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Abstract: A series of novel cobalt bis(dicarbollide) based amidines were synthesized by the nucle-
ophilic addition of primary and secondary amines to highly activated B-N+≡C–R triple bond of
the propionitrilium derivative [8-EtC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)]. The reactions with
primary amines result in the formation of mixtures of E and Z isomers of amidines, whereas the
reactions with secondary amines lead selectively to the E-isomers. The crystal molecular struc-
tures of E-[8-EtC(NMe2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)], E-[8-EtC(NEt2)=HN-3,3′-Co(1,2-
C2B9H10)(1′,2′-C2B9H11)] and E-[8-EtC(NC5H10)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] were
determined by single crystal X-ray diffraction.

Keywords: cobalt bis(dicarbollide); nitrilium derivatives; amidines; nucleophilic addition reactions;
synthesis; structure

1. Introduction

Cobalt bis(dicarbollide) [3,3′-Co(1,2-C2B9H11)2]− is the most available and the most
stable of metallacarboranes [1–4], which attracts considerable attention of researchers due
to possibility of its use in a variety of fields, from the development of new materials [5–12]
to medicine [13–28]. Therefore, the development of new convenient methods for the
functionalization of cobalt bis(dicarbollide) cobalt is an important task [3,4]. One of the
convenient methods for the functionalization of the cobalt bis(dicarbollide) anion is the
ring opening of its cyclic oxonium derivatives with various nucleophiles [29]. Another
promising method is the addition of nucleophiles to the nitrilium derivatives of cobalt
bis(dicarbollide). Nucleophilic addition reactions to the highly polarized –N+≡CR triple
bonds in aryl- and alkylnitrilium salts [30] and nitrile complexes of transition metals [31–35]
are widely used in organic synthesis and have large potential in the modification of poly-
hedral boron hydrides [36]. Thus, the nitrilium derivatives of the closo-decaborate anion
react with water [37,38], alcohols [39], amines [40,41], hydrazines [42], hydrazones [42]
and oximes [43,44], as well as with various carbanions [45,46] to form the corresponding
addition products. Like organic nitrilium salts, they are able to participate in 1,3-dipolar
cycloaddition reactions with azides and nitrones leading to the corresponding boronated
tetrazoles [47] and 2,3-dihydro-1,2,4-oxadiazoles [48], respectively. Several examples of
nucleophile addition reactions to the activated triple bond of the nitrilium derivatives of
cobalt bis(dicarbollide) [8-RC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)2] (R = Me, Ph) were
also reported [49,50].
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Recently, we initiated a systematic study of nucleophilic addition reactions to the
activated triple bond of nitrilium derivatives of cobalt bis(dicarbollide) and described the
synthesis of a series of imidates and thioimidates based thereof [51]. In this contribution,
we report on the synthesis of boronated amidines by nucleophilic addition of primary and
secondary amines to the propionitrilium derivative of cobalt bis(dicarbollide).

2. Results and Discussion

Amidines, that are the nitrogen analogues of carboxylic acids and esters, are well
known and studied class of organic compounds [52–56]. Amidine derivatives are com-
monly used for the synthesis of many important heterocycles such as imidazoles, triazoles,
thiazoles, oxadiazoles, pyrimidines, pyridines and triazines. The amidine moiety is a key
pharmacophore in many biologically active compounds [57–63]. 1,8-Diazabicyclo[5.4.0]undec-
7-ene (DBU) and some other amidines are used as organocatalysts in organic synthesis [64–68].
The direct addition of amines to nitriles is a straightforward and atom-economical ap-
proach to the synthesis of amidines. However, this approach is complicated by the need
to activate organic nitriles by introducing electron-withdrawing substituents or by using
harsh reaction conditions [52–54]. The use of various Lewis acids (AlCl3, ZnCl2, CaCl2,
SmI2, TiCl4 or SnCl4) or organoaluminum compounds facilitates the addition of amines
to organic nitriles to form amidines, but requires their stoichiometric equivalents along
with nitrile and amine substrates. Of particular interest are the reactions of nitriles with
amines in the presence of transition metal complexes, which can be used both in a sto-
ichiometric ratio to study the reactions of coordinated nitriles [31,32], and in catalytic
amounts in organic synthesis [69–71]. Synthesis of boronated amidines by the reaction
of nucleophilic addition of amines to alkylnitrilium derivatives was first described for
arachno-decaborate [72] and closo-decaborate [40,41,73–76] anions. Later, amidines on
the base of nido-carborane [77–79] and the closo-dodecaborate anion [80] were synthe-
sized. The reactions of [(8-RC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11] (R = Me, Ph) with
n-butylamine and diethylamine resulting in the corresponding amidines were reported as
well [49]. This prompted us to study in more detail the reactions of nitrilium derivatives
of cobalt bis(dicarbollide) with various primary and secondary amines. The propioni-
trilium derivative of cobalt bis(dicarbollide) [51] was chosen for this study due to clear
identification of ethyl group in NMR spectra and, first of all, in 1H NMR.

2.1. Nucleophilic Addition of Primary Amines

The nucleophilic addition reactions of primary amines (methylamine, ethylamine,
propylamine, but also 3-amino-1-propanol, 2-methoxyethylamine, ethylenediamine and
N,N-dimethylethylenediamine) to highly activated triple bond B-N+≡C-R of [8-EtC≡N-
3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] were studied. The reactions were carried out in
acetonitrile solution in air at room temperature. The nucleophilic addition of amines occurs
very fast and is completed in 5–10 min. In all cases, except for the reaction with ethylenedi-
amine, the corresponding cobalt bis(dicarbollide) amidines 1–6 were obtained (Scheme 1).
Purification of the products (if required) was carried out by column chromatography
on silica.

