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Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México
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Numerical Simulations in COMSOL Multiphysics.

The set of experiments described in the main text were complemented by numerical sim-
ulations in order to elucidate, in greater detail, the mechanisms involved in the release capa-
bilities of the proposed device. A full numerical simulation intended to solve all the relevant
variables at once would certainly require extensive computational capabilities. Furthermore,
some specific settings for the nonlinear solvers required for solving the mathematical problem
may not even guarantee numerical convergence. To overcome these limitations, we carried
out four independent numerical simulations, each one exploring the effects that a certain
set of variables would have in the formulation of the full problem. All the simulations were
performed using a 2D axisymmetric domain with physical coordinates x = (r, z). The main
variables to be solved are the temperature T attained in the photothermal composite, the
velocity field u in the liquid, the displacement vector field y produced by thermal expansion
in the elastic PDMS , and the concentration c of a marker solution that will serve only as
visual aid to detect the release of the content by the capsule.

We begin by considering the heat transfer equation

ρCp

(
∂T

∂t
+ u · ∇T

)
+∇ · (−κ∇T ) = Qgen , (1)

which includes a heat generation term, Qgen, accounting for the photothermal conversion
arising from laser absorption by the polymer nanocomposite. Here ρ, Cp and κ are the
density, specific heat capacity and thermal conductivity of the material. Assuming a simple
model for light absorption (Beer-Lambert law) and a gaussian beam profile, Qgen can be
written as:

Qgen = ηeffκextIoexp(−κextz − r2/A) , (2)
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where
A = w2/2, Io = Po/πA (3)

and w = wo + ztanθ is the radius of the divergent beam coming out from the optical fiber
used for light delivery. The extinction coefficient of the absorbing material is κext, and Po

is the optical power; the angle θ is related to the numerical aperture of the optical fiber via
sinθ = NA/ni, ni being the index of refraction of the medium; finally, wo corresponds to the
core radius of the optical fiber.

Excluding the value of the so-called photothermal conversion efficiency, ηeff , all the pa-
rameters included in eqs. 1, 2 and 3 are known, either from the experimental characterization
of the composites or from standard tables. In order to estimate ηeff , we calibrated the sim-
ulations upon comparing the numerical volumetric deformation produced by the thermal
expansion of the PDMS/CNPs element with the corresponding experimental values mea-
sured and discussed in section 2.4 To do this, the heat equation has to be complemented
with a force balance for the cylindric PDMS/CNPs active element that experiences the
thermal elastic deformation. Solving for the steady state and in the absence of external
volumetric forces, the force balance can be written as (after using the divergence theorem):

∇ · σij = 0 , (4)

where σij is the Cauchy stress tensor, and the derivatives are computed according to a fixed
spatial coordinate frame. According to structural mechanics theory, σij can be used only
when the initial configuration of the material does not changes significantly or for small rota-
tions [1]. An improved characterization of the mechanical stresses in the material accounting
for configurational body changes is provided by the so-called Lagrangian description, based
on the initial or referential configuration of the material rather than on the spatial coordinate
frame. Eq. 4 can thus be rewritten as

∇ · (FijSkl) = 0 , (5)

where Fij = I +∇y is the deformation gradient tensor and Sij is the second Piola-Kirchhoff
stress tensor which for linear, isotropic elastic materials takes the form [1]

S = C(E, ν) : Eelast , (6)

where Eelast is the effective elastic strain given by

Eelast = E− Einelastic = E− α(T − To) , (7)

and E is the total strain given by the Green-Lagrange strain tensor

E =
1

2

[
(∇y)T +∇y + (∇y)T (∇y)

]
. (8)

Equation 7 is coupled to the heat equation through the last term, accounting for a ther-
mal isotropic expansion of the PDMS with thermal expansion coefficient α. The elasticity
matrix C(E, ν), on the other hand, depends on the Young Modulus and Poisson’s ratio and
can be found elsewhere [2]; it is important to mention that the linear elastic model considered
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Figure 1: Numerical temperature and steady state displacement fields obtained for the 1.0%
PDMS/CNPs composite irradiated with a laser power Po = 179.1mW and for a selected
value of ηeff = 0.63. The initial geometrical configuration is depicted as well as some
relevant boundary conditions. The displacement field (arrows) and final configuration is
augmented ×3 for visual aid

in these simulations works well for PDMS under strains below 50% (see [3]), which are well
below the maximum experimental values reported in this work. Finally, notice that eqs. 5
to 8 reduce to eq. 4 for small displacement gradients of order one in ∇y.

