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Abstract: Performance degradation under environmental conditions currently limits the practical
utility of perovskite-based solar cells. The moisture stability of CH3NH3PbI3 perovskite films and
solar cells was measured during exposure to three different levels of relative humidity. The films were
crystallized at two different temperatures with and without simultaneous exposure to supercritical
carbon dioxide. The film crystallinity, optical absorption, and device photoconversion efficiency
was measured over time for three relative humidity levels and both crystallization methods. It
was determined that film crystallization in supercritical CO2 resulted in significant improvement
in moisture stability for films processed at 50 ◦C, but negligible improvement in stability for films
processed at 100 ◦C.
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1. Introduction

Perovskite-based solar cells have emerged as a potentially disruptive photovoltaic
technology. Perovskite refers to the ABX3 crystal structure (usually A is organic ammonium
such as methylammonium, B is a cation such as lead, and X is a halide such as chlorine, or
mixed halides). Perovskites have been explored for application in light emitting diodes
(LEDs) [1–3], low-power transistors [4–6], and highly efficient photodetectors [7–9]. Halide
perovskite materials (inorganic, organic-inorganic) are of interest in the solar cell field
due to their long charge carrier diffusion length, high light absorption coefficient, tunable
bandgap, large extinction coefficient, relatively low material cost, solution-based processing,
and excellent photoelectric conversion efficiency [10–19]. These advantages make halide
perovskites an ideal material in the field of photovoltaics and other optoelectronic devices.
The power conversion efficiency (PCE) of perovskite is comparable with crystalline silicon
solar cells and has increased from 3.8% in 2009 [20] to a certified record of 25.5% in 2019 [21].

The crystallinity of the perovskite thin film is paramount to achieve optimum device
performance. High-quality crystalline perovskite films with large grains produce superior
optoelectronic performance because of a lower recombination rate and longer carrier diffu-
sion length. Post-deposition annealing is used to enable short-range interdiffusion of the
perovskite precursor compounds on the substrate to facilitate conversion into photoactive
perovskite crystals [22–25]. However, thermal annealing can produce impurities and in-
termediate phases at high temperatures, and is problematic when scaling to large device
areas since temperature variations produce inhomogeneities in film crystallinity [26–29].

We recently introduced the use of supercritical fluids (SCF) for post-deposition anneal-
ing of perovskites [30–32]. Supercritical carbon dioxide was shown to be an anti-solvent
to CH3NH3PbI3 perovskite and facilitated low-temperature crystallization by reducing
the energy barrier for molecular diffusion. Supercritical carbon dioxide (scCO2) has a
low critical point (31.2 ◦C, 7.38 Mpa or 1070.4 psi), no surface tension, liquid-like density,
gas-like viscosity, and diffusivity and negligible solubility to the perovskite films. Trace
amounts (less than 2%) of organic co-solvents could be added to the scCO2 to modify the
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solubility and produce various film morphologies and crystal orientations [31]. We have
also reported the photovoltaic performance of CH3NH3PbI3 perovskite solar cells where
the photoactive layer was annealed in scCO2 at 50 ◦C and achieved a PCE of 17.22% [32].

Although the photovoltaic performance of PSCs is outstanding, its major challenge
to commercialization remains the stability of the crystals [33,34] under environmental
conditions. Poor stability of PSCs is primarily due to degradation of the perovskite crys-
tals and can be caused by many factors such as exposure to atmospheric oxygen and
humidity [35–38], high temperature [39], illumination [40,41], and ion migration [42,43].
However, degradation by humidity remains the dominant factor reducing the stability
of the perovskite materials. Several approaches have been adopted to stabilize halide
perovskites, including compositional tuning [44–46], low dimensional perovskites [47,48],
additives [49,50], use of a surface blocking layer [41,51,52], and enhancing the grain size.

For hybrid organic-inorganic perovskites, instability is due to the organic component,
where the CH3NH3PbI3 decomposes into a lead iodide (PbI2) and methylammonium
iodide (CH3NH3I). CH3NH3I gives up a proton to water, forming H3O+ by breaking the
bond between the A and B molecules of the ABX3 perovskite structure [53–55]. Frost et al.
explained a possible water-facilitated decomposition path shown in Equations (1)–(4) [56].
Exposure of the perovskite to moisture results in the organic iodide forming HI acid,
which dissolves in water. Trace amounts of water are adequate to deprotonate the organic
component to cause degradation. In addition, the exposure of the film to trace amounts of
H2O results in partial decomposition until the byproducts reach equilibrium.

