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Abstract: Novel zwitter-ionic nido-carboranyl azide 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was pre-
pared by the reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 with NaN3. The solid-state molec-
ular structure of nido-carboranyl azide was determined by single-crystal X-ray diffraction. 9-
N3(CH2)3Me2N-nido-7,8-C2B9H11 was used for the copper(I)-catalyzed azide-alkyne cycloaddition
with phenylacetylene, alkynyl-3β-cholesterol and cobalt/iron bis(dicarbollide) terminal alkynes
to form the target 1,2,3-triazoles. The nido-carborane-cholesterol conjugate 9-3β-Chol-O(CH2)C-
CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 with charge-compensated group in a linker can be used as a
precursor for preparation of liposomes for Boron Neutron Capture Therapy (BNCT). A series of novel
zwitter-ionic boron-enriched cluster compounds bearing a 1,2,3-triazol-metallacarborane-carborane
conjugated system was synthesized. Prepared conjugates contain a large amount of boron atom in
the biomolecule and potentially can be used for BNCT.

Keywords: nido-carborane; boronated azide; cobalt bis(dicarbollide); “click” reaction; cholesterol;
X-ray diffraction

1. Introduction

Nido-Carborane (7,8-dicarba-nido-undecaborate anion) and its derivatives attract at-
tention due to its unique electronic structure, namely, electron delocalization, which is
often considered as an unusual three-dimensional aromaticity [1,2], and also due to its
electron-withdrawing character of the skeletal carbon atoms. Such structural and physico-
chemical properties of 7,8-dicarba-nido-undecaborate anion induce the preparation of new
functional derivatives of nido-carboranes with a variety of practical applications. These
compounds attract the continued interest of researchers working in various fields, such
as medical chemistry (boron neutron capture therapy (BNCT) of malignant tumors [3–5],
HIV protease inhibitors [6], reagents for radioimaging of tumors [7]), and creation of new
materials [1] (carborane-containing polymers, ionic liquids, liquid crystals).

It is well known that BNCT is a binary method of cancer treatment, in which it is
necessary that boron compounds selectively accumulate in the tumor tissue at the required
therapeutic concentration for its subsequent irradiation with thermal neutrons [8–10].
The advantage of using derivatives of nido-carboranes in BNCT is their stability and a
high content of boron atoms in the molecule. In this regard, the new methods for the
synthesis of various functional mono-substituted derivatives of nido-carborane should be
developed. Currently, there are several methods for the preparation of mono-substituted
nido-carboranes: C-substituted derivatives can be obtained by modification of the carborane
cage at carbon atoms of the parent ortho-carborane followed by its deboronation to the
corresponding nido-carborane. Last time, the most cited methods of synthesis B-substituted
functional derivatives of nido-carboranes are ring opening of their cyclic oxonium deriva-
tives under the action of nucleophilic agents [11–14], alkylation of their methylsulfide
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derivatives [15–18], Cu-promoted synthesis of their ammonium derivatives [19] and nucle-
ophilic addition of alcohols and mercaptans to highly polarized triple bond B-N+≡CR [20].

Synthesis of mono-substituted derivatives of nido-carborane with a functional group
makes it possible to attach a carborane fragment to various bio- and macromolecules and
thus to obtain compounds with a given set of properties. The substituent introduced can
be a biologically active derivative that acts as a tumor targeting vector, or a simple func-
tional group, which can be used for conjugation with high molecular weight biomolecules
using standard methods of bioorganic chemistry. Recently the Cu(I)-catalyzed reaction of
1,3-dipolar [3 + 2]-cycloaddition of azides with alkynes (“click” reaction) has found more
and more widespread use for the bioconjugation of molecules [21–25]. Such reactions must
proceed rapidly under ambient conditions, resulting in a high yield of desired 1,2,3-triazole.
The 1,2,3-triazole scaffold is known to be one of the most valuable in the chemistry of
biologically active compounds [26], which exhibit anticancer [27–29], anti-HIV [27,29,30],
antibacterial [27,29,31,32], antioxidant [27,29,33,34] activities. In addition, the 1,2,3-triazole
in the molecules between boron-containing and the biologically active fragments (por-
phyrins, nucleosides) is a linking unit that mimics geometry and electronic properties of the
peptide bond is a more stable to hydrolysis reactions [14,35]. However, the preparation of a
suitable nido-carborane-containing substrate for a “click” reaction often requires multistage
syntheses, for instance, either the incorporation of a distant or cage-bound azide group or
a terminal alkyne. Azide is one the most popular biorthogonal functional groups due to its
small size coupled with stability to water and inertness towards endogenous biological
functionalities [36]. It should be noted that only a few examples of azido-containing nido-
carboranes are known to date. Recently we have obtained C-substituted nido-carboranyl
azides [7-N3CH2CH2OCH2CH2O-nido-7,8-C2B9H11]− and [7-N3CH2CH2OCH2CH2S-nido-
7,8-C2B9H11]− which were synthesized by alkylation of 1-mercapto-ortho-carborane with
bis(2-chloroethyl) ether followed by introduction of azide group and by the conversion
of closo-derivative to nido-form [37]. B-substituted [10-N3CH2CH2CH2CH2O-nido-7,8-
C2B9H11]− and [10-N3CH2CH2OCH2CH2O-nido-7,8-C2B9H11]− were prepared by the
ring-opening reactions of the corresponding cyclic oxonium derivatives with sodium
azide [11,14].