Although 2-aminoethanol NH2CH2CH2OH, as ambidentate nucleophile, can be added
to nitriles via nitrogen or oxygen atoms, it was reasonable to assume that the addition
will occur through the more nucleophilic N-center. Indeed, we found that the reaction of
[8-EtC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] with 2-aminoethanol leads exclusively to
amidine 5, rather than the corresponding amidate. It should be noted that the addition
reactions of amino alcohols to the coordinated propionitrile in the platinum(IV) complex
trans-[PtCl4(EtCN)2] proceed in a similar way [81].
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Scheme 1. Nucleophilic addition reactions of primary amines to the propionitrilium derivative of cobalt bis(dicarbollide).

In the case of ethylenediamine, the reaction with the propionitrilium derivative of
cobalt bis(dicarbollide) lead to the destruction of the metallacarborane complex with the
formation of a mixture of nido-carborane containing products. It should be noted that
the reaction of the propionitrilium derivative of nido-carborane 10-EtC≡N-7,8-C2B9H11
with ethylenediamine led to the formation of ammonium derivative of nido-carborane
10-H3N-7,8-C2B9H11 instead of the expected amidine [77].

Amidines 1–6 were obtained as mixtures of E and Z isomers in nearly quantitative
yields. The formation of E and Z isomers was earlier observed for cobalt bis(dicarbollide)
based imidates and thioimidates [51]. For the imidates with short alkoxy substituent such
as methoxy and ethoxy, it was possible to separate isomers by column chromatography on
silica. However, in the case of the isopropoxy and butoxy substituents, as well as for the
thioimidates, fast mutual isomerization of individual isomers in solution was observed.

In the case of amidines, the formation of mixtures of E and Z isomers of 1–6 was
detected using thin-layer chromatography, but all attempts to separate them by column
chromatography on silica were failed. This can be explained by fast isomerization of pure
isomers in solution with the formation of equilibrium mixtures of E and Z isomers, which
is typical for organic amidines [82]. In all mixtures of isomers we observed an excess of
Z isomers over E isomers with the E:Z ratio varying from 1:1.2 to 1:2.3 depending on the
amine used (the measurements were performed by comparing the integrated intensities
of signals of the same groups for different isomers in the 1H NMR spectra). A noticeable
difference in the chemical shifts of the signals of the same groups for the E and Z isomers in
the 1H and 13C NMR spectra made is possible to assign them to individual isomers using
the (HH)gCOSY and (HC)HSQC NMR methods (Figure 1) as well as the spectral data of
the amidines 7–10 obtained by the reactions with secondary amines (See below).

The 1H NMR spectra of E and Z isomers of amidines 1–6 are significantly different.
The most sensitive to the isomer geometry are signals of atoms at the double bond. First
of all, these are the signals of NH protons. In most of cases for the E-isomers the signal
of the NHR hydrogen is in a lower field than the signal of the NH=C hydrogen, whereas
for Z-isomers the position of these signals is opposite. The characteristic quartet form the
CH2 group of the ethyl substituent in the 1H NMR spectra of the E-isomers is observed at
2.84–2.89 ppm, whereas for the Z-isomers this signal is high-field shifted and appears at
2.68–2.70 ppm. The signal from the NH–CH2– group generally appear in some higher field
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for the E isomers than for the Z-isomer (for example the signal of NH-CH3 appears at 3.06
ppm for 1a and at 3.19 ppm for 1b).
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Figure 1. (HH)gCOSY NMR spectrum of amidines 1 in acetone-d6. The ratio of 1a:1b is 1:1.3.

The 13C NMR spectra of amidines 1–6 are much less sensitive to the isomer geom-
etry and in many cases the signals of the same groups for different isomers coincide
with each other, for example, the signals of the NH=C group, which appear in low field
at ~167–169 ppm. Another example is the signals of the CH2 group of the ethyl substituent
that are observed in higher field for the E-isomers (at ~24 ppm) in comparing with those
for the Z-isomers (~25 ppm).

In the 11B NMR spectra the most sensitive are the signals of the substituted boron
atom. They appear at ~−12.5 for the E-isomers and at ~−10.5 ppm for the Z-isomers. The
IR spectra of amidines 1–6 contain the characteristic absorption bands of the NH and N=C
stretching as 3290–3380 and 1630–1640 cm−1, respectively.

Although the formation of mixtures of the E and Z isomers for organic amidines is well
known [82], the presence of E- and Z-isomers in solutions of boronated amidines prepared
by addition of primary amines to nitrilium derivatives of polyhedral boron hydrides was
reported only for the nido-decaborane [72] and nido-carborane [77,79] based amidines. This
could be an indication that for the other boronated amidines only one isomer is present in
solution, or that the interconversion between the E-and Z-isomers is fast on the NMR time
scale. However, in the solid state all these amidines have Z-configuration [40,49,75,76]. On
the other hand, earlier, when studying the addition of primary amines to the coordinated
nitrile ligands in platinum(II) complexes cis- and trans-[PtCl2(NCR)2], it was found that the
reactions with the acetonitrile complexes (R = Me) produce exclusively the Z-amidines [83],
while the reactions with the benzonitrile complexes (R = Ph) result in mixtures of the E
and Z isomers [84]. Again, in a solid state the amidine ligands in these complexes have
Z-configuration. Thus, the equilibrium between the E and Z isomers of amidines in solution
largely depends on the substituents in the amidine fragment.
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2.2. Nucleophilic Addition of Secondary Amines