CH3NH3PbI3 (s) ↔ CH3NH3I (aq) + PbI2(s) (1)

CH3NH3I (aq) ↔ CH3NH2(aq) + HI(aq) (2)

4HI(aq) + O2 ↔ 2I2 (s) + 2H2O (3)

2HI(aq) ↔ H2 + I2(s) (4)

In our initial studies, we demonstrated that annealing CH3NH3PbI3 perovskite thin
films at low temperature in scCO2 resulted in high-quality films and devices with cor-
responding high photovoltaic efficiencies. In this paper, we investigate the humidity
degradation rate of films and photovoltaic devices processed in scCO2. The effect of three
levels of relative humidity (RH) (No exposure (< 5% RH), 40% RH, and 60% RH) on
perovskite film optical absorption, crystallinity and resulting device photo conversion effi-
ciency (PCE) was measured for films processed in scCO2 in comparison to films annealed
without scCO2.

2. Methods
2.1. Device Fabrication

All film and device fabrication procedures were reported previously [32]. Fluorine-
doped tin oxide (FTO) glass substrates (Ossila, TEC 15, Sheffield, UK) of size 25 mm by
25 mm were used. The substrate was cleaned as follows; ultrasonic bath in 2% Hellmanex
solution, rinse with deionized water, ultrasonic bath in isopropanol for 15 min, ultrasonic
bath in acetone for 15 min, rinse acetone and isopropanol, dry the isopropanol with dry air
and plasma cleaned for 15 min.

The titanium dioxide (TiO2) blocking layer (bl-TiO2) was formed by spin coating
0.15 M titanium diisopropoxide dis(acetylacetonate) (Sigma-Aldrich, 75 wt% in isopropanol)
in 1-butanol (anhydrous, Sigma-Aldrich, 99.8%) onto the FTO glass substrate at 700 rpm for
8 s, 1000 rpm for 10 s and 2000 rpm for 40 s, followed by drying at 125 ◦C for 5 min [32,57].
The mesoporous TiO_2 (mp-TiO2) layer was deposited on the bl-TiO2 by spin-coating a
TiO2 colloidal solution containing 0.6 g of TiO2 paste (30NR-D, Greatcell Solar) diluted in
5 mL of anhydrous ethanol solution at 2000 rpm for 20 s, followed by annealing at 540 ◦C
for 1 h. The substrate was further treated with 20 mM aqueous TiCl4 (>98%, Sigma-Aldrich,
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Saint Louis, MO, USA) solution at 90 ◦C for 10 min, cleaned with deionized water and then
sintered at 500 ◦C for 30 min [32,57].

CH3NH3PbI3 was synthesized by mixing a 1:1:1 molar ratio of 2.385 g of methyl
ammonium iodide (CH3NH3I) (98%, Sigma Aldrich), 6.915 g of lead (II) iodide (PbI2)
(99.9985%, Alfa Aesar, Ward Hill, MA, USA), and 1.063 mL of dimethyl sulfoxide (DMSO)
(≥99.9%, anhydrous, Sigma Aldrich) in 9.484 mL of N,N-dimethylformamide (DMF)
(≥99.8%, anhydrous, Sigma Aldrich) and 0.3 mL of diethyl ether (≥99.8% anhydrous,
Sigma Aldrich). The solution was stirred for 1 h at room temperature and filtered with
0.2 µm syringe filter (Corning Inc., Corning, NY, USA). The solution was processed in
an argon-filled glove box. The precursor solution was spin coated onto the substrate at
6000 rpm for 25 s. and 0.5 mL of diethyl ether was dripped onto the rotating surface 6 s into
the spinning. For thermal annealed films, the substrate was placed on a hotplate at either
50 or 100 ◦C for 30 min. For scCO2 annealed films, the thin film was placed in a pressure
vessel (Parr Instrument Pressure Reactor 4768) and a syringe pump (Teledyne ISCO Pump
260D) was used to pressurize the carbon dioxide at 1300 psi and 50 ◦C for 30 min. The
substrates were then removed and blown with argon and dried in the glovebox [30–32].

A total of 65 µL of spiro-MeOTAD solution, which contained 72.3 mg spiro-MeOTAD
(Sublimed, Ossila), 28.8 µL of 4-tert-butyl pyridine (Ossila), and 17.5 µL of lithium bis
(trifluoromethanesulfonyl)imide (Li-TFSI) solution (520 mg Li-TSFI (Ossila) in 1 mL acetoni-
trile (Sigma–Aldrich, 99.8%) in 1 ml of chlorobenzene was spin-coated on the perovskite
layer at 3000 rpm for 30 s [58,59]. Finally, the Silver (Ag) electrode was deposited using
electron beam evaporation at a constant evaporation rate of 0.03 nm/s through a shadow
mask resulting in an electrode thickness of approximately 100 nm. Home-made humidity
chambers were used to expose the samples to the higher relative humidity levels (40 and
60%). For lower relative humidity (<5% RH), samples were placed in a dry desiccator kept
in an argon filled glovebox.