In this contribution, we describe a synthesis of zwitter-ionic B-substituted nido-carborane
bearing a functional azido-group 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 and study its behaviour
in the copper(I)-catalyzed azide-alkyne cycloaddition reaction with phenylacetylene, alkynyl-
3β-cholesterol and terminal alkynes derivatives of cobalt/iron bis(dicarbollide).

2. Results and Discussion
2.1. Synthesis of 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 and Its “Click” Reaction
with Phenylacetylene

The reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 1 with NaN3 in the presence of
NaI as a catalyst in DMF upon prolonged heating under 50 ◦C for 7 days results in 9-
N3(CH2)3Me2N-nido-7,8-C2B9H11 2 with 90% yield (Scheme 1). It was isolated as a white
non-hydroscopic solid soluble in common organic solvents like CH2Cl2, CH3CN, alcohols
and non-soluble in hydrocarbons and water.
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The 11B-NMR spectrum contains eight signals indicating a nonsymmetrical monosub-
stituted structure. The 1H-NMR spectrum of the signal of the methylene group bonded
to the nitrogen atom exhibits a singlet at 3.37 ppm. It should be noted that the splitting
reduces as the distance from the nitrogen atom increases resulting in singlet and multiplet
at 2.15 and 3.50 ppm for the second and third methylene groups. In addition, the signals
of the CHcarb groups and the extra-hydrogen are observed approx. at 2.59 and -3.4 ppm,
correspondingly. In the 13C-NMR spectrum the most characteristic is signal of CH2N3
group. As observed earlier [19], the signal of the CH2Cl group in the 13C-NMR spectrum
appears at 43.0 ppm for 1. The substitution of chlorine for azide results in the low-field
shift to 65.2 ppm. The azide stretching band in the IR spectrum of 2 is located at 2075 cm-1.

Conditions of “click” reactions in the preparation of various boron-containing biomolecules
vary particularly wide. Earlier “click” reactions have been successfully used for the synthesis
of conjugates of bis(dicarbollide) metallacarboranes and nido-carborane with thymidine [14].
The synthesis was carried out in a mixture of tert-butanol/water (1:1) at ambient temperature
using copper(II) sulfate pentahydrate with potassium ascorbate as a catalyst. The same reaction
for synthesis of conjugate dodecaborate dianion with thymidine proceed in CH3CN at ambient
temperature with copper(II) sulfate pentahydrate with sodium ascorbate [38]. Conjugates of
chlorine e6 with a cobalt bis(dicarbollide) anion or closo-dodecaborate dianion were obtained
using CuI and Et3N in acetonitrile at ambient temperatures [35]. Series of 1,2,3-triazoles bearing
closo-dodecaborate fragment was obtained using CuI as a catalyst and Et3N as a base under
reflux in ethanol [39].

In the present work, we studied the behavior of azide 2 in copper(I)-catalyzed azide-
alkyne cycloaddition using simple terminal alkyne as a pilot compound. It was showed that
it readily reacts with phenylacetylene in ethanol in the presence of diisopropylethylamine
(DIPEA) and catalytic amount of CuI to give the corresponding 1,2,3-triazole 3 with 85 %
yield (Scheme 2).
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The structure of the nido-carborane 3 was confirmed by the data of 1H-, 11B- and
13C-NMR, IR spectroscopy and HRMS. The 1H- and 13C-NMR spectra of compounds
3 along with the signals of the heteroaliphatic chain and the phenyl group contain the
characteristic signals of the triazole cycle in the 1H-NMR spectrum signal of the CHtriazole
hydrogen appears at 8.62 ppm. In the 13C-NMR spectrum, the signal of the CHtriazole carbon
is observed at 122.0 ppm, whereas the signal of the Ctriazole carbon appears at 146.9 ppm.
In the 1H-NMR spectrum, the signal of the methylene group next to the triazole cycle
is observed at 4.54 ppm and the characteristic signal of the Me2N hydrogens appear at
2.88 ppm. The IR spectrum of 3 demonstrates an absence of the azide band stretching and
the appearance of the band of the triazole cycle at 1462 cm−1.

2.2. Synthesis of Nido-Carboranyl Cholesterol Derivative with Charge-Compensated Group

Furthermore, compound 2 was used for synthesis of boronated cholesterol as precur-
sor for the preparation of liposomes. The usage of liposomes is the important approach
directed to selective delivery of therapeutics into tumors [40–42]. The development of se-
lective, non-toxic boron delivery agents that can preferentially deliver a high concentration
of boron to the tumor is probably the greatest need for the future progress of BNCT [43].
Due to the high permeability of the walls of blood vessels inside the tumor, stagnant blood
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flow occurs and lymphatic outflow is disrupted. These changes lead to the EPR (enhanced
permeability and retention) effect, due to which macromolecules and nanoparticles such as
liposomes penetrate from the bloodstream of the tumor vessel into the intercellular space
and accumulate mainly in the tumor tissue [44–46]. Cholesterol is the major component
of the cell membrane and most liposomal formulations. Therefore, the development of
boronated derivatives of cholesterol is an effective approach for the selective delivery of
boron clusters into the cancer cells via liposomes. Recently, using “click” reactions we
obtained a series of mono-negative charged conjugates of cobalt bis(dicarbollide) with
cholesterol [47], conjugates of cobalt/iron of bis(dicarbollide) and cholesterol with similar
length spacer but with zwitter-ionic character of target molecule [48] and conjugates of
closo-dodecaborate dianion with cholesterol [49]. It has been only recently shown that the
inclusion of lipophilic boron-containing species in the liposome bilayer provides an attrac-
tive method to increase the gross boron content of the liposomes in the formulation [50,51].
In addition, it has been found that PEGylated liposome encapsulating nido-carborane
by hydrating thin lipid films significantly suppresses tumors in boron neutron capture
therapy [52].