In contrast to the primary amines, the nucleophilic addition of secondary amines
(dimethylamine, diethylamine, piperidine and morpholine) to the activated triple bond of
[8-EtC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] results in the formation of exclusively E
isomers of amidines 7–10 (Scheme 2). The formation of only E isomers was previously ob-
served for the nucleophilic addition of secondary amines to the propionitrilium derivative
of nido-carborane, whereas the reactions with primary amines resulted in mixtures of E
and Z isomers [56].
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The assignment of the E isomers of amidines 7–10 was performed using the (HH)NOESY
NMR method. The presence cross-peaks between the signals of the NH and OCH2 hydrogens
clearly indicates the formation of the E isomers (Figure 2).
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The NMR spectral data of the E isomers of amidines 7–10 allowed us to verify the
assignment of spectral signals made for the mixtures of E and Z isomers of amidines 1–6.
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Thus, in the 11B NMR spectra of amidines 7–10 the singlet from substituted boron atom
appears at ~13.0 ppm that corresponds to the chemical shift of this signal in the E isomers
of compounds 1–6. The comparison of other spectral data is also in good agreement. In
the 1H NMR spectrum of amidine 7 the signals of two non-equivalent methyl groups of
the dimethylamino fragment N(CH3)2 are observed as two singlets at 3.38 and 3.26 ppm,
whereas for amidine 8 the signals of the diethylamino N(CH2CH3)2 fragment appear as
a multiplet at 3.66 ppm and two triplets at 1.29 and 1.27 ppm. Similarly, in the 13C NMR
spectrum of 7 there are two signals from the N(CH3)2 fragment at 39.9 and 37.8 ppm,
whereas the signals from the N(CH2CH3)2 fragment of 8 are represented by two peaks in
lower field at 45.0 and 41.9 ppm and two peaks in high field at 13.1 and 11.1 ppm. Such
non-equivalence of alkyl groups at the nitrogen atom is due to restricted rotation around
the C=N bond in the amidine fragment.

2.3. X-ray Diffraction Study

Crystals of amidines 7–9, suitable for X-ray diffraction studies, were grown by slow
evaporation of solutions in acetone-hexane or acetonitrile-hexane. The amidine frag-
ments in all compounds have the E configuration with a nearly planar structure (Figure 3).
The lengths of the B(8)–N(1), N(1)–C(3), C(3)–N(2) and C(3)–C(4) bonds are 1.518–1.522,
1.312–1.319, 1.327–1.330 and 1.491–1.498 Å, respectively, which are close to the values found
earlier in [8-MeC(NEt2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] [49]. The E-configuration
was found also in amidines prepared by addition of secondary amines to nitrilium deriva-
tives of other polyhedral boron hydrides ((Bu4N)[2- B10H9NH=C(N(CH2CH2)2O)Me] [41],
(Bu4N)[2-B10H9NH=C(N(CH2)5)Me] [41], [2- B10H9NH=C(N(Me)(CH2)3NHMe2)Me] [73] and
[6,9-B10H12(NH=C(NBu2)Me)2] [72]), as well as in the related amidine complexes of transition
metals (cis- [PtCl2(N≡CPh)(NH=C(N(tBu)CH2CH2NHtBu))] [85], cis-[PtCl2(NH=(NMe2)Me)2] [86],
trans-[PtCl2(NCMe)(NH=C(NMeBut)Me)] [83], cis-[PtCl2(NH=C(NEt2)Me)2] [87], [Pd(NH=
C(NEt2)Me)4][BF4]2 [87], [Cp*Ir(η3-CH2CHCHPh)(NH=C(NMe2)Me)](OTf) [88]and[(Quin)2Zn(NH=
C(NC4H8)Me)] [89]).
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C2B9H11)] (7); (b) E-[8-EtC(NEt2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (8) and (c) E-[8-
EtC(NC5H10)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (9).
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The dicarbollide ligands in all structures are slightly (by 38.5–41.7◦) rotated relative
to each other, adopting the cisoid conformation. The substituents in compounds 7 and 8
are rotated in such a way that they form short NH···HB contacts of ~ 2.23–2.24 Å length
with the B(8′)H group of the opposite unsubstituted dicarbollide ligand, whereas in the
structure of 9 the short NH···HB contact of 1.76 Å is formed with the B(4′)H group of
the opposite dicarbollide ligand. These distances are less than the sum of the van der
Waals radii of two hydrogen atoms (2.4 Å), which is indicative of the weak N–Hδ+···Hδ-–B
dihydrogen bonding that is commonly observed in compounds containing boron and
nitrogen atoms [90–101]. It was shown that in the case of the imidate derivative of cobalt
bis(dicarbollide) [8-EtC(OiPr)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)], the presence of
even weaker NH···HB contact (2.31 Å) leads to additional stabilization of the cisoid confor-
mation by ~2 kcal mol−1 [51]. Therefore, for the amidines, a more significant stabilization
of the cisoid conformation can be expected, especially in the case of compound 9.

3. Conclusions

In this work, the nucleophilic addition reactions of primary and secondary amines
to highly activated B–N+≡C–R triple bond of the propionitrilium derivative of cobalt
bis(dicarbollide) anion [8-EtC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] were studied. As a
result, a series of new metallacarborane-based amidines was synthesized. It was found
out that the reactions with primary amines result in the formation of mixtures of the
E- and Z-isomers, whereas the reactions with secondary amines leads selectively to
the E- isomers. The crystal molecular structures of E-[8-EtC(NMe2)=HN-3,3′-Co(1,2-
C2B9H10)(1′,2′-C2B9H11)], E-[8-EtC(NEt2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] and
E-[8- EtC(NC5H10)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] were determined by single
crystal X-ray diffraction.

