyridine (pyridine-d5) from (R)-(+)-MTPA-Cl and (S)-(−)-MTPA-Cl, respec-
tively [18]. Compound 1 (2.0 mg) was dissolved in pyridine-d5 (6 mL) and divided into two
NMR tubes (each 1 mL). (R)-MTPA-Cl (4 µL) was added and reacted at room temperature
for 3 h to yield (S)-MTPA ester derivative (1S). Another tube, (S)-MTPA-Cl (4 µL), was
added and reacted at room temperature to yield (R)-MTPA ester derivative (1R), and the
1H NMR spectrum was recorded on 400 MHz NMR. Similarly (S)- and (R)-MTPA ester
derivatives of 2 were prepared as 2S and 2R.

3.9. Assay of ARE-Inducing Activities

HepG2-ARE cells were seeded at a density of 1 × 105 cells/well in 24-well plates for
24 h. The cells were starved for 12 h when they grew to around 80% confluency and were
exposed to crude extract, CPC fractions and purified compounds for an additional 24 h.
After that, the cells were lysed with 120 µL of passive lysis buffer (Promega, Madison,
WI, USA) in an ice rack and transferred in the 1.5-mL tube. The tubes were centrifuged
at 1000 rpm for 3 min. Each supernatant (30 µL) in the centrifuged tube was reacted with
60 µL of luciferase assay substrate (Promega, Madison, WI, USA) in the white 96 well plate.
Finally, luminescence was measured by an EnSpire multimode plate reader (PerkinElmer,
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Waltham, MA, USA). DMSO (below 0.1%) was used as a vehicle, which was a negative
control. Sulforaphane (5 µM) (Calbiochem, Darmstadt, Germany) was used as a positive
control. The ARE-luciferase activity was normalized to total protein, determined using
BCA protein assay kit with BSA as a standard (Pierce No. 23227).

3.10. Statistical Analysis

All data are reported as means ± S.E. The statistical significance of differences between
treatments was assessed using the Student’s t-test. A probability value less than 0.05 or
0.01 was considered significant.

4. Conclusions

In the present study, a bioassay-guided isolation method was developed using CPC. To
do this, a comprehensive dual-mode CPC was conducted to fractionate bioactive molecules
from L. strychnifolia root extract. Its higher recovery rate (>95.5%) allowed unbiased bioac-
tivity tests by avoiding irreversible sample adsorption and denaturation that conventional
chromatography methods have. After determining active fraction, the constituents were
further purified by preparative HPLC to yield linderolide U (1) and a new sesquiterpene,
linderolide V (2) responsible for ARE-inducing activity of L. strychnifolia roots. However,
as the identified active compounds exist in trace amounts in L. strychnifolia, quantitative
analysis methods for these compounds are still required. The significance of this study is
that the CPC method is an effective screening tool to unearth known or novel bioactive
compounds from natural products.

Supplementary Materials: The following are available online, Figure S1: The relative ARE-luciferase
activity of Lindera strychnifolia extract, Figure S2: CPC chromatogram of crude L. strychnifolia extract,
Figure S3: HPLC chromatograms and relative ARE-luciferase activity of CPC-fractions (A–R), Figure
S4: Comparison of solvent fraction and Fr. B obtained from gradient CPC, Figure S5: 1H NMR
spectrum of 1 (400 MHz) in CD3OD, Figure S6: 13C NMR spectrum of 1 (100 MHz) in CD3OD,
Figure S7: 1H-1H COSY spectrum of 1 in CD3OD, Figure S8: HSQC spectrum of 1 in CD3OD, Figure
S9: HMBC spectrum of 1 in CD3OD, Figure S10: NOESY spectrum of 1 in CD3OD, Figure S11: 1H
NMR spectra of MTPA esters 1S and 1R and ∆δ (S-R) values for (S)- and (R)-MPTA esters (1S and
1R). Figure S12: HRESI (qTOF) mass spectrum of 1, Figure S13: 1H NMR spectrum of 2 (400 MHz)
in CD3OD, Figure S14: 13C NMR spectrum of 2 (100 MHz) in CD3OD, Figure S15: 1H-1H COSY
spectrum of 2 in CD3OD, Figure S16: HSQC spectrum of 2 in CD3OD, Figure S17: HMBC spectrum
of 2 in CD3OD, Figure S18: NEOSY spectrum of 2 in CD3OD, Figure S19: 1H NMR spectra of MTPA
esters 2S and 2R and ∆δ (S-R) values for (S)- and (R)-MPTA esters (2S and 2R), Figure S20: HRESI
(qTOF) mass spectrum of 2.
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