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Abstract: A heterogeneous Janus-type palladium interphase catalyst was obtained by selective sur-
face modification of a hollow mesoporous silica material. The catalyst comprises hydrophobic octyl
groups on one side of the silica nanosheets and single-site bis-imidazoline dichlorido palladium(II)
complexes on the other. The structure of this composite material has been analyzed by means of
elemental analysis, atomic absorption spectroscopy, BET surface analysis, TGA, SEM and solid-state
CP-MAS 13C and 29Si NMR spectroscopy. The catalyst showed extraordinary activity for the aqueous-
phase oxidation of styrene to acetophenone using 30% hydrogen peroxide as the oxidant. An 88%
yield of acetophenone could be achieved after 60 min.

Keywords: mesoporous Janus-type catalyst; modified mesoporous silica; aqueous-phase oxidation;
palladium catalyst; hydrogen peroxide

1. Introduction

The Wacker oxidation is an industrial method for the conversion of ethylene to ac-
etaldehyde. It has been performed by employing catalytic amounts of palladium together
with stoichiometric amounts of copper salts as the co-catalyst [1]. The procedure is also
well known for the oxidation of other terminal olefins [2], allowing for the preparation of
valuable chemicals such as ketones, epoxides or benzaldehyde derivatives using either
O2 [3–6], hydrogen peroxide (H2O2) [7–10] or tert-butyl hydroperoxide (TBHP) [11,12] as
the most common oxidants. Among the employed oxidants, H2O2 can be considered as a
less hazardous oxidant since water is the sole by-product of the reaction and the use of cop-
per as co-catalyst is not necessary. Moreover, due to the development of novel technologies
during the last decades, the production of H2O2 is a cheap and safe process [13].

Several homogeneous and heterogeneous palladium catalysts were employed for this
reaction in the past [3–12,14–17]. While homogeneous palladium catalysts showed rather
high efficiencies, they suffer from the poor recovery of the expensive noble metal. Moreover,
in some case, the reaction proceeded well only in the presence of expensive organic ligands
or additives [18–21]. In contrast, heterogeneous catalysts allow a simple recovery and
separation of the palladium source. However, they encounter a number of limitations
for the Wacker oxidation: the reaction rate of the heterogeneous catalyst is lower, and
hence, longer reaction times are required to achieve desirable conversions. Increasing the
reaction time may deactivate the palladium centers on the surface of the applied support
and in consequence, request more energy to complete the reaction. Another challenge of a
long-time oxidation reaction is related to the gradual decomposition of H2O2. Therefore, in
some cases, up to 10 equiv. of the oxidant had to be added [9], which is not a cost-effective
and sustainable protocol for an oxidation reaction.
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A routine method for the synthesis of heterogeneous metal catalysts is the deposition
of the metal nanoparticles on the surface of the support. Although this seems to be a fairly
simple procedure, it suffers from noticeable leaching of the metal from the surface and
undesirable steric effect between the surface and the reactants. In the case of palladium
catalysts, this often leads to a rapid termination of the catalyst’s activity via the formation
of inactive palladium black species.

By employing heterogeneous interphase catalysts, it was possible to improve the
catalytic activity to some extent [22]. In interphase catalysts, the active centers are connected
with covalent bonds to the surface via an organic spacer and hence, are in principle far away
from the surface’s steric effects. This method also allows the immobilization of site-isolated
metal complexes. However, compared to homogeneous catalysts, the efficiency of such
catalysts is still far from a desirable threshold.

Janus-type materials are anisotropic double-face architectures, which have successfully
been introduced as a new material generation for heterogeneous catalysis [23]. Due to
their unique properties, Janus-type catalysts can bridge the gap between homo- and
heterogeneous catalysts by combination of the activity of homogeneous systems and the
simple separation and storage of the heterogeneous ones.

Recently, we established the concept of “Janus interphase catalysts” [24]. In this type
of solid catalyst, the surface polarity can be manipulated by incorporation of in principle
any type of organic group having a specific polarity with the aim of improving the mass
transfer of the substrates to the active centers. Consequently, heterogeneous Janus-type
interphase catalysts with overall higher activities compared to the classical heterogeneous
catalysts have been generated [25–28].

To this aim, we introduced simple and practical techniques for the synthesis of heteroge-
neous Janus-type interphase catalysts by a modification of the Stöber process [29–31]. The
catalysts showed high activity for the synthesis of a series of fine chemicals. The presence of
water either as the solvent or as a by-product has no negative effects on the reaction efficiency.
In order to extend this concept, we wish to disclose the first Janus-type interphase palladium
catalyst and its applications for the Wacker-type oxidation of styrene to acetophenone em-
ploying H2O2 as the oxidant. Thanks to the unique structure of the material, it shows higher
activity even in comparison to a homogeneous PdCl2–based system.