4. Experimental
4.1. Materials and Methods

The propionitrilium derivative of cobalt bis(dicarbollide) was prepared according to
the literature procedure [51]. Methylamine, ethylamine and dimethylamine were generated
from their concentrated aqueous solutions by the addition of K2CO3 at –5 ◦C. Propylamine,
diethylamine, ethylenediamine, N,N-dimethylethylenediamine, 2-methoxyethylamine and
3-amino-1-propanol were purchased from Acros Organics and used without purification.
Piperidine and morpholine were commercially analytical grade reagents and used without
further treatment. Acetonitrile was dried using standard procedures [102]. All reactions
were carried out in air. The reaction progress was monitored by thin-layer chromatography
(Merck F254 silica gel on aluminum plates) and visualized using 0.5% PdCl2 in 1% HCl
in aq. MeOH (1:10). Acros Organics silica gel (0.060–0.200 mm) was used for column
chromatography. The NMR spectra at 400.1 MHz (1H), 128.4 MHz (11B) and 100.0 MHz
(13C) were recorded in acetone-d6 with Varian Inova 400 spectrometer. The residual signal
of the NMR solvent relative to tetramethylsilane was taken as the internal reference for
1H and 13C NMR spectra. 11B NMR spectra were referenced using BF3

.Et2O as external
standard. Infrared spectra were recorded on IR Prestige-21 (SHIMADZU) instrument. High
resolution mass spectra (HRMS) were measured using Bruker micrOTOF II instrument
with electrospray ionization (ESI). The measurements were performed in positive ion
mode (interface capillary voltage—4500 V). A syringe injection was used for solutions in
acetonitrile (flow rate 3 mL/min). Nitrogen was applied as a dry gas; interface temperature
was set at 180 ◦C.

4.2. General Procedure for Synthesis of Compounds 1–10

To a solution of propionitrilium derivative of cobalt bis(dicarbollide) (0.20 g, 0.53 mmol)
in acetonitrile (10 mL) amine (1–2 mL) was added and the solution was stirred for about
10 min at room temperature. The reaction mixture was evaporated to dryness in vacuum.
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The desired products were isolated by column chromatography on silica with CH2Cl2 or
ethyl acetate as an eluent to give orange solids of 1–10.

[8-EtC(NHMe)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (1a,1b)
Yield 0.18 g (85%) (ratio 1a:1b = 1:1.3)
1a. 1H NMR (ppm): δ 8.20 (1H, s, NHCH3), 7.05 (1H, s, NH=C), 4.20 (2H, s, CHcarb),

4.10 (2H, s, CHcarb), 3.06 (3H, d, J = 4.9 Hz, NHCH3), 2.87 (2H, q, J = 7.5 Hz, CH2), 1.23 (3H,
t, J = 7.5 Hz, CH3), 4.0–0.6 (17H, br s, BH). 13C NMR (ppm): δ 168.8 (NH=C), 52.7 (CHcarb),
49.5 (CHcarb), 27.5 (NHCH3), 24.0 (CH2), 10.9 (CH3).

1b. 1H NMR (ppm): 7.68 (1H, s, NH=C), 6.98 (1H, s, NHCH3), 4.20 (2H, s, CHcarb),
4.10 (2H, s, CHcarb), 3.19 (3H, d, J = 5.1 Hz, NHCH3), 2.70 (2H, q, J = 7.6 Hz, CH2), 1.28 (3H,
t, J = 7.6 Hz, CH3), 4.0–0.6 (17H, br s, BH). 13C NMR (ppm): δ 168.8 (NH=C), 52.4 (CHcarb),
49.2 (CHcarb), 29.6 (NHCH3), 24.9 (CH2), 9.8 (CH3).

11B NMR (ppm): δ 12.7 (s, 1a), 10.6 (s, 1b), 8.5 (d, J = 119 Hz), 2.9 (d, J = 144 Hz),
−1.4 (d, J = 146 Hz), −4.3 (d, J = 146 Hz), -5.3 (d, J = 139 Hz), −6.7 (d, J = 144 Hz), −8.0
(d, J = 174 Hz), −16.2 (d, J = 156 Hz), −18.6 (d, J = 158 Hz), −21.6 (d, J = 156 Hz), −25.6
(d, J = 143 Hz). IR (film, cm−1): 3376 (νN-H), 3294 (νN-H), 3148 (νC-H), 3040 (νC-H), 2981
(νC-H), 2945 (νC-H), 2924 (νC-H), 2570 (νB-H), 2555 (νB-H), 1640 (νN=C), 1562, 1458, 1415, 1308,
1252. Supplementary Materials HRMS: m/z for C8H31B18CoN2: calcd 427.3947 [M+NH4]+,
obsd 427.3930 [M+NH4]+.

[8-EtC(NHEt)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (2a,2b)
Yield 0.20 g (88%) (ratio 2a:2b = 1:1.8)
2a. 1H NMR (ppm): δ 8.08 (1H, s, NHCH2CH3), 7.07 (1H, s, NH=C), 4.19 (2H, s,

CHcarb), 4.08 (2H, s, CHcarb), 3.46 (2H, m, NHCH2CH3), 2.84 (2H, q, J = 7.6 Hz, CH2), 1.29
(3H, t, J = 7.2 Hz, NHCH2CH3), 1.23 (3H, t, J = 7.6 Hz, CH3), 4.0–0.7 (17H, br s, BH). 13C
NMR (ppm): δ 167.8 (NH=C), 52.3 (CHcarb), 49.2 (CHcarb), 36.3 (NCH2CH3), 24.0 (CH2),
12.7 (NCH2CH3), 11.4 (CH3).

2b. 1H NMR (ppm): 7.68 (1H, s, NH=C), 6.90 (1H, s, NHCH2CH3), 4.21 (2H, s,
CHcarb), 4.11 (2H, s, CHcarb), 3.58 (2H, m, NHCH2CH3), 2.69 (2H, q, J = 7.6 Hz, CH2),
1.30 (3H, t, J = 7.2 Hz, NHCH2CH3), 1.28 (3H, t, J = 7.6 Hz, CH3), 4.0–0.7 (17H, br s, BH).
13C NMR (ppm): δ 167.6 (NH=C), 52.8 (CHcarb), 49.4 (CHcarb), 38.4 (NCH2CH3), 24.8
(CH2, t, J = 3.7 Hz), 14.4 (NCH2CH3), 10.4 (CH3).