In the present work, we use the “click” methodology to obtain new conjugate of
nido-carborane with cholesterol suitable for the preparation of boron-containing liposomes
as potential drugs for boron neutron capture therapy of cancer. Usage of nido-carborane 2
for synthesis of carborane-cholesterol conjugates leads to zwitter-ionic character of product
structure. Its reaction proceeded in a slight excess of alkynyl-3β-cholesterol 4 in the
presence of a CuI catalyst and diisopropylethylamine (DIPEA) as a base in ethanol upon
prolonged reflux for 8 h to give novel boron conjugate 5 with 85 % yield (Scheme 3).
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The 1H-NMR spectrum of complex 5 contains a signal for the proton of the triazole
group at 8.01 ppm. The characteristics signal of the alkyne CHst hydrogen of cholesterol in
the conjugate 5 is observed at 5.37 ppm. The spectral characteristics of the CH protons of
cholesterol are in good agreement with the literature data [53]. The 13C-NMR spectrum of
5 exhibits signals for two carbon atoms of the triazole fragment at 145.8 ppm for CHtriazole
atom and at 123.1 ppm for Ctriazole. In the 11H-NMR spectrum, the signal of the extra-
hydrogen, as expected, is observed approx. at −3.4 ppm. The IR spectrum of compound 5
exhibits absorption bands characteristic of the BH group 2685 cm−1 and the triazole ring
1392 cm−1.

Based on synthesized compounds the boronated liposomes are planned to prepare in
order to deliver boron clusters into a cancer cell for the BNCT experiment.

2.3. Synthesis of Zwitter-Ionic Boron-Enriched Cluster Compounds Bearing a
1,2,3-Triazol-Metallacarborane-Nido-Carborane Conjugated Systems

As was mentioned above, functionalized nido-carboranes can be used as building
blocks for design and construction of boron-containing compounds for various medical
applications [3,4,54]. For example, one of the important requirements of BNCT is the
synthesis of structures with a higher content of boron atoms in the molecule than in
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the clinically used compounds [55,56]. In this contribution, we propose to combine two
boron clusters into one molecule: the bis(dicarbollide) cluster serves as a boron-containing
substituent providing low toxicity [57,58] and amphiphilicity [59,60] of the molecule and
the nido-carborane cage serves as a boron-containing base for attachment to molecules
by the “click” reaction. Penetration of various substances through biological membranes,
their accumulation and retention in cells largely depend on their charge. It is known that
positively charged particles have better penetration through biological membranes than
negatively changed ones [61–63]. It motivated us that the synthesis of such compounds is
based on the introduction of two ammonium centers in a spacer: the first one compensating
the negative charge of the nido-carborane fragment and the second one compensating
the charge of the cobalt/iron bis(dicarbollide) moiety. This allows us to double the boron
content of the biomolecule as compared to the single cage approach. Moreover, by changing
the type and the size of a spacer between these two boron cages, it is possible to control,
to some extent, the hydrophilic/hydrophobic balance of the compounds.

At the first step, cobalt and iron bis(dicarbollide) terminal alkynes with charge-
compensated group 6–9 were prepared by the cleavage reactions of oxonium deriva-
tives of cobalt/iron bis(dicarbollide) with N,N-dimethylprop-2-yn-1-amine [48,64]. It was
found that alkynes prepared from 1,4-dioxane and tetrahydropyran derivatives of cobalt
bis(dicarbollide) 6 and 7 [48] readily undergo “click” reactions with a small excess of azido-
derivative of nido-carborane 2 to give novel boron conjugates 10 and 11. High preparative
yields (85 %) of the desired products 10 and 11 was achieved using CuI in the presence
diisopropylethylamine (DIPEA) as a catalyst and running the reaction for 8 h under reflux.
At the same time, usage of the alkyne synthesized from tetrahydropyran derivative of
iron bis(dicarbollide) 9 in “click” reaction with 2 leads to dramatically decrease of yield
of product 12 (54 %). However, the alkyne synthesized from 1,4-dioxane derivatives of
iron bis(dicarbollide) 8 does not react with azido-derivative 2 at all under the same con-
ditions as for the compounds 6, 7, 9 and leads to the recovery of the starting materials.
It should be noted that a similar difference of behavior of iron and cobalt complexes was
observed earlier in the reaction of cobalt/iron bis(dicarbollide) terminal alkynes 6–9 with
azido-cholesterol [48]. Alkyne 8 had not reacted with azido-cholesterol and had not led
to target triazole 12 in contrast to alkynes 6, 7 and 9. These results pushed us to carry
out the reaction of alkyne 8 with methyl azidoacetate under the same conditions as for
compounds 6, 7 and 9. However, we did not get the desired result. Employing another
amine and/or solvent (e.g., Et3N in CH3CN, Et3N in EtOH, DIPEA in CH3CN) did not
provide the required material as well. The use of a 3-fold excess of CuI, EtOH as a solvent,
DIPEA as a base and running the reaction for 8 h under reflux also did not lead to formation
of the target 1,2,3-triazole (Scheme 4).
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Structures of the compounds 10–12 were established by 1H-, 11B- and 13C-NMR and IR
spectra. In IR spectra of them the absorption bands of BH (2524-2531 cm-1) and 1,2,3-triazole
(1461–1464 cm−1) were observed. In the 1H-NMR spectra of the obtained compounds,
the characteristics signals of the CHtriazole hydrogens appear in the region at 6.52–8.64 ppm.
In the 13C-NMR spectra, the signals of the CHtriazole carbons for 10–12 are observed in
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the range of 126.8–129.1 ppm, whereas the signals of the Ctriazole carbons appear in the
range 133.8-135.9 ppm. In IR spectra of 10–12 the characteristic bands 1,2,3-triazoles
(1461–1464 cm−1) were observed.