2.2. Device Characterization

The crystallographic properties of the perovskite films were characterized by X-ray
diffraction (XRD) measurements (PANalytical MPD X’pert Pro) using a Cu Kα (λ = 1.54 nm)
radiation source that operated at 45 kV and 40 mA. The X-ray diffractograms were obtained
at a scan rate of 0.01◦ s−1 for 2θ values between 10◦ and 60◦. The surface coverage and
grain size were obtained using a scanning electron microscope (SEM) (Hitachi SU-70 FE-
SEM) at 20 kV, and analyzed using an ImageJ software package. Optical spectrometry
(transmission, reflection, absorption) of the films was conducted using a spectral response
measurement system (PerkinElmer Lambda 35 UV/VIS Spectrometer). The J-V curves
were measured using a G2V optics small area Pico simulator at room temperature under
AM 1.5 G illuminations (100 mW/cm2), and calibrated using a standard silicon solar cell
device. An aperture mask of 0.09 cm2 was used to define the device area.

3. Results and Discussion

In our previous studies, we reported the effect of scCO2 annealing on the crystallinity
and photovoltaic performance of perovskite devices [30–32]. The crystal structure was
monitored using XRD and the diffraction peaks at 14.4◦, 24.8◦, 28.7◦, and 32.2◦ correspond
to the (110), (202), (220), and (310) planes of crystalline CH3NH3PbI3, respectively, with
a tetragonal crystal structure [60–63]. The XRD pattern for PbI2 shows that, in general,
thin film growth is oriented along the (001) direction at 12.73◦ irrespective of the spin
parameters. This is typically due to the use of DMF, a less soluble, polar solvent containing
electronegative oxygen atoms [64]. The presence of PbI2 typically indicates incomplete
crystallization and/or degradation [65]. The effect of relative humidity on the CH3NH3PbI3
crystallinity was studied using XRD and UV-VIS.

Figure 1, part A, shows the normalized amplitude ratio of the dominant PbI2 peak
at (001) versus that of CH3NH3PbI3 (110) over 25 days after thermal annealing alone
at 50 ◦C. An increase in this ratio is used as a measure of film degradation. Negligible
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degradation was observed in samples kept in a low humidity environment due to less
moisture interactions with the perovskite film. However, when the samples were exposed
to a relative humidity of 40%, there is an exponential decay beginning on about day 15.
Exposing the thin films to 60% RH also shows rapid exponential degradation but beginning
on the first day of exposure. Therefore, we observe an extremely strong correlation between
an increase in relative humidity with degradation of the perovskite film.
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Figure 1, part B, shows the optical absorption spectra of the perovskite film annealed
at 50 ◦C at three different days for each relative humidity level. The absorption data is
presented over a range of wavelengths near the perovskite band edge to try to understand
the impact of moisture exposure on band-to-band transitions. Moisture damage will
result in a loss of crystallinity and corresponding band structure. We, therefore, focus
our attention on the shape of the band edge rather than the absorption intensity since the
latter includes other factors such as film thickness and surface roughness, which were not
independently measured. The low humidity sample shows very little change over time.
However, at 40% RH, the spectrum begins to change on day ten and shows very little band
edge by day 25. At 60% RH, the band edge disappears immediately leading to a featureless
absorption spectra and by day five, we see no absorption spectra response.

Figure 2, part A, shows the amplitude ratio of the PbI2 (001) peak to that of the
CH3NH3PbI3 (110) peak versus time and at three different humidity levels for a sample
annealed at 100 ◦C without scCO2. No degradation was observed for samples kept at
low humidity. At 40%RH, no crystal degradation was observed until day 15, where the
peak begins to increase slowly. At 60% RH, rapid, exponential degradation was observed
beginning on day three. The slower degradation rate of films annealed at 100 ◦C compared
to those annealed at 50 ◦C is likely due to the higher initial film quality and crystallinity in
the films annealed at the higher temperature, as we reported previously.