11B NMR (ppm): δ 12.7 (s, 2a), 10.5 (s, 2b), 8.4 (d, J = 131 Hz), 3.1 (d, J = 136 Hz),
−1.4 (d, J = 144 Hz), −4.3 (d, J = 119 Hz), −5.2 (d, J = 138 Hz), −6.7 (d, J = 185 Hz), −8.1
(d, J = 169 Hz), −16.1 (d, J = 152 Hz), −18.6 (d, J = 157 Hz), −21.6 (d, J = 160 Hz), −24.9 (d,
J = 146 Hz). IR (film, cm−1): 3371 (νN-H), 3314 (νN-H), 3041 (νC-H), 2982 (νC-H), 2940 (νC-H),
2894 (νC-H), 2555 (br νB-H), 1635 (νN=C), 1559, 1452, 1417, 1388, 1344, 1245. Supplementary
Materials HRMS: m/z for C9H33B18CoN2: calcd 446.3658 [M+Na]+, obsd 446.3647 [M+Na]+.

[8-EtC(NHPr)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (3a,3b)
Yield 0.20 g (96%) (ratio 3a:3b = 1:2.3)
3a. 1H NMR (ppm): δ 8.10 (1H, s, NHCH2CH2CH3), 7.11 (1H, s, NH=C), 4.18 (2H,

s, CHcarb), 4.07 (2H, s, CHcarb), 3.37 (2H, q, J = 7.0 Hz, NHCH2CH2CH3), 2.84 (2H, q,
J = 7.6 Hz, CH2), 1.74 (2H, m, NHCH2CH2CH3), 1.23 (3H, t, J = 7.6 Hz, CH3), 0.96 (3H, t,
J = 7.0 Hz, NHCH2CH2CH3), 3.9–0.6 (17H, br s, BH). 13C NMR (ppm): δ 169.3 (NH=C),
52.4 (CHcarb), 49.3 (CHcarb), 43.0 (NHCH2CH2CH3), 24.0 (CH2), 21.1(NHCH2CH2CH3),
11.5 (CH3), 10.7 (NHCH2CH2CH3).

3b. 1H NMR (ppm): 7.70 (1H, s, NH=C), 6.91 (1H, s, NHCH2CH2CH3), 4.21 (2H,
s, CHcarb), 4.11 (2H, s, CHcarb), 3.50 (2H, q, J = 6.9 Hz, NHCH2CH2CH3), 2.69 (2H, q,
J = 7.6 Hz, CH2), 1.71 (2H, m, NHCH2CH2CH3), 1.28 (3H, t, J = 7.6 Hz, CH3), 1.03 (3H, t, J
= 7.0 Hz, NHCH2CH2CH3), 3.9–0.6 (17H, br s, BH). 13C NMR (ppm): δ 168.0 (NH=C), 52.8
(CHcarb), 49.4 (CHcarb), 45.0 (NHCH2CH2CH3), 24.9 (CH2), 22.8 (NHCH2CH2CH3), 10.5
(CH3), 10.3 (NHCH2CH2CH3).

11B NMR (ppm): δ 12.7 (s, 3a), 10.5 (s, 3b), 8.4 (d, J = 129 Hz), 3.1 (d, J = 134 Hz), −1.4
(d, J = 141 Hz), −4.4 (d, J = 127 Hz), −5.2 (d, J = 147 Hz), −6.7 (d, J = 186 Hz), −8.1 (d,
J = 188 Hz), −16.1 (d, J = 157 Hz), −18.6 (d, J = 158 Hz), −21.6 (d, J = 164 Hz), −24.8 (d,
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J = 138 Hz). IR (film, cm−1): 3370 (νN-H), 3324 (νN-H), 3133 (νC-H), 3042 (νC-H), 2968 (νC-H),
2937 (νC-H), 2878 (νC-H), 2588 (νB-H), 2564 (νB-H), 2530 (νB-H), 1629 (νN=C), 1555, 1464, 1418,
1387, 1344, 1249. Supplementary Materials HRMS: m/z for C10H35B18CoN2: calcd 455.4262
[M+NH4]+, obsd 455.4242 [M+NH4]+.

[8-EtC(NHCH2CH2OMe)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (4a,4b)
Yield 0.22 g (93%) (ratio 4a:4b = 1:2.0)
4a. 1H NMR (ppm): δ 8.10 (1H, s, NHCH2CH2OMe), 7.86 (1H, s, NH=C), 4.16 (2H, s,

CHcarb), 4.09 (2H, s, CHcarb), 3.61 (4H, m, NHCH2CH2OMe), 3.36 (3H, s, OMe), 2.88 (2H, q,
J = 7.6 Hz, CH2), 1.23 (3H, t, J = 7.6 Hz, CH3), 4.0–0.9 (17H, br s, BH). 13C NMR (ppm): δ
167.9 (NH=C), 71.4 (NHCH2CH2OMe), 58.2 (NHCH2CH2OMe), 52.3 (CHcarb), 49.3 (CHcarb),
42.6 (NHCH2CH2OMe), 24.1 (CH2), 11.1 (CH3).

4b. 1H NMR (ppm): 7.68 (1H, s, NH=C), 7.28 (1H, s, NHCH2CH2OMe), 4.19 (2H, s,
CHcarb), 4.09 (2H, s, CHcarb), 3.66 (2H, m, NHCH2CH2OMe), 3.62 (2H, m, NHCH2CH2OMe),
3.37 (3H, s, OMe), 2.70 (2H, q, J = 7.6 Hz, CH2), 1.27 (3H, t, J = 7.6 Hz, CH3), 4.0–0.9 (17H, br
s, BH). 13C NMR (ppm): δ 167.9 (NH=C), 70.1 (NHCH2CH2OMe), 58.1 (NHCH2CH2OMe),
52.7 (CHcarb), 49.5 (CHcarb), 43.2 (NHCH2CH2OMe), 25.1 (CH2), 10.2 (CH3).