The compounds obtained are of potential interest for the delivery of boron-enriched
drugs in boron neutron capture cancer therapy.

2.4. Single-Crystal X-ray Diffraction Studies

The structure of 9-N3CH2Me2N-nido-7,8-C2B9H11 2 was additionally confirmed by
the single crystal X-ray diffraction study (Figure 1). Crystals of 2 suitable of single crystal
X-ray analysis were grown from the dichloromethane solution layered with hexane.
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Figure 1. General view of 2 in crystal with the representation of non-hydrogen atoms by ellipsoids of
atomic displacement (p = 0.5). The intramolecular H1C . . . N4 contact is shown by the dashed line.
Selected bond lengths: C7-C8 1.551(2) Å, B10-B11 1.862(2) Å, B9-N1 1.583(2) Å, H1C . . . N4 3.089 Å
(non-normalized B-H bond lengths).

Structural features of 2 are expected for this class of compounds (see, for instance [19])
with the only exception of rotation of the substituent at the B9 atom (Figure 1). Namely,
the compact conformation of substituent is observed that results in rather short intramolec-
ular contact between the N4 atom of azide function and the H1C extra-hydrogen atom of
nido-carborane cage (3.089 Å with non-normalized B-H bond lengths). A similar contact of
the extra hydrogen atom with the acetylene fragment previously found in the crystal of
10-Me3SiC≡CCH2(Me)S-7,8-C2B9H11 was attributed to the attractive B-H . . . π interaction
which hindered free rotation of substituent in a solution [16]. For 2, the DFT calculation
of the isolated molecule was performed to get more insight into the nature of the H1C
. . . N4 contact. It was found that the conformation of 2 is rather rigid and is influenced
by media effects only slightly: the best overlap for non-hydrogen atoms of crystal and
isolated molecular structures produces a rather small rmsd value of 0.17 Å (Figure 2).
Despite the most deviations are observed for the coordinates of azide fragment, the H1C
. . . N4 contact lengthens insignificantly upon the transition into the isolated state (3.217 Å).
According to the analysis of theoretical electron density function ρ(r) in terms of the R.
Bader’s “Atoms in Molecules” [65] theory, the compact conformation of 2 can be indeed
stabilized by intramolecular non-covalent interactions. In particular, there is a bond path
connecting the H1C and N4 atoms which can be considered as the privileged channel of
interatomic exchange interaction (Figure 3) [66,67]. This bond path is significantly curved
in the area of the azide fragment and less curved in the area of the H1C atom. Implying
a non-directional character of the interaction the bond path curvature allows to consider
at least the π-electrons of the N3-N4 fragment to be involved into the non-covalent bond-
ing with the H1C atom. This is in concordance with the another real-space descriptor of
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non-covalent interactions based on the reduced density gradient formalism [68]. The distri-
bution of the sign (λ2)·ρ(r) function (λ2 is the intermediate eigenvalue of the ρ(r) Hessian)
mapped onto the 0.4 isosurface of reduced density gradient (see Figure 3) is characterized
by a rather wide region of negative values of sign (λ2)·ρ(r) which correspond to the con-
centration of electronic charge between H1C, N4 and N3 atoms. It is interesting to note
that the distribution of Bader’s integral atomic charges does not allow to unambiguously
treat this interaction as the H-bond (the charges of H1C, N4 and N3 atoms equal to −0.56e,
+0.12e and −0.16e, respectively). Finally, according to the ρ(r) surface integrals scheme [69],
this non-covalent interaction of the extra-hydrogen atom is rather strong (2.1 kcal·mol−1)
and, thus, can be indeed regarded as the important factor which stabilizes the compact
conformation of 2 and, probably, relative compounds.
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3. Materials and Methods
3.1. General Methods