In the first simulation we solved eqs. 1 and 5 in steady state using the geometry de-
picted in figure 1 and which represents, geometrically, the 2 × 2 mm PDMS/CNPs active
cylinder described in the materials and methods section (notice that for solids, u = 0 in
eq. 1). In order to have a well posed problem we allocated fixed geometrical boundaries,
as depicted in figure 1, while the rest of the body was left to deform freely. The bound-
ary condition for the heat equation was chosen as a convective dissipative flow of the form
n · q = h(T − To) = 20[W/m2K](T − 25◦C). Figure 1 shows the temperature and steady
displacement field of the PDMS/CNPs composite obtained for an optical power of 179.1mW,
and using the physical properties of the 1.0% mixture (all the physical parameters used in the
simulations are listed in Table 1). Additionally, Figure 2 shows the plot of the experimental
and numerical volumetric deformations as a function of the optical power. A photothermal
conversion efficiency of ηeff = 0.63 was shown to fit the experimental values quite well up to
values of ∼ 200mW , after which nonlinearities become evident. For the rest of the simula-
tions we therefore used a 179.1mW as a reference for the optical power (the maximum power
previous to the appearance of the nonlinear behavior) together with the value of ηeff = 0.63
found in these first simulations.
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Figure 2: Comparison oh the experimental and numerical volumetric deformations as a
function of the optical power; symbols are the experimental data and the line depicts the
numerical results. All the simulations were performed using the parameters for the 1.0%
CNPs composite.

Fluid-structure interaction model.

A second simulation was carried out for testing the release of liquid from the capsule
through thermal expansion of the PDMS/CNPs element. As described in the main text, the
expansion of this active cylinder leads to a reduction of the cavity volume thus the marker
solution is released. To do this we replicated numerically the experimental setup shown
in figure 1d of the main text. Figure 3 shows the 2D axisymmetric version of the capsule
together with some of the boundary conditions used in this simulation.
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Figure 3: 2D axisymmetric domain and boundary conditions used in the fluid-structure
interaction model.

In order to simulate the “squeeze” and liberation of the content by means of mechanical
deformation, two additional governing equations were considered. First, the heat and me-
chanical equations have to be solved (transient formulation) in order to obtain the transient
deformation of the elastic element (recall that the mechanical problem is formulated in the
material coordinate frame (X ), while the spatial frame (x) is not fixed and it is displaced ac-
cording to x = X +y(X , t)). In addition, we also seek for the solutions for the fluid flow and
transport of the marker solution, which are formulated in the spatial coordinate frame. Note
also that the boundaries of the elastic elements can move and induce a flow in the liquid, and
consequently transport of the marker solution. Because for the mechanical formulation the
spatial frame is not fixed but it rather moves according to the material frame, the so-called
Arbitrary Lagrangian Eulerian method (or ALE) can be used for solving the flow, liquid
transport and the heat equations. The Navier-Stokes equations can thus be written as:

ρ
∂u

∂t
+ ρ[(u− umesh) · ∇]u = ∇ · [−pI + µ(∇u + (∇u)T )]

∇ · u = 0 (9)

where p and µ are the pressure and viscosity of the liquid, respectively, while umesh is
the velocity of the elastic boundaries (in the finite element method this is equal to the
mesh velocity) prescribed by the mechanical problem. Due to the movement of the spatial
reference frame, the time derivatives are computed as:

∂u

∂t
≈ u(x, t)n − u(x, t)n−1

∆t
, (10)

where n, n − 1 denote not only the current and previous time, but also the current and
previous physical frame. To track the content of the marker solution in the capsule, we also
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included the diffusion-convective equation but without the diffusion term in order to consider
only convection driven by the moving boundaries, i.e.:

∂c

∂t
+∇ · [(u− umesh)c] = 0 , (11)