11B NMR (ppm): δ 12.7 (s, 4a), 10.9 (s, 4b), 8.3 (d, J = 123 Hz), 2.7 (d, J = 142 Hz),
−1.3 (d, J = 138 Hz), −4.5 (d, J = 143 Hz), −5.4 (d, J = 144 Hz), −6.6 (d, J = 161 Hz),
−8.0 (d, J = 176 Hz), −16.3 (d, J = 155 Hz), −18.8 (d, J = 158 Hz), −21.8 (d, J = 170 Hz),
−25.1 (d, J = 177 Hz). IR (film, cm−1): 3354 (br νN-H), 3041 (νC-H), 2985 (νC-H), 2934
(νC-H), 2896 (νC-H), 2834 (νC-H), 2557 (br νB-H), 1638 (νN=C), 1558, 1456, 1417, 1388, 1249.
Supplementary Materials HRMS: m/z for C10H35B18CoN2O: calcd 472.4169 [M+NH4]+,
obsd 472.4160 [M+NH4]+.

[8-EtC(NHCH2CH2CH2OH)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (5a,5b)
Yield 0.22 g (91%) (ratio 5a:5b = 1:1.7)
5a. 1H NMR (ppm): δ 8.15 (1H, s, NHCH2CH2CH2OH), 7.45 (1H, s, NH=C), 4.16

(2H, s, CHcarb), 4.06 (2H, s, CHcarb), 3.65 (2H, m, NHCH2CH2CH2OH), 3.53 (2H, q,
J = 6.3 Hz, NHCH2CH2CH2OH), 2.87 (2H, q, J = 7.5 Hz, CH2), 1.85 (2H, m, J = 6.4 Hz,
NHCH2CH2CH2OH), 1.23 (3H, t, J = 7.5 Hz, CH3), 3.9–0.7 (17H, br s, BH). 13C NMR
(ppm): δ 168.5 (NH=C), 58.5 (NHCH2CH2CH2OH), 52.7 (CHcarb), 49.2 (CHcarb), 38.6
(NHCH2CH2CH2OH), 30.6 (NHCH2CH2CH2OH), 24.2 (CH2), 11.1 (CH3).

5b. 1H NMR (ppm): 7.66 (1H, s, NH=C), 7.05 (1H, s, NHCH2CH2CH2OH), 4.20 (2H, s,
CHcarb), 4.10 (2H, s, CHcarb), 3.70 (2H, m, NHCH2CH2CH2OH), 3.64 (2H, m, NHCH2CH2CH2OH),
2.70 (2H, q, J = 7.6 Hz, CH2), 1.85 (2H, m, J = 6.4 Hz, NHCH2CH2CH2OH), 1.28 (3H, t, J = 7.5 Hz,
CH3), 3.9–0.7 (17H, br s, BH). 13C NMR (ppm): δ 167.2 (NH=C), 58.3 (NHCH2CH2CH2OH),
52.7 (CHcarb), 49.4 (CHcarb), 40.8 (NHCH2CH2CH2OH), 32.1 (NHCH2CH2CH2OH), 25.0
(CH2), 10.4 (CH3).

11B NMR (ppm): δ 12.8 (s, 5a), 10.6 (s, 5b), 8.5 (d, J = 135 Hz), 3.1 (d, J = 139 Hz),
−1.3 (d, J = 146 Hz), −4.3 (d, J = 149 Hz), −5.3 (d, J = 151 Hz), −6.7 (d, J = 185 Hz), −8.1
(d, J = 186 Hz), −16.2 (d, J = 160 Hz), −18.7 (d, J = 164 Hz), −21.7 (d, J = 162 Hz), −25.0
(d). IR (film, cm−1): 3370 (br νN-H), 3325 (br νN-H), 3130 (νC-H), 3041 (νC-H), 2944 (νC-H),
2885 (νC-H), 2564 (br νB-H), 2536 (br νB-H), 1635 (νN=C), 1559, 1467, 1419, 1387, 1349, 1252.
Supplementary Materials HRMS: m/z for C10H35B18CoN2O: calcd 472.4169 [M+NH4]+,
obsd 472.4155 [M+NH4]+.

[8-EtC(NHCH2CH2NMe2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (6a,6b)
Yield 0.22 g (89%) (ratio 6a:6b = 1:2.0)
6a. 1H NMR (ppm): δ 10.16 (1H, s, NH=C), 7.94 (1H, s, NHCH2CH2NMe2), 4.14 (2H, s,

CHcarb), 4.08 (2H, s, CHcarb), 3.47 (2H, m, NHCH2CH2NMe2), 2.89 (2H, q, J = 7.6 Hz, CH2),
2.58 (2H, m, NHCH2CH2NMe2), 2.31 (6H, s, NMe2), 1.22 (3H, t, J = 7.6 Hz, CH3), 4.0–0.8
(17H, br s, BH). 13C NMR (ppm): δ 167.1 (NH=C), 59.3 (NHCH2CH2NMe2), 52.2 (CHcarb),
49.2 (CHcarb), 45.3 (NMe2), 41.9 (NHCH2CH2NMe2), 24.2 (CH2), 11.0 (CH3).

6b. 1H NMR (ppm): δ 7.78 (1H, s, NH=C), 7.53 (1H, s, NHCH2CH2NMe2), 4.18 (2H, s,
CHcarb), 4.08 (2H, s, CHcarb), 3.54 (2H, m, NHCH2CH2NMe2), 2.68 (2H, q, J = 7.6 Hz, CH2),
2.57 (2H, m, NHCH2CH2NMe2), 2.27 (6H, s, NMe2), 1.27 (3H, t, J = 7.6 Hz, CH3), 4.0–0.8



Molecules 2021, 26, 6544 10 of 16

(17H, br s, BH). 13C NMR (ppm): δ 167.1 (NH=C), 56.2 (NHCH2CH2NMe2), 52.6 (CHcarb),
49.4 (CHcarb), 43.9 (NMe2), 40.4 (NHCH2CH2NMe2), 25.6 (CH2), 9.9 (CH3).