9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 [19], alkynyl-3β-cholesterol [53], cobalt bis(dicarbollides)
alkynes 6 and 7 [48], iron bis(dicarbollides) alkynes 8 and 9 [64] were prepared according to the
literature. Cholesterol (Fisher Scientific, Loughborough, U.K.), diisopropylethylamine (Carl Roth
GmbH, Karlsruhe, Germany), CuI (PANREAC QUIMICA SA, Barcelona, Spain), sodium iodide
(Sigma-Aldrich Chemie GmbH, Steinheim, Germany) were used without further purification.
DMF, ethanol, CH3CN, CH2Cl2, CH3Cl, Et3N, phenylacetylene and NaN3 were commercially
analytical grade reagents. The reaction progress was monitored by thin-layer chromatography
(Merck F245 silica gel on aluminum plates). Acros Organics silica gel (0.060–0.200 mm) was used
for column chromatography. The NMR spectra at 400.1 MHz (1H), 128.4 MHz (11B) and
100.0 MHz (13C) were recorded with a Bruker Avance-400 spectrometer (Bruker, Karlsruhe-
Zurich, Switzerland-Germany). The residual signal of the NMR solvent relative to Me4Si was
taken as the internal reference for 1H- and 13C-NMR spectra. 11B-NMR spectra were reference
using BF3*Et2O as external standard. Infrared spectra were recorded on an IR Prestige-21
(SHIMADZU, Kyoto, Japan) instrument. High resolution mass spectra (HRMS) were measured
on a mictOTOF II (Bruker Daltonic, Bremen, Germany) instrument using electrospray ionization
(ESI). The measurements were done in a positive ion mode (interface capillary voltage−4500 V);
mass range from m/z 50 to m/z 3000; external or internal calibration was done with ESI Tuning
Mix, Agilent. A syringe injection was used for solutions in acetonitrile (flow rate 3 µL/min).
Nitrogen was applied as a dry gas; interface temperature was set at 180 ◦C. The electron
ionization mass spectra were obtained with a Kratos MS 890 instrument operating in a mass
range of m/z 50–800.

Single crystal X-ray diffraction experiment for 2 was performed using with a Bruker
SMART APEX 2 Duo CCD diffractometer [λ(MoKα) = 0.71072Å,ω-scans, 2θ < 60◦] (Bruker
AXC, Maddison, Wisconsin, USA). The structure was solved by the direct method and
refined by the full-matrix least-squares technique against F2 in the anisotropic-isotropic
approximation. The hydrogen atoms were found in the difference Fourier synthesis and
were further refined in the isotropic approximation without restraints. All calculations
were performed using SHELX2018 [70]. The CCDC 2048027 contains the Supplementary
Crystallographic Data for 2. These data can be obtained free of charge via http://www.
ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge,
CB21EZ, UK; or deposit@ccdc.cam.ac.uk).

The DFT calculations were done in the Gaussian09 program (rev. D01) [71] using the
PBE0 functional [72,73] with the Grimme’s D3 dispersion correction [74] and Becke–Jonson
damping [75]. The standard def2tzvp basis set and ultrafine integration grids were used.
The geometry optimization procedure for the isolated molecule of 2 was performed using
standard criteria on displacements and forces. The analysis of the Hessian of potential
energy surface for 2 revealed the correspondence of the isolated structure to the energy
minimum. The analysis of electron density based on the “Atoms in Molecules” theory
together with the reduced density gradient and sign(λ2)·ρ(r) computations were performed
in the AIMAll program [76].

3.2. Synthesis of 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 2

Compound 1 (1.00 g, 0.0034 mol) was dissolved in 50 mL of DMF and NaN3 (0.44 g,
0.0068 mol) and anhydrous NaI (0.05 g, 0.0003 mol) were added. The reaction mixture was
heated at 50 ◦C for 7 days. Then the reaction mixture was cooled to room temperature,
and 50 mL of H2O was added. The formed precipitate was filtered and dried in the air,
then it was purified on silica column by using CH2Cl2-CH3CN (5:1) as eluent to give white
solid of 2 (0.80 g, yield 90%). 1H-NMR (400 MHz, methanol-d4): δ 3.50 (2H, m, CH2N3),
3.37 (2H, s, Me2NCH2), 2.99 (3H, s, NMe), 2.93 (3H, s, NMe), 2.59 (1H, s, CHcarb), 2.15 (2H,
s, CH2CH2CH2), 1.87 (1H, s, CHcarb), −3.42 (1H, br. s, Hextra) ppm; 11B-NMR (128 MHz,
methanol-d4): δ 5.2 (1B, s), −5.4 (1B, d, J = 139), −16.9 (2B, unsolved d,), −17.5 (1B,
unsolved d,) −25.0 (1B, d, J = 147), −27.4 (1B, d, J = 143), −32.2 (1B, d, J = 135 Hz), −38.7
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(1B, d, J = 145 Hz) ppm; 13C-NMR (101 MHz, methanol-d4) δ 65.2 (CH2N3), 52.7 (NMe),
50.4 (NMe), 48.5 (Me2NCH2), 46.3 (br., Ccarb), 33.7 (br., Ccarb), 23.6 (CH2CH2CH2) ppm.
IR (solid): ν˜ = 2537 cm−1 (BH), 2075 cm−1 (N3), HRMS-ESI+ m/z for [C7H23B9N4 + NH4]+

calcd 300.2435, found 300.2434. Crystallograhic data: crystals of 2 (C7H23B9N4, M = 260.58)
are monoclinic, space group P21/c, at 120K: a = 6.7746(5), b = 26.5914(18), c = 8.8809(6),
β = 111.415(2), V = 1489.41(18) Å3, Z = 4 (Z’ = 1), dcalc = 1.162 g·cm−3. wR2 and GOF
converged to 0.1292 and 0.991 for all independent reflections; R1 = 0.0461 was calculated
for 3133 observed reflections with I > 2σ(I)).