2. Results and Discussion

The material was prepared from commercially available starting materials (Scheme 1).
In the first step, hollow spheres with octyl groups (R) that are covalently immobilized on
the inner surface were prepared by using a modified Stöber method for the preparation
of monodisperse silica particles followed by removing of the surfactant to yield the meso-
porous hollow structure 1. After crushing the hollow particles, the palladium precursor
was grafted to the surface to form the final catalyst 2.

The loading of palladium in the catalyst was determined based on an atomic absorp-
tion spectroscopy (AAS) to be 0.22 mmol·g–1.

Scanning electron microscope (SEM) images of material 1 and 2 are presented in
Figure 1. Material 1 shows the expected geometry with rather monodisperse spheres
of approximately 1 µm in diameter (Figure 1a). After crushing, nanosheets of catalyst 2
were formed (Figure 1b). To find evidence for a selective surface functionalization of
catalyst 2, the material in the middle of crushing process was labelled with negatively
charged citrate-capped Fe3O4 nanoparticles (Fe3O4@citrate) according to our previously
described procedure [30].
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Figure 1. (a) SEM images of the hollow spheric material 1, (b) nanosheets of the final catalyst 2,
(c) outer surface of catalyst 2 after the labelling experiment and (d) the inner surface of catalyst 2
after the labelling experiment.
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After labelling the catalyst by mixing it with citrate@Fe3O4, the outer surface of the
material that contains the nitrogen ligand can interact with the labelling agent (Figure 1c),
while due to lack of noticeable functionality of the inner surface (i.e., relatively inert octyl
groups), it remained almost remains untouched (Figure 1d).

The N2 adsorption/desorption isotherms of materials 1 and catalyst 2 (Figure 2,) show
a type IV profile, which is typical for mesoporous materials. The calculated BET surface
areas, the average pore diameters (BJH method) and the pore volumes for the hollow
material 1 are 1045 m2·g–1, 2.29 nm and 0.60 mL·g–1, while the corresponding values for
the final catalyst 2 are 848 m2·g–1, 2.45 nm and 0.52 mL·g–1, respectively. This observation
suggests that after the functionalization of material 1, the specific surface area as well as
pore volume in the final crushed catalyst 2 are reduced, which is reasonable evidence for
the successful functionalization.
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Figure 2. N2 adsorption/desorption isotherms of material 1 and catalyst 2.

Comparative thermogravimetric analysis (TGA) results for materials 1 and 2 are
presented in Figure 3. It can be deduced from this thermogram that catalyst 2 is stable up to
300 ◦C. A small weight loss (~5%) was found by heating the sample up to this temperature,
which is attributed to the removal of physisorbed water. However, the presence of water
in material 1 is approximately 15%, which indicates the higher affinity of material 1 to
water due to the presence of -OH groups on the outer surface. Consequently, catalyst 2
has a balanced hydrophobicity/hydrophilicity and is suitable for aqueous phase oxidation
reactions of organic compounds [32].

The nature of the surface functionalities of catalyst 2 was investigated in more detail
by means of solid-state CP-MAS 13C NMR spectroscopy (Figure 4a). Directly bound to
the silicon atoms, the carbon atoms C1 and C11 are highly shielded and are assigned to
the resonances at 8.3 and 11.8 ppm, respectively. The methyl groups (carbon atoms C8
and C10) provide resonances at 16.1 and 16.5 ppm. Due to their similar chemical shifts,
carbon atoms C2, C7 and C12 give rise to an intense resonance at 21.8 ppm. Two sharp
and intense resonances at 28.7 and 31.5 ppm are assigned to carbon atoms C4 and C5 as
well as C3 and C6, respectively. Although carbon atoms C13–15 have similar chemical
shifts, they can fairly be distinguished in the region from 46.3 to 51.9 ppm. The resonance
of some residual ethoxy groups coming from the grafted octyl groups as well as from the
palladium complex precursors is observed at 58.5 ppm and the resonance of the unique
sp2-hybridized carbon atom C16 is observed at 159.9 ppm.
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Figure 4. (a) Solid-state 13C and (b) 29Si CP-MAS NMR spectra of catalyst 2.