11B NMR (ppm): δ 12.7 (s, 6a), 10.9 (s, 6b), 8.3 (d, J = 123 Hz), 2.7 (d, J = 142 Hz), −1.3
(d, J = 142 Hz), −4.5 (d, J = 143 Hz), −5.4 (d, J = 144 Hz), −6.6 (d, J = 161 Hz), −8.0 (d,
J = 176 Hz), −16.3 (d, J = 154 Hz), −18.8 (d, J = 160 Hz), −21.8 (d, J = 168 Hz), −25.1 (d,
J = 164 Hz). IR (film, cm−1): 3309 (br νN-H), 3041 (νC-H), 2977 (νC-H), 2948 (νC-H), 2863
(νC-H), 2828 (νC-H), 2779 (νC-H), 2568 (br νB-H), 1629 (νN=C), 1550, 1507, 1465, 1457, 1250.
ESI HRMS: m/z for C11H38B18CoN3: calcd 489.4082 [M+Na]+, obsd 489.4085 [M+Na]+.

[8-EtC(NMe2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (7)
Yield 0.20 g (88%). 1H NMR (ppm): δ 6.93 (1H, s, NH), 4.17 (2H, s, CHcarb), 4.08 (2H, s,

CHcarb), 3.38 (3H, s, NCH3), 3.26 (3H, s, NCH3), 2.95 (2H, q, J = 7.5 Hz, CH2), 1.18 (3H, t,
J = 7.5 Hz, CH3), 3.9–0.7 (17H, br s, BH). 13C NMR (ppm): δ 168.5 (NH=C), 52.4 (CHcarb),
49.2 (CHcarb), 39.9 (NCH3), 37.8 (NCH3), 22.0 (CH2), 10.4 (CH3). 11B NMR (ppm): δ 13.1
(1B, s), 8.7 (1B, d, J = 142 Hz), 2.6 (1B, d, J = 144 Hz), −1.3 (1B, d, J = 146 Hz), −4.2 (2B,
d, J = 169 Hz), −5.5 (2B, d, J = 135 Hz), −6.4 (2B, d, J = 132 Hz), −7.7 (2B, d, J = 163 Hz),
−16.3 (2B, d, J = 162 Hz), −18.5 (2B, d, J = 163 Hz), −21.6 (1B, d, J = 167 Hz), −25.6 (1B, d,
J = 169 Hz). IR (film, cm−1): 3385 (νN-H), 3039 (νC-H)„ 2987 (νC-H), 2944 (νC-H), 2924 (νC-H),
2854 (νC-H), 2605 (νB-H), 2576 (νB-H), 2555 (νB-H), 1615 (νN=C), 1512, 1458, 1434, 1380, 1245.
Supplementary Materials HRMS: m/z for C9H33B18CoN2: calcd 440.4135 [M+NH4]+, obsd
440.4121 [M+NH4]+.

[8-EtC(NEt2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (8)
Yield 0.22 g (91%). 1H NMR (ppm): δ 6.88 (1H, s, NH), 4.19 (2H, s, CHcarb), 4.10 (2H,

s, CHcarb), 3.66 (4H, m, NCH2CH3), 2.94 (2H, q, J = 7.5 Hz, CH2), 1.29 (3H, t, J = 7.2 Hz,
NCH2CH3), 1.27 (3H, t, J = 7.2 Hz, NCH2CH3), 1.19 (3H, t, J = 7.5 Hz, CH3), 3.9–0.7 (17H,
br s, BH). 13C NMR (ppm): δ 167.7 (NH=C), 52.4 (CHcarb), 49.2 (CHcarb), 45.0 (NCH2CH3),
41.9 (NCH2CH3), 21.1 (CH2), 13.1 (NCH2CH3), 11.6 (CH3), 11.1 (NCH2CH3). 11B NMR
(ppm): δ 13.2 (1B, s), 8.6 (1B, d, J = 141 Hz), 2.5 (1B, d, J = 144 Hz), −1.3 (1B, d, J = 144
Hz), −4.2 (2B, d, J = 152 Hz), −5.4 (2B, d, J = 139 Hz), −6.4 (2B, d, J = 142 Hz), −7.6 (2B, d,
J = 141 Hz), −16.3 (2B, d, J = 160 Hz), −18.4 (2B, d, J = 170 Hz), −21.6 (1B, d, J = 163 Hz),
−25.6 (1B, d, J = 175 Hz). IR (film, cm−1): 3389 (νN-H), 3043 (νC-H), 2975 (νC-H), 2943
(νC-H), 2608 (νB-H), 2574 (νB-H), 2545 (νB-H), 1606 (νN=C), 1507, 1496, 1450, 1383, 1358, 1238.
Supplementary Materials HRMS: m/z for C11H37B18CoN2: calcd 470.4377 [M+NH4]+, obsd
470.4354 [M+NH4]+.