General Procedure for the Synthesis of the Compounds 3, 5, 10–12

A mixture of compound 2 (1,2 eq.), alkene (1 eq.), diisopropylethylamine (0.5–1 mL)
and CuI (0.1 eq.) in 10–20 mL ethanol was heated under reflux for 8 h. Then the reaction
mixture was cooled to room temperature and was passed through ca. 2–3 cm of silica. Then
solvent was removed in vacuo. The crude product was purified on a silica column using
CH2Cl2-CH3CN as an eluent to give the desired products 3, 5, 10–12.

3.3. Synthesis of 9-(Ph)C-CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 3

Prepared from compound 2 (0.10 g, 0.38 mmol), phenylacetylene (0.035 mL, 0.033 g,
0.32 mmol), diisopropylethylamine (1 mL, 0.74 g, 5.73 mmol) and CuI (0.006 g, 0.03 mmol)
in 20 mL of ethanol. The product was obtained as a a white solid of 3 (0.10 g, yield 85%).
1H-NMR (400 MHz, DMSO-d6) δ 8.62, (1H, s, CCHN3), 7.84 (2H, d, Ph, J = 7.6 Hz), 7.46 (2H,
t, Ph, J = 7.5 Hz), 7.34 (1H, t, Ph, J = 7.4 Hz), 4.54 (2H, t, -CH2-CCHN3, J = 6.9 Hz,), 3.34 (2H, t,
CH2NMe2, J = 8.5 Hz), 2.88 (6H, s, NMe2), 2.77 (1H, s, CHcarb), 2.41 (2H, m, CH2-CH2-CH2),
1.91 (1H, s, CHcarb), −3.45 (1H, br. s, Hextra) ppm; 11B-NMR (128 MHz, DMSO-d6) δ 5.7 (1B,
s), −6.0 (1B, unsolved d), −18.0 (3B, unsolved d), −25.1 (1B, unsolved d), −27.5 (1B, d,
J = 117 Hz), −32.7 (1B, unsolved d), −38.7 (1B, d, J = 129 Hz) ppm; 13C-NMR (101 MHz,
DMSO-d6): δ 146.9 (CCHN3), 131.1 (Ph), 129.4 (Ph), 128.4 (Ph), 125.6 (Ph), 122.0 (CCHN3),
64.4 (CH2-NMe2), 53.2 (NMe2), 51.4 (NMe2), 47.5 (CH2-CCHN3), 34.1 (Ccarb), 25.0 (CH2-
CH2-CH2) ppm. IR (solid): ν˜ = 2546 cm−1 (BH), 1462 cm−1 (triazole), HRMS-ESI+ m/z for
[C15H29B9N4 + H]+ calcd 363.3377, found 363.3386.

3.4. Synthesis of 9-3β-Chol-O(CH2)C-CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 5

Prepared from compound 2 (0.072 g, 0.28 mmol), alkynyl-cholesterol 4 (0.10 g, 0.23 mmol),
diisopropylethylamine (1 mL, 0.74 g, 5.73 mmol) and CuI (0.002 g, 0.03 mmol) in 20 mL of
ethanol. The product was obtained as a white solid of 5 (0.10 g, yield 85 %). 1H-NMR
(400 MHz, acetone-d6) δ 8.01 (1H, s, CCHN3), 5.37 (1H, m, Cst(6)H), 4.64 (2H, s, -CH2-CCHN3),
4.63 (2H, m, CCHN3-CH2), 3.54 (2H, m, CH2NMe2), 3.31 (1H, m, Cst(3)H), 3.08 (3H, s, NMe2),
3.07 (3H, s, NMe2), 2.64 (3H, m, CH2, CHcarb), 2.42 (1H, m, Cst(H)), 2.19 (1H, m, Cst(H)), 1.88
(6H, m, Cst(H), CHcarb), 1.33 (20H, m, Cst(H)), 1.04 (3H, s, Cst(19)H3), 0.97 (3H, d, J = 6.4,
Cst(21)H3,), 0.90 (3H, d, J = 1.4, Cst(26)H3), 0.88 (3H, d, J = 1.4, Cst(27)H3), 0.74 (3H, s,
Cst(18)H3), −3.39 (1H, br. s., Hextra) ppm; 11B (128 MHz, acetone-d6) δ 5.4 (1B, s), −5.5 (1B,
d, J = 141), −17.2 (2B, d, J = 180), −18.9 (1B, d, J = 120), −24.9 (1B, d, J = 149), −27.3 (1B, d,
J = 142), −32.3 (1B, d, J = 166), −38.6 (1B, d, J = 144) ppm; 13C-NMR (101 MHz, acetone-d6)
δ 145.8 (CCHN3), 140.8 (Cst(5)), 123.1 (CCHN3), 121.3 (Cst(6)), 78.2 (Cst(3)), 64.7 (CCHN3-CH2),
61.1 (CH2-CCHN3), 56.7 (Cst(14)),56.2 (Cst(17)), 52.8 (NMe2), 51.1 (NMe2), 50.3 (Cst(9)), 47.1
(CH2NMe2), 42.2 (Cst(4)), 39.8 (Ccarb), 39.4 (Cst(12)), 39.0 (Cst(13)), 37.1 (Cst(24)), 36.7 (Cst(1)),
36.1 (Cst(10)), 35.7 (Cst(22)), 34.0 (Ccarb), 31.9 (Cst(20)), 31.8 (Cst(8)), 28.2 (Cst(2)), 28.0 (Cst(7)),
27.8 (Cst(16)), 25.0 (Cst(25)), 24.1 (Cst(15)), 23.6 (CH2), 22.2 (Cst(23)), 22.0 (Cst(26), Cst(27)),
20.9 (Cst(11)), 18.9 (Cst(19)), 18.3 (Cst(21)), 11.4 (Cst(18)) ppm. IR (solid): ν˜ = 2685 cm−1