The 29Si CP-MAS NMR spectrum of catalyst 2 (Figure 4b, right side) exhibits two
dominant resonances at –107 and –116 ppm, being attributed to Q3 [Si(OSi)3OH] resp. Q4

[Si(OSi)4] species in the framework of the materials. The presence of Q3 signal in the solid-
state 29Si NMR is evidence for the presence of free hydroxyl (-OH) groups, and hence, a
partial hydrophilicity of catalyst 2 even after the second functionalization. Two further
broad resonances in this spectrum at around −62 and −71 ppm can be assigned to T2

[RSi(OSi)2(OH)] and T3 [RSi(OSi)3] units and thus provide further evidence for the successful
covalent immobilization of the palladium precursors on the surface of the materials.

The activity of catalyst 2 was tested for the oxidation of styrene leading to acetophe-
none by employing 30% aq. H2O2. Unlike for other alkenes, controlling the selectivity
for the oxidation of styrene is more difficult since beside the formation of acetophenone,
benzaldehyde and styrene oxide are frequently found. By screening the effect of solvents,
the best activity was observed in a mixture of acetic acid and water (1.4:0.6 mL). The results
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of the styrene oxidation using Janus-type catalyst 2 as well as a comparison with other
catalytic systems are summarized in Table 1.

Table 1. A brief comparison of the activities of catalyst 2 in the oxidation of styrene to acetophenone and a comparison with
some homogeneous and heterogeneous Pd catalysts used for this transformation (Ap: acetophenone; Ba: benzaldehyde).

Entry Catalyst (amount) Oxidant
(equiv.) Time (h) Solvent Temp.

(◦C)
Ap
(%)

Ba
(%) Ref.

1 – 30% H2O2 (3) 1 AcOH/H2O a 80 – 12 b this work
2 PdCl2 (1 mol%) 30% H2O2 (3) 1 AcOH/H2O 80 67 b 8 b this work
3 2 (1 mol%) 30% H2O2 (3) 0.5 AcOH/H2O 80 76 b 9 b this work
4 2 (1 mol%) 30% H2O2 (3) 1 AcOH/H2O 80 88 b 9 b this work
5 2 (1 mol%) 30% H2O2 (3) 1 AcOH 80 82 b 15 b this work
6 2 (1 mol%) + CuCl (10 mol%) O2 (balloon) 16 AcOH/H2O 80 63 b 30 b this work
7 2 (1 mol%) TBHP c (2) 16 CH3CN 80 – 37 b,d this work
8 2 (1 mol%) 35% UHP (3) 16 AcOH/H2O 80 47 b 19 b this work

9 Na2PdCl4 (10 mol%) 30% H2O2
(n.d.) 2.5 aq. NMP r.t. 55 n.d. [33]

10 Pd0/C (5 mol%) 30% H2O2 (6) 8 CH3CN 65 90 e n.d. [16]
11 Pd/Al2O3 (2.5 wt%) 30% H2O2 (4) 3 scCO2 120 83 f 6 [15]

12 (PBO)Pd(CH3CN)2(OTf)2
(1 mol%) 50% H2O2 (5) 24 CH3CN r.t. 80 g n.d. [18]

13 Pd0/RGO(0.01 g), GO (0.01 g) 30% H2O2 (10) 12 CH3CN/H2O 55 93 n.d. [9]
a The amounts of AcOH:H2O in all reactions were 1.4:0.6 mL. b Isolated yield. c 70% solution of TBHP in H2O was used. d 47% of styrene
oxide was found. e 0.2 eq. H2SO4 was used as an additive. f 53% conversion of styrene. g 92% conversion of styrene. Abbreviations:
n.d.: not determined; AcOH: acetic acid; UHP: urea hydrogen peroxide; NMP: N-methyl-2-pyrrolidone; scCO2: supercritical CO2;
PBO: 2-(2-pyridyl)benzoxazole; OTf: triflate; RGO: reduced graphene oxide.

To clarify a possible formation of peroxyacetic acid from the reaction of AcOH and
H2O2 and its effect on the reaction, first, we studied a blank experiment in the absence of any
palladium catalyst. No yield of acetophenone was observed after 1 h at 80 ◦C by employing
3 equiv. of 30% aq. H2O2 (Table 1, entry 1). These conditions led to the formation of a small
amount of benzaldehyde. By addition of 1 mol% of palladium dichloride as the simplest
example of a Pd–based catalyst, the yield of the acetophenone reached 67% accompanied
by 8% of benzaldehyde as the major by-product (Table 1, entry 2). Surprisingly, 76% of
acetophenone was found after 30 min when 45 mg of 2 (1 mol% equiv. of Pd) was used
as the catalyst (Table 1, entry 3). This indicates that the activity of catalyst 2 is even higher
than the activity of the PdCl2–based system providing rather identical selectivity. When the
reaction time was increased to 1 h, 88% of acetophenone were isolated (Table 1, entry 4). The
reaction in pure acetic acid (2 mL) also afforded good yields of acetophenone. However, it
was lower than in the acetic acid/H2O system and worse in selectivity (Table 1, entry 5). The
possibility of a Wacker oxidation using O2 as oxidant was also investigated (Table 1, entry 6).
It was found that the reaction can proceed well in the presence of CuCl as a co-catalyst but
without a desirable selectivity for acetophenone.