[8-EtC(NC5H10)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (9)
Yield 0.23 g (94%). 1H NMR (ppm): δ 7.01 (1H, s, NH), 4.17 (2H, s, CHcarb), 4.08 (2H, s,

CHcarb), 3.73 (4H, m, NCH2), 3.02 (2H, q, J = 7.5 Hz, CH2), 1.74 (6H, m, -CH2-), 1.16 (3H, t,
J = 7.5 Hz, CH3), 4.0–0.7 (17H, br s, BH). 13C NMR (ppm): δ 173.1 (NH=C), 52.2 (CHcarb),
49.4 (CHcarb), 49.2 (NCH2), 46.3 (NCH2), 26.5 (CH2), 25.3 (CH2), 23.5 (CH2), 21.5 (CH2), 11.3
(CH3). 11B NMR (ppm): δ 13.2 (1B, s), 8.6 (1B, d, J = 141 Hz), 2.5 (1B, d, J = 144 Hz), −1.2
(1B, d, J = 145 Hz), −4.3 (2B, d, J = 153 Hz), −5.4 (2B, d, J = 117 Hz), −6.0 (2B, d, J = 119 Hz),
−7.8 (2B, d, J = 152 Hz), −16.4 (2B, d, J = 154 Hz), −18.6 (2B, d, J = 156 Hz), −21.7 (1B, d,
J = 166 Hz), −25.4 (1B, d, J = 151 Hz). IR (film, cm−1): 3381 (νN-H), 3040 (νC-H), 2976 (νC-H),
2945 (νC-H), 2862 (νC-H), 2568 (br νB-H), 1601 (νN=C), 1506, 1485, 1457, 1445, 1382, 1361,
1248. Supplementary Materials HRMS: m/z for C12H37B18CoN2: calcd 502.3715 [M+K]+,
obsd 502.3714 [M+K]+.

[8-EtC(NC4H8O)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (10)
Yield 0.23 g (93%). 1H NMR (ppm): δ 7.17 (1H, s, NH), 4.17 (2H, s, CHcarb), 4.08 (2H, s,

CHcarb), 3.79 (8H, m, NCH2 + OCH2), 3.06 (2H, q, J = 7.5 Hz, CH2), 1.17 (3H, t, J = 7.5 Hz,
CH3), 3.9–0.6 (17H, br s, BH). 13C NMR (ppm): δ 170.4 (NH=C), 69.3 (OCH2), 68.4 (OCH2),
55.1 (CHcarb), 52.1 (CHcarb), 51.2 (NCH2), 48.4 (NCH2), 24.2 (CH2), 13.8 (CH3). 11B NMR
(ppm): δ 13.0 (1B, s), 8.6 (1B, d, J = 131 Hz), 2.6 (1B, d, J = 140 Hz), −1.0 (1B, d, J = 143 Hz),
−4.3 (2B, d, J = 137 Hz), −5.4 (2B, d, J = 123 Hz), −6.0 (2B, d, J = 121 Hz), −7.8 (2B, d,
J = 153 Hz), −16.4 (2B, d, J = 156 Hz), −18.6 (2B, d, J = 158 Hz), −21.7 (1B, d, J = 147 Hz),
−25.3 (1B, d, J = 136 Hz). IR (film, cm−1): 3377 (νN-H), 3338 (νN-H), 3041 (νC-H), 2977
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(νC-H), 2929 (νC-H), 2860 (νC-H), 2588 (νB-H), 2563 (νB-H), 2534 (νB-H), 1604 (νN=C), 1588,
1506, 1456, 1382, 1363, 1249. Supplementary Materials HRMS: m/z for C11H35B18CoN2O:
calcd 488.3765 [M+Na]+, obsd 488.3748 [M+Na]+.

4.3. Single Crystal X-ray Diffraction Study

X-ray experiments for compounds 7, 8 and 9 were carried out using SMART APEX2
CCD diffractometer (λ(Mo-Kα)=0.71073 Å, graphite monochromator, ω-scans) at 120 K.
Collected data were processed by the SAINT and SADABS programs incorporated into
the APEX2 program package [103]. The structures were solved by the direct methods and
refined by the full-matrix least-squares procedure against F2 in anisotropic approximation.
The refinement was carried out with the SHELXTL program [104]. Compound 9 crystallizes
in the form of dihydrate. All water molecules are significantly disordered and were
eliminated from the refinement using common SQUIZZE option. The CCDC numbers
(2114706, 2114707 and 2114708, for 7, 8 and 9, respectively) contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge via www.
ccdc.cam.ac.uk/data_request/cif (accessed on 9 October 2021).

Crystallographic data for 7: C9H33B18CoN2 are orthorhombic, space group Pna21:
a = 27.1787(4) Å, b = 7.08410(10) Å, c = 11.5151(2) Å, V = 2217.08(6) Å3, Z = 4, M = 422.88,
dcryst = 1.267 g·cm−3. wR2 = 0.0619 calculated on F2

hkl for all 5112 independent reflections
with 2θ < 56.0◦, (GOF = 1.078, R = 0.0277 calculated on Fhkl for 4862 reflections with
I > 2σ(I)).

Crystallographic data for 8: C11H37B18CoN2 are orthorhombic, space group Pca21:
a = 13.3717(4) Å, b = 16.2810(5) Å, c = 11.2565(3) Å, V = 2450.59(12) Å3, Z = 4, M = 450.93,
dcryst = 1.222 g·cm−3. wR2 = 0.0734 calculated on F2

hkl for all 5343 independent reflections
with 2θ < 54.2◦, (GOF = 1.025, R = 0.0326 calculated on Fhkl for 4406 reflections with
I > 2σ(I)).

Crystallographic data for 9: C12H37B18CoN2·2H2O are tetragonal, space group I41/a:
a = b = 39.0901(11) Å, c = 6.9515(3) Å, V = 10,622.1(8) Å3, Z = 16, M = 498.98, dcryst = 1.248 g·cm−3.
wR2 = 0.1626 calculated on F2

hkl for all 5836 independent reflections with 2θ < 54.3◦,
(GOF = 1.028, R = 0.0684 calculated on Fhkl for 3384 reflections with I > 2σ(I)).

Supplementary Materials: The following are available online. Copies of 1H, 13C-NMR, 11B NMR,
(HH)gCOSY NMR, NOESY NMR and main crystallographic data for compounds 7, 8 and 9.
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