This is further complemented by the flux condition j = c(umesh · n) at boundaries with
normal vector n that moves due to the thermal expansion. For equation 9 we further impose
the conditions u = dy/dt, σsolid ·n = [−pI +µ(∇u + (∇u)T )] ·n at the fluid/solid boundary,
i.e., the stresses should be continuous at the water/PDMS boundary as well as the velocity
field. Finally, for transient problems, the dynamic equation 4 now reads:

ρ
∂2y

∂t2
= ∇ · σij , (12)

where σij is computed at the current geometrical configuration, as done in the rest of the
governing equations (the Cauchy stress tensor can be related to the second Piola-Kirchhoff
stress tensor by well-known relations, see [2]). As initial condition, the whole domain is set
to To = 25◦C and the temperature then starts to increase according to equation 2, along
with the accompanying thermal expansion of the active PDMS/CNPs. In order to have
a consistent initialization, the heat generation term is started with a smooth ramp with a
time period of 55ms. Finally, it is important to mention that, in order to comply with mesh
resolution constrains, the orifice is considered to be initially open. As shown in figure 3, such
orifice is given initially by a free entrance of 310µm in diameter.

Displacement of the liquid tracer by air bubbles.

As mentioned in the experimental results, release of the marker solution from the capsule
can also be driven by the isobaric expansion of air bubbles trapped inside the device. In a
third simulation we tested numerically this mechanism as a possible way of liquid release.
The full problem was approximated by two sequential studies: the first study yielded the
average temperature evolution inside a bubble of 2.3mm of curvature radius (similar in size
to those observed in the experiments); this was placed in a setup similar to that shown in
figure 3 but only the heat transfer equation in a fixed spatial frame was solved. Using this
”temperature history” we then computed the decrease of the air density as a function of
time using the ideal gas law ρ(t) = p ·Mw/RT (t) for a constant pressure process (Mw is the
molecular weight of air andR the ideal gas constant). In the second study we then solved the
flow and transport equations, 9 and 11, using the ALE formulation (moving mesh) including
the decrease of the air bubble density, ρ(t). This should produce an expansion of the bubble
by considering the more general mass conservation equation

∂ρ

∂t
+∇ · (ρu) = 0 , (13)

displacing the liquid inside the cavity and therefore inducing liquid release through the open
hole. The gas/liquid interface was treated with the usual liquid/liquid boundary condition
considering a surface tension of 72mN/m. [4]
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Effects of convective current.

In the fourth simulation we finally explored the possibility of liquid release by fluid flow
induced by local density gradients in the liquid (water) due to the increase in temperature.
In this problem we solved the heat, fluid flow and transport equations in steady state in a
fixed geometry, similar to that depicted in figure 3 and considering a volumetric body force
of −ρ(T )g in the Navier-Stokes equations, where ρ(T ) is the water density as a function of
the temperature and g is the gravity vector. Figure 4 shows the results of this simulation
and the flow patterns induced by such density gradients near the hole entrance. The main
observation obtained from this simulation is that the flow currents inside and outside the
cavity are not connected, but are rather separated forming independent vortex currents.
This is further manifested by the fact that the marker solution, colored in red, remains
inside the cavity once the flow currents are established due to the density gradients. We ran
the simulation with different directions of the gravity vector but the results were similar: the
marker solution always stays inside the cavity.

Figure 4: Flow field (white arrows) and streamlines (grey lines) produced by local density
gradients due to the increase of temperature inside the capsule; Po = 179.1mW , the color
map denotes the concentration of a marker solution initially deposited inside the capsule
(10mol/m3).
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α[1/K] Cp[J/(kg ·K)] ρ[kg/m3] κ[W/(m ·K)] E[MPa] ν κext[mm
−1]

PDMS 9.6× 10−4 1460 970 0.3 1.521 0.498 12.18
PMMA 5.1× 10−5 1570 1189 0.2 6129.9 0.32
water 4187 1000 0.6
air 1005 ideal gas law 0.026

Table 1: Mechanical and thermal properties of the materials used in the simulations. PMMA
stands for polymethyl-methacrylate or acrylic, the properties of the PDMS/CNPs are for the
1.0% composite formulation (in our simulations the properties of PDMS and PDMS/CNPs
1.0% were considered to be the same except that the value of κext is zero in pristine PDMS).
In COMSOL Multiphysics the properties listed here are considered functions of temperature
and/or pressure; in the table we put typical values at T = 25◦C.
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