tert-Butyl hydroperoxide (TBHP) is also known as an oxidant being suitable for the
oxidation of styrene to styrene oxide [11,12]. However, no acetophenone at all was found
when TBHP (70% aq.) was used as the oxidant in the presence of catalyst 2. Instead, 47% of
styrene oxide accompanied by 37% of benzaldehyde were formed (Table 1, entry 7). Poor
yield and selectivity were observed in the case when the urea adduct of hydrogen peroxide
(35% UHP) was applied as the oxidant (Table 1, entry 8).

The activity and selectivity of the heterogeneous Janus-type palladium catalyst for the
oxidation of styrene was also compared with some reports of homogeneous and heteroge-
neous systems (Table 1, entries 9–13). As shown in Table 1, some of the reported protocols
suffer from high amounts of palladium catalyst with the need for up to 10 mol% of Na2PdCl4
or 5 mol% of Pd0/C (Table 1, entries 9–10). Another drawback is employing a harsh reaction
condition such as scCO2 at 120 ◦C, which resulted a poor conversion (Table 1, entry 11).The
use of expensive ligands in concentrated H2O2 as the oxidant (Table 1, entry 12), or the need
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for applying up to 10 equiv. of the oxidant (Table 1, entry 13), are among the negative issues
of the reported protocols. Consequently, the efficiency of the Janus-type catalyst 2 stands
among the top of the reported homogeneous and heterogeneous systems in an economic and
environmental point of view.

To study the reusability of catalyst 2, an experiment was set up with 135 mg of the
catalyst and 3.0 mmol of styrene. At the end of the first run, it was cooled down to r.t.
and the catalyst was separated by centrifugation and decanting of the reaction mixture. It
was dried under vacuum and then reused for two subsequent reaction runs. The yields
of the acetophenone for the 2nd and the 3rd reaction run were found to be 81% and 78%,
respectively, while 122 mg of the catalyst were isolated at the end of the 3rd reaction run.
The slight decrease of the yield can be explained by the small loss of catalyst during the
recovery process, which means that there is no principal degradation of the catalyst. The
elemental analysis of the recovered catalyst revealed the presence of 1.40% of nitrogen
(from the ligand) in the catalyst. This value for the fresh catalyst was 1.42%, which indicates
very good stability of the Pd complex on the surface.

A proposed reaction mechanism is shown in Figure 5. Our attempt to convert styrene
oxide to acetophenone in the presence of an identical amount of catalyst and without
employment of any oxidant was not successful. This finding indicates that the reaction
cannot proceed via the rearrangement of styrene oxide that is intermediately formed
by epoxidation of styrene. In the first step, the reaction of the catalyst and hydrogen
peroxide could form the hydroperoxidopalladium intermediate 3 on the surface of the
material. The hydrophobic face (decorated with octyl groups) will efficiently accelerate
the diffusion of the starting material to the active site. Consequently, styrene and the
catalytically active species will meet each other on a nanometric temporary interface and
react to produce the Pd π-complex 4 that subsequently converts into the palladadioxa
cyclopentane intermediate 5. This undergoes a 1,2-H shift in combination with a cleavage
of the Pd-C and the O-O bond to finally release acetophenone and the hydroxidopalladium
species 6. The reaction cycle then can be continued by the exchange of HO– against HOO–.
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3. Conclusions

In summary, a novel mesoporous Janus-type palladium interphase catalyst was pre-
pared and employed for the Wacker-type oxidation of styrene to acetophenone using 30%
H2O2 as the oxidizing agent. The material was prepared in a simple procedure using cheap
starting materials. The catalyst shows excellent activity and selectivity for the synthesis of
acetophenone by the oxidation of styrene. The activity and selectivity of the heterogeneous
catalyst was found to be superior to a homogeneous PdCl2–based system. We assign the
main reason for the high activity of this catalyst system to the balanced hydrophobic-
ity/hydrophilicity because of the presence of surface silanol as well as octyl groups on
its surface. This combination of functional groups can facilitate the oxidation in a narrow
interface where aqueous oxidant and organic substrate meet each other.