Figure 2, part B, shows the optical absorption spectra of the perovskite film annealed
at 100 ◦C without scCO2 at three different relative humidity levels. The absorption spectra
for the dry sample remained unchanged after 25 days. At 40% RH, the absorption band
edge is still clearly visible on day ten, but is significantly degraded by day 25. At 60% RH,
the absorption band edge is almost entirely gone by day three and disappears entirely by
day 5. This data confirms that traditional annealing at either 50 or 100 ◦C does not offer
any significant protection against humidity degradation even though the films annealed at
the higher temperature perform slightly better due to the superior initial crystallinity.
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Figure 3, part A, is a plot of the relative peak amplitude versus time for the sample
processed in scCO2 at 50 ◦C at three different humidity levels. Negligible degradation
was observed at the low humidity level. At 40% RH, degradation begins on the 15th day
and increases slowly. At 60% RH, rapid exponential degradation was observed beginning
on the first day of exposure, indicating that film degradation began immediately at this
higher humidity level. After day nine, the absorption ratio plateaus and then decreases.
We attribute this behavior to the very high level of film degradation. That is, after day nine,
the crystal structure has been severely compromised and the X-ray diffraction data has
little value.
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Figure 3, part B, shows the optical absorption spectra of perovskite films processed in
scCO2 at 50 ◦C and at three different humidity levels. The absorption spectra for the dry
samples remains unchanged through the 25th day. At 40% RH, the band edge begins to
change by day ten and is not discernable by day 25. At 60% RH, the band edge disappears
completely by day three with no visible structure in the absorption spectra.

Figure 4 compares the power conversion efficiency versus time for films thermally
annealed at 50 ◦C with (B) and without (A) scCO2 at three different relative humidity
levels. Multiple photovoltaic devices were produced from each sample using a pixelated
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shadow mask to deposit the silver contacts. PCE data was obtained from each device and
the error bars presented in Figures 4 and 5 represent the precision intervals of the data. On
day one (no humidity exposure), the average PCE of devices where the perovskite layer
was annealed with scCO2 was about twice that of devices where the perovskite layer was
annealed without scCO2. Specifically, devices where the perovskite layer was annealed at
50 ◦C had a PCE of 6.29 ± 1.72%, 6.12 ± 1.77%, and 5.46 ± 0.87%. However, devices where
the perovskite layer was annealed at the same temperature, but in scCO2, had a PCE of
14.27 ± 1.09%, 13.07 ± 0.90%, and 14.52 ± 1.32%, respectively. This shows that perovskite
films annealed in the presence of scCO2 exhibit much better photovoltaic performance at
these lower temperatures due to superior film quality.
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Figure 5. PCE degradation rate of perovskite films after annealing (A) at 100 ◦C without scCO2 and
(B) at 100 ◦C with scCO2.

When the devices are kept in a dry desiccator, the PCE remains relatively constant,
as would be expected. Upon exposure to RH levels of 40 and 60%, both sets of devices
show a decrease in PCE with time, but the devices annealed in scCO2 exhibit a slower
rate of degradation. Thus, perovskite films annealed in the presence of scCO2 at low
temperatures not only exhibit superior film quality (greater smoothness, larger grain)
and higher crystallinity, but also higher photovoltaic efficiency and a slower degradation
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rate upon exposure to humidity compared to films thermally annealed in the absence of
scCO2 [30–32].

Figure 5 compares the power conversion efficiency versus time of devices, where
the perovskite layer was thermally annealed at 100 ◦C with and without scCO2 and at
three different relative humidity levels. At this higher temperature, the initial PCE and
degradation rate at each RH level was approximately the same for devices annealed in
scCO2 and devices annealed without scCO2. Therefore, we see no significant benefit in
using scCO2 for annealing perovskite films at higher temperatures.

Comparing the photoconversion efficiency data of Figures 4 and 5 to the X-ray and
optical absorption data of Figures 1–3 shows similar trends, but much different sensitivity.
That is, the drop in observed device efficiency is consistent with the degradation in crystal
structure and band structure, but is a much more sensitive indicator. For example, if we
consider the films processed at 50 ◦C in supercritical CO2, the data of Figure 3, part A,
at 40% RH shows the amplitude ratio increasing on day 14. However, the PCE data of
Figure 4, part B, for devices constructed from these same films shows a sudden drop in
PCE from 14% on day one to 9% on day two and down to 2% by day five. We conclude
from this that device efficiency is a much more sensitive indicator of moisture degradation
than either crystallographic or optical absorption measurements.

4. Conclusions

The influence of humidity on the rate of CH3NH3PbI3 perovskite film degradation was
measured for films processed in supercritical CO2 at 50 and 100 ◦C in comparison to films
annealed at the same temperatures but without supercritical CO2. The film quality over
25 days was measured for three different relative humidity levels using X-ray diffraction,
optical absorption, and device photoconversion efficiency. For devices processed at 50 ◦C,
it was determined that supercritical CO2 increases both the initial film quality as well as
the resistance to humidity degradation and results in devices with higher photoconversion
efficiency and a lower rate of performance degradation. For devices processed at 100 ◦C, no
significant improvement in film quality, photoconversion efficiency or humidity resistance
was observed for films processed in supercritical CO2.
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