(BH), 1392 cm−1 (triazole), HRMS-ESI+ m/z for [C37H71B9N4O + H]+ calcd 685.6614, found:
685.6627.
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3.5. Synthesis of 9-[(8′-Me2N(CH2)3N3CCH(CH2)NMe2(CH2CH2O)2-1′,2′-C2B9H10)-3′,3”-
Co(1”,2”-C2B9H11)]-nido-7,8-C2B9H11 10

Prepared from compound 2 (0.06 g, 0.24 mmol), compound 6 (0.10 g, 0.20 mmol),
diisopropylethylamine (1 mL, 0.74 g, 5.73 mmol) and CuI (0.004 g, 0.02 mmol) in 20 mL of
ethanol. The product was obtained as an orange solid of 10 (0.13 g, yield 85%). 1H-NMR
(400 MHz, acetone-d6) δ 8.57 (1H, s, CCHN3), 4.97 (2H, s, Me2N-CH2-CCHN3), 4.74 (2H, q,
J = 6.3 Hz, CCHN3-CH2), 4.13 (4H, m, B-OCH2, CHcarb), 4.00 (2H, br. s, CHcarb), 3.74 (2H,
m, B-OCH2), 3.66 (4H, m, 2[CH2NMe2]), 3.55 (2H, m, B-OCH2), 3.40 (6H, s, NMe2), 3.08
(3H, s, NMe2), 3.06 (3H, s, NMe2), 2.68 (3H, s, CH2, CHcarb), 1.89 (1H, s, CHcarb), −3.45 (1H,
br. s., Hextra) ppm; 11B-NMR (128 MHz, acetone-d6) δ 24.5 (1B, s, B-O), 5.3 (1B, s, B-N), 0.2
(1B, d, J = 138), −2.8 (1B, d, J = 143), −6.9 (2B, d, J = 178), −6.9 (4B, d, J = 137), −9.1 (2B,
unsolved d), −17.2 (3B, d, J = 148), −18.9 (2B, unsolved d), −20.2 (2B, d, J = 163), −22.4 (1B,
unsolved d), −24.9 (1B, d, J = 150), −27.4 (1B, J = 140), −28.9 (1B, unsolved d), −32.4 (1B, d,
J = 135),−38.6 (1B, d, J = 144) ppm; 13C-NMR (101 MHz, acetone-d6) δ 135.9 (CCHN3), 129.1
(CCHN3), 72.2 (OCH2), 68.8 (OCH2), 64.8 (CH2NMe2), 64.5 (CH2-N3CCH), 62.7 (Ccarb), 59.5
(Ccarb), 52.9 (NMe2), 52.2 (NMe2), 51.5 (NMe2), 47.5 (B-Me2NCH2), 46.5 (Ccarb), 34.0 (Ccarb),
25.1 (CH2) ppm. IR (solid): ν˜ = 2530 cm−1 (BH), 1463 cm−1 (triazole), HRMS-ESI+ m/z for
[C20H61B27CoN5O2 + H]+ calcd 755.6936, found: 755.6929.

3.6. Synthesis of 9-[(8′-Me2N(CH2)3N3CCH(CH2)NMe2(CH2)5-1′,2′-C2B9H10)-3′,3”-Co(1”,2”-
C2B9H11)]-nido-7,8-C2B9H11 11

Prepared from compound 2 (0.06 g, 0.24 mmol), compound 7 (0.10 g, 0.20 mmol),
diisopropylethylamine (1 mL, 0.79 g, 6.10 mmol) and CuI (0.004 g, 0.02 mmol) in 20 mL of
ethanol. The product was obtained as an orange solid of 11 (0.13 g, yield 85 %). 1H-NMR
(400 MHz, acetone-d6) δ 8.64 (1H, s, CCHN3), 4.91 (2H, s, Me2N-CH2-CCHN3), 4.76 (2H,
q, J = 6.4 Hz, CCHN3-CH2), 4.20 (2H, br. s, CHcarb), 4.10 (2H, br. s, CHcarb), 3.56 (2H, m,
B-OCH2), 3.49 (4H, m, 2[CH2NMe2]), 3.33 (6H, s, NMe2), 3.09 (3H, s, NMe2), 3.08 (3H, s,
NMe2), 2.71 (3H, s, CH2, CHcarb), 1.88 (1H, s, CHcarb), 1.57 (2H, m, CH2CH2CH2), 1.48 (4H,
m, CH2CH2CH2), −3.45 (1H, br. s., Hextra) ppm; 11B-NMR (128 MHz, acetone-d6) δ 23.8 (1B,
s, B-O), 5.1 (1B, s, B-N), 0.0 (1B, d, J = 138), −2.7 (1B, d, J = 150), 4.6 (1B, unsolved d), −5.1
(1B, unsolved d), −7.7 (8B, m), −17.3 (3B, d, J = 134), −18.8 (2B, unsolved d), −20.3 (2B,
d, J = 153), −22.4 (1B, unsolved d), −25.0 (1B, d, 171), −27.4 (1B, d, J = 151), −28.8 (1B, d,
J = 143), −32.4 (1B, d, J = 118), −38.6 (1B, d, J = 171) ppm; 13C-NMR (101 MHz, acetone-
d6) δ 135.5 (CCHN3), 128.3 (CCHN3), 68.2 (OCH2), 64.4 (CH2NMe2), 64.4 (CH2-N3CCH),
58.1 (Ccarb), 53.2 (Ccarb), 53.0 (NMe2), 51.6 (NMe2), 50.3 (NMe2), 47.6 (B-Me2NCH2), 46.4
(Ccarb), 34.0 (Ccarb), 25.1 (CH2), 23.1 (CH2), 22.1 (CH2) ppm. IR (solid): ν˜ = 2531 cm−1

