Supplementary Materials

Viburnum stellato-tomentosum Extract Suppresses Obesity and Hyperglycemia through Regulation of Lipid Metabolism in High-Fat Diet-Fed Mice

Seona Cho^{1,2}, Hwa Lee¹, Jisu Han¹, Haneul Lee¹, Rosales Ovares Kattia³, Zamora Villalobos Nelson³, Sangho Choi⁴, Soo-Yong Kim⁴, Ho-Yong Park¹, Hye Gwang Jeong^{2,*}, and Tae-Sook Jeong^{1,*}

¹ Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea

² College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea

³ Instituto Nacional de Biodiversidad (INBio), Santo Domingo, Heredia, P. O. Box 22-3100, Costa Rica

⁴ International Biological Material Research Center, KRIBB, Daejeon 34141, Republic of Korea

*Corresponding authors:

Tae-Sook Jeong – Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon 34141, Republic of Korea; Phone: +82-42-860-4558; E-mail: tsjeong@kribb.re.kr; Fax: +82-42-861-2675
Hye Gwang Jeong – College of Pharmacy, Chungnam National University, , 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea; Phone: +82-42-821-5936; E-mail: hgjeong@cnu.ac.kr; Fax: +82-42-823-6566

1. Isolation and Identification of Amentoflavone (AMF)

Grounded aerial parts of *Viburnum stellato-tomentosum* (5 g) were extracted with 50 mL EtOH for 48 h at 25-30°C, and the extract was concentrated to yield a residue (437 mg). The residue was suspended in H₂O and partitioned with *n*-hexane (30 mL \times 3), chloroform (30 mL \times 3), ethyl acetate (EtOAc) (30 mL \times 2), and butanol (40 mL), successively. The EtOAc layer (44.6 mg) was subjected to silica-gel column chromatography (18 \times 110 mm) with 100% dichloromethane (DCM), DCM/MeOH, and MeOH to obtain compound **1** (15.8 mg).

Isolated compound **1** was identified using spectroscopic data (Table S1 and Figure S1) and HPLC-DAD monitoring with authentic standard compound of AMF (Text Figure 1), and comparison with previously published data [31-33]. ESI-MS was obtained on an Agilent 6410 triple quadrupole LC/MS system (Agilent Technologies, Palo Alto, CA, USA). NMR spectra were recorded on a JEOL JNM-ECA600 600MHz FT-NMR spectrometer (JEOL, Tokyo, Japan) and chemical shifts are expressed in δ values. The standard compound of AMF was obtained from Sigma-Aldrich (Seoul, Korea). This is the first report on the isolation of AMF from *V*. *stellato-tomentosum*.

Table S1. ESI-MS and NMR data for compound 1.

ESI-MS (Positive ion): $m/z 539 [M+H]^+$ (Molar mass: 538.45 g mol⁻¹)

¹H-NMR data: (CD₃OD) d 6.18 (1H, br s, H-6), 6.38 (1H, s, H-6"), 6.40 (1H, br s, H-8), 6.59 (1H, s, H-3"), 6.60 (1H, s, H-3), 6.72 (2H, d, J = 8.0 Hz, H-5"', H-3"'), 7.12 (1H, dd, J = 8.0, 1.5 Hz, H-6'), 7.54 (2H, d, J = 8.0 Hz, H-2"', H-6"'), 7.89 (1H, d, J = 8.0 Hz, H-5'), 7.95 (1H, d, J = 1.5 Hz, H-2')

¹³C-NMR data: (CD₃OD) d 166.0 (C-2), 102.3 (C-3), 184.6 (C-4), 163.4 (C-5), 98.4 (C-6), 166.4 (C-7), 93.5 (C-8), 159.8 (C-9), 105. 6 (C-10), 123.5 (C-1'), 131.0 (C-2'), 122.0 (C-3'), 161.6 (C-4'), 127.9 (C-5'), 116.6 (C-6'), 166.6 (C-2''), 101.8 (C-3''), 185.0 (C-4''), 163.8 (C-5''), 161.6 (C-6'), 166.6 (C-2''), 101.8 (C-3''), 185.0 (C-4''), 163.8 (C-5''), 161.6 (C-6''), 166.6 (C-2''), 101.8 (C-3''), 185.0 (C-4''), 163.8 (C-5''), 161.6 (C-6''), 166.6 (C-2''), 101.8 (C-3''), 185.0 (C-4''), 163.8 (C-5''), 161.6 (C-6''), 166.6 (C-2''), 101.8 (C-3''), 185.0 (C-4''), 163.8 (C-5''), 161.6 (C-6''), 166.6 (C-2''), 101.8 (C-3''), 185.0 (C-4''), 163.8 (C-5''), 161.8 (C-5''), 161

98.6 (C-6"), 162.8 (C-7"), 106.0 (C-8"), 159.6 (C-9"), 105. 3 (C-10"), 123.5 (C-1""), 128. 2(C-2"", C-6""), 115.4 (C-3"", C-5""), 163.0 (C-4"")

Figure S1. UV spectrum (A) and chemical structure (B) of compound 1, amentoflavone.