4. Materials and Methods
4.1. General Methods

All chemicals and solvents were purchased from the suppliers and used without
further purifications except pentane and toluene, which were dried before use. Solid state
13C and 29Si CP-MAS NMR spectra were measured using a 500 MHz BRUKER Avance III
spectrometer under cross polarization conditions with a spinning frequency of 11,000 Hz
for both 13C and 29Si and with scan numbers of 15,000 and 2500, respectively. TGA
measurements were performed in synthetic air (20.5% O2 in N2) on a SETARAM-Setsys-16
from 30 ◦C to 900 ◦C with a heating ramp of 10 K min−1. For N2 adsorption/desorption,
the samples were activated for 24 h at 150 ◦C prior to the measurements. Adsorption
and desorption isotherms were recorded using an Autosorb-1 setup from Quantachrome.
The specific surface areas were determined using the BET method. Electron microscopy
measurements were conducted on a Jeol JSM-6490LA operated at 15 kV. Prior to the
measurements, the samples were sputter-coated with gold (JFC-1200 Fine Coater, Jeol,
Tokyo, Japan) for 30 s. High resolution 1H and 13C NMR analyses were performed with 400
and 600 MHz BRUKER DPX spectrometers. An air-cooled condenser (FindenserTM, SUPER
air condenser, Radleys, Saffron Walden, Essex, UK) was used in the reactions instead of a
water-cooled condenser.

4.2. Synthesis of Material 1

Material 1 was prepared according to our previously described procedure [29] fol-
lowed by the crushing of the resulted hollow particles using mortar and pestle for 30 min.
Yield: 1.15 g. Elemental analysis: C: 6.72% and H: 2.15%.

4.3. Synthesis of the Palladium Precursor
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A solution of 0.28 mL (0.28 g, 1.02 mmol) of triethoxy-3-(2-imidazolin-1-yl)propylsilane
and 0.130 mg (0.5 mmol) of PdCl2(CH3CN)2 in 20 mL of toluene was heated for 2 h to reflux.
At the end of the reaction, the flask was cooled to room temperature and the toluene was
evaporated under vacuum. Residual amounts of unreacted silane precursor was washed
out with dry pentane (2 × 15 mL). The obtained material was dried under vacuum to afford
327 mg (90%) of the product. 1H NMR (600 MHz, CDCl3): 7.18 (s, 2H), 3.72–3.82 (m, 16H),
3.25 (t, 4H), 3.08 (t, 4H), 1.54 (quint. 4H), 1.16 (t, 18 H) and 0.47 ppm (t, 4H). 13C NMR in CDCl3
(151 MHz, CDCl3) in ppm: 159.9, 58.5, 53.0, 50.0, 46.9, 21.6, 18.3 and 7.3 ppm. Elemental
analysis found: C 40.13, H 6.92, N 7.98, calcd. for C24H52Cl2N4O6PdSi2: C 39.69, H 7.22,
N 7.72.
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4.4. Synthesis of Catalyst 2

In a 50 mL flask equipped with an air condenser, 254 mg (0.35 mmol) of the palladium
precursor were dissolved in 20 mL of dry toluene under an atmosphere of N2. Then, 1.00 g
of the crushed material 1 was added to the flask and the mixture was heated to reflux for
24 h. After cooling to room temperature, the solid was separated by centrifugation, washed
several times with acetone and ethanol to remove traces of unreacted palladium precursor,
and subsequently dried under vacuum. Yield: 1.18 g. Elemental analysis: C 13.36%,
H 2.55%, N 1.42%.

4.5. Typical Procedure for Palladium-Catalyzed Oxidation of Styrene Using 30% H2O2

Measures of 0.11 mL (104 mg, 1 mmol) of styrene, 1.4 mL of acetic acid, 0.6 mL of H2O
and 0.31 mL (3.0 mmol) of 30% H2O2 and 45 mg (1.0 mol%) of catalyst 2 were added to a
round bottom flask. The mixture was heated to 80 ◦C for 60 min. At the end, the flask was
cooled to room temperature and the catalyst was removed by filtration or centrifuging. The
products were purified employing flash a chromatography apparatus with n–hexane/ethyl
acetate as the solvents. The ratio of ethyl acetate was increased gradually from 0 to 10%.
Acetophenone: 1H NMR (400 MHz, CDCl3): 7.89 (d, 2H), 7.49 (t, 1H), 7.39 (t, 2H) and
2.54 ppm (s, 3H). 13C NMR of (101 MHz, CDCl3): 198.2, 137.1, 133.1, 128.6, 128.3 and 26.6 ppm.
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