(BH), 1461 cm−1 (triazole), HRMS-ESI+ m/z for [C21H63B27CoN5O + H]+ calcd 753.7143,
found 753.7138.

3.7. Synthesis of 9-[(8′-Me2N(CH2)3N3CCH(CH2)NMe2(CH2)5-1′,2′-C2B9H10)-3′,3”-Fe(1”,2”-
C2B9H11)]-nido-7,8-C2B9H11 12

Prepared from compound 2 (0.03 g, 0.12 mmol), compound 9 (0.05 g, 0.10 mmol),
diisopropylethylamine (0.5 mL, 0.37 g, 2.87 mmol) and CuI (0.002 g, 0.01 mmol) in 20 mL
of ethanol. The product was obtained as an orange solid of 12 (0.04 g, yield 54%). 1H-NMR
(400 MHz, acetone-d6) δ 72.2 (br. s, BH), 67.38 (br. s, BH), 45.15 (br. s, BH), 43.16 (br. s, BH),
37.74 (br. s, CHcarb), 6.52 (1H, s, CCHN3), 4.27 (2H, br s, Me2N-CH2-CCHN3), 3.15 (2H, t, J
= 7.7, CH2NMe2), 2.96 (3H, s, NMe2), 2.89 (3H, s, NMe2), 2.79 (6H, s, NMe2), 2.53 (1H, s,
CHcarb), 2.28 (2H, m, CH2), 1.64 (1H, br s, CHcarb), −3.88 (1H, br s, Hextra), −5.25 (2H, m,
OCH2), −10.22 (2H, br s, CH2), −11.26 (2H, br s, CH2), −11.85 (2H, br s, CH2) ppm; 11B-
NMR (128 MHz, acetone-d6) δ 118.8, 100.8, 36.9, 27.1, 5.0, −1.8, −6.1, −17.5, −19.1, −25.2,
−27.8,−32.8,−38.9,−370.6,−382.7,−448.1,−486.7 ppm; 13C-NMR (101 MHz, acetone-d6)
δ 133.8 (CCHN3), 126.8 (CCHN3), 64.0 (CH2-N3CCH), 59.5 (CH2NMe2), 56.0 (CH2NMe2),
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52.7 (NMe2), 51.4 (NMe2), 48.1 (B-Me2NCH2), 47.1 (Ccarb), 35.9 (Ccarb), 24.5 (CH2), 14.9 (CH2),
14.5 (CH2), 10.8 (B-OCH2) ppm. IR (solid): ν˜ = 2524 cm−1 (BH), 1464 cm−1 (triazole),
HRMS-ESI+ m/z for [C21H63B27FeN5O + H]+ calcd 750.7161, found 750.7154.

4. Conclusions

In this work we prepared and characterized novel nido-carboranyl azide 9-N3(CH2)3Me2N-
nido-7,8-C2B9H11 derived from the reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 with NaN3 in
the presence of NaI as a catalyst in strong conditions. The possibility of using “click” approach
in regard to the obtained compound was demonstrated on the reaction of 9-N3(CH2)3Me2N-
nido-7,8-C2B9H11 with phenylacetylene. We also studied the behaviour of nido-carboranyl
azide in the copper(I)-catalyzed azide-alkyne cycloaddition reaction with alkynyl-cholesterol
and obtained new the nido-carborane-cholesterol conjugate with charge-compensated group
in a linker in a good yield. Based on the synthesized compound, the boronated liposomes
are planned for preparation in order to deliver boron clusters into a cancer cell for a BNCT
experiment. It should be concluded that ”click“ reactions between 9-N3(CH2)3Me2N-nido-
7,8-C2B9H11 and cobalt/iron bis(dicarbollide) terminal alkynes lead to novel zwitter-ionic
boron-enriched cluster compounds bearing a 1,2,3-triazol-metallacarborane-carborane conju-
gated system. By changing the type and the size of a spacer between these two boron cages,
it is possible to control the hydrophilic/hydrophobic balance of the compounds. Prepared
conjugates contain a large amount of boron atom in the biomolecule potentially can be used
for boron neutron capture therapy of cancer (BNCT).

The solid-state molecular structure of the novel nido-carboranyl azide 9-N3(CH2)3Me2N-
nido-7,8-C2B9H11 was determined by single-crystal X-ray diffraction studies. Structural feature
of nido-carboranyl azide is rather rigid and compact conformation of substituent is observed
that results in rather short intramolecular contact between the N4 atom of azide function
and the H1C extra-hydrogen atom of nido-carborane cage (3.089 Å with non-normalized B-H
bond lengths).

Supplementary Materials: The following are available online, 1H-, 11B- and 13C-NMR, IR and
high-resolution mass spectra of compounds 2, 3, 5, 10–12.
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