Gene (Number)	Forward Primer	Reverse Primer
Adiponectin (NM_009605.4)	CATGCCGAAGATGACGTTAC	CGATACACATAAGCGGCTTC
Ampk (NM_001013367.3)	TGGCTGAGAAGCAGAAGCAC	GGCCTGTCAATTGGTGTTCT
Cebpa (NM_007678)	CAAGAAGTCGGTGGACAAGA	TCAACTCCAGCACCTTCTGT
Cebpb (NM_009883)	AAGCTGAGCGACGAGTACAA	AGCTGCTTGAACAAGTTCCG
<i>Cpt1a</i> (NM_013495)	CTGCACTCCTGGAAGAAGAA	GTTCTTCGTCTGGCTTGACA
Fabp1 (NM_017399.5)	GCAAGTACCAATTGCAGAGCCAGG	TCATTGCGGACCACTTTGGG
Fabp4 (NM_024406)	TTTGTGGGAACCTGGAAGCT	CACGCCCAGTTTGAAGGAAA
Fas (NM_007988)	TGTGAGTGGTTCAGAGGCAT	TTCTGTAGTGCCAGCAAGCT
Gapdh (NM_001001303)	ACATCATCCCTGCATCCACT	AGATCCACGACGGACACATT
Glut1 (NM_011400.3)	AGCCGGCACAGCTAGAGCTT	TAGTCCGAGCACTGCTCCTC
Glut4 (NM_009204.2)	GCCCCACAGAAGGTGATTGA	AGCGTAGTGAGGGTGCCTTGT
Irs1 (NM_008386.3)	ACCCACCCAGGCTTTTGTC	CGGGACTTGGGTGTGTAGAAG
Irs2 (NM_001185083.1)	CCCCACCCAGGCTTTTGT	GCGGGACATGGGTGTGTAG
Perilipin (NM_175640.2)	TGGTACACACCGTGCAGAACA	TGGGAAGCGGCACATAGTG
<i>Pgc1a</i> (NM_008904)	GTGCAGCCAAGACTCTGTAT	GGTCGCTACACCACTTCAAT
<i>Ppara</i> (NM_011144)	CCTGAACATCGAGTGTCGAA	GTACTGGCATTTGTTCCGGT
<i>Pparg1</i> (NM_001127330.2)	ATGTCTCACAATGCCATCAGGTT	GCGGGAAGGACTTTATGTATGAGT
<i>Pparg2</i> (NM_011146.3)	TGTCTCACAATGCCATCAGGTT	AGCGGGAAGGACTTTATGTATGAGT
Slc27a4 (NM_011989.5)	GCCCTGCGCCACTGTCTTGA	TGGGCTCCAGGCTAGCATGG
Srebf1 (NM_011480)	GAGCGAGCGTTGAACTGTAT	ATGCTGGAGCTGACAGAGAA
Ucp1 (NM_009463)	CCAGGCTTCCAGTACCATTA	GCCACACCTCCAGTCATTAA
Ucp2 (NM_011671)	GCCTCTACGACTCTGTCAAA	CTTCGACAGTGCTCTGGTAT

Table S2. Sequences of primers used for real-time qRT-PCR

References

- 31. Okigawa, M.; Hwa, C.W.; Kawano, N.; Rahman, W. Biflavones in *Selaginella* species. *Phytochemistry* **1971**, *10*, 3286–3287.
- 32. Lin, L.-C.; Kuo, Y.-C.; Chou, C.-J. Cytotoxic biflavonoids from *Selaginella delicatula*. J. Nat. Prod. **2000**, *63*, 627–630.
- 33. Ma, S.-C.; But, P.P.-H.; Ooi, V.E.-C.; He, Y.-H.; Lee, S.H.-S.; Lee, S.-F.; Lin, R.-C. Antiviral amentoflavone from *Selaginella sinensis*. *Biol. Pharm. Bull.* **2001**, *24*, 311–313.