Supplementary Material

Complexes of formaldehyde and α -dicarbonyls with hydroxylamine: FTIR matrix isolation and theoretical study

Barbara Golec,^{1*} Magdalena Sałdyka² and Zofia Mielke²

¹ Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

² Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland

Corresponding author:

dr Barbara Golec, e-mail: bgolec@ichf.edu.pl, Tel: + 48-22-343-3410.

This file contains:

Figure S1. The optimized structures of the HCHO-NH₂OH complexes. The $\Delta E^{CP}(ZPE)$ binding energies in kJ mol⁻¹ are given in parentheses. The intermolecular distances are given in Å.

Figure S2. The optimized structures of the CHOCHO-NH₂OH complexes. The $\Delta E^{CP}(ZPE)$ binding energies in kJ mol⁻¹ are given in parentheses. The intermolecular distances are given in Å.

Figure S3. The spectra of the CHOCHO/Ar (a), ND₂OD/Ar (b) and CHOCHO/ND₂OD/Ar (c) matrices recorded after matrix deposition at 11 K. The bands of CHOCHO-ND₂OD complexes are indicated by the arrows.

Figure S4. The spectra of the CHOCHO/N₂ (a), ND₂OD/N₂ (b) and CHOCHO/ND₂OD/N₂ (c) matrices recorded after matrix deposition at 11 K. The bands of CHOCHO-ND₂OD complexes are indicated by the arrows.

Figure S5. The optimized structures of the CH₃COCHO-NH₂OH complexes. The $\Delta E^{CP}(ZPE)$ binding energies in kJ mol⁻¹ are given in parentheses. The intermolecular distances are given in Å.

Figure S6. The spectra of the CH₃COCHO/Ar (a), ND₂OD/Ar (b) and CH₃COCHO/ND₂OD/Ar (c) matrices recorded after matrix deposition at 11 K. The bands of CH₃COCHO-ND₂OD complexes are indicated by the arrows.

Figure S7. The location of the bond (3,-1) and ring (3,1) critical points in the MP2/6-311++G(2d,2p) optimized structures of the HCHO-NH₂OH complexes.

Figure S8. The location of the bond (3,-1) and ring (3,1) critical points in the MP2/6-311++G(2d,2p) optimized structures of the CHOCHO -NH₂OH complexes.

Figure S9. The MP2 optimized structures of the formaldehyde, glyoxal and methylglyoxal complexes with hydroxylamine assigned to the structures isolated in argon matrix. The intermolecular distances are given in Å. The binding energies in kJ mol⁻¹ are given in parentheses.

Figure S10. The MP2 optimized structures of the formaldehyde, glyoxal and methylglyoxal complexes with hydroxylamine assigned to the structures isolated in nitrogen matrix. The intermolecular distances are given in Å. The binding energies in kJ mol⁻¹ are given in parentheses.

Table S1. Selected geometrical parameters of the hydroxylamine and formaldehyde subunits in their binary complexes. For comparison the corresponding parameters of the monomers (M) are also given. The complexes are numbered in the same way as presented in Fig. S1. Bond distances are given in Å, angles in °.

Table S2. Selected geometrical parameters of the hydroxylamine and glyoxal subunits in their binary complexes. For comparison the corresponding parameters of the monomers (M) are also given. The complexes are numbered in the same way as presented in Fig. S2. Bond distances are given in Å, angles in °.

Table S3. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vGH - vM$) for the CHOCHO-NH₂OH (GH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes I_{GH} - IV_{GH}.

Table S4. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vGH - vM$) for the CHOCHO-ND₂OD (GH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes I_{GH} - IV_{GH}.

Table S5. Selected geometrical parameters of the hydroxylamine and methylglyoxal subunits in their binary complexes. For comparison the corresponding parameters of the monomers (M) are also given. The complexes are numbered in the same way as presented in Fig. S3. Bond distances are given in Å, angles in °.

Table S6. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vMH - vM$) for the CH₃COCHO-NH₂OH (MH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes $I_{MHk} - IV_{MHk}$ and $I_{MHa} - IV_{MHa}$.

Table S7. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vMH - vM$) for the CH₃COCHO-ND₂OD (MH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes $I_{MHk} - IV_{MHk}$ and $I_{MHa} - IV_{MHa}$.

Figure S1. The optimized structures of the HCHO-NH₂OH complexes. The $\Delta E^{CP}(ZPE)$ binding energies in kJ mol⁻¹ are given in parentheses. The intermolecular distances are given in Å.

Figure S2. The optimized structures of the CHOCHO-NH₂OH complexes. The $\Delta E^{CP}(ZPE)$ binding energies in kJ mol⁻¹ are given in parentheses. The intermolecular distances are given in Å.

Figure S3. The spectra of the CHOCHO/Ar (a), ND₂OD/Ar (b) and CHOCHO/ND₂OD/Ar (c) matrices recorded after matrix deposition at 11 K. The bands of CHOCHO-ND₂OD complexes are indicated by the arrows.

Figure S4. The spectra of the CHOCHO/N₂ (a), ND₂OD/N₂ (b) and CHOCHO/ND₂OD/N₂ (c) matrices recorded after matrix deposition at 11 K. The bands of CHOCHO-ND₂OD complexes are indicated by the arrows.

Figure S5. The optimized structures of the CH₃COCHO-NH₂OH complexes. The $\Delta E^{CP}(ZPE)$ binding energies in kJ mol⁻¹ are given in parentheses. The intermolecular distances are given in Å.

Figure S6. The spectra of the CH₃COCHO/Ar (a), ND₂OD/Ar (b) and CH₃COCHO/ND₂OD/Ar (c) matrices recorded after matrix deposition at 11 K. The bands of CH₃COCHO-ND₂OD complexes are indicated by the arrows.

Figure S7. The location of the bond (3,-1) and ring (3,1) critical points in the MP2/6-311++G(2d,2p) optimized structures of the HCHO-NH₂OH complexes.

Figure S8. The location of the bond (3,-1) and ring (3,1) critical points in the MP2/6-311++G(2d,2p) optimized structures of the CHOCHO -NH₂OH complexes.

	Argon matrix	C
FA-HA	Gly-HA	MGly-HA
1.92	2.66	2.64
I _{FH} (-15.15)	I _{GH} (-18.25)	I _{MHa} (-18.08)

Figure S9. The MP2 optimized structures of the formaldehyde, glyoxal and methylglyoxal complexes with hydroxylamine assigned to the structures isolated in argon matrix. The intermolecular distances are given in Å. The binding energies in kJ mol⁻¹ are given in parentheses.

Figure S10. The MP2 optimized structures of the formaldehyde, glyoxal and methylglyoxal complexes with hydroxylamine assigned to the structures isolated in nitrogen matrix. The intermolecular distances are given in Å. The binding energies in kJ mol⁻¹ are given in parentheses.

Parameter	М	I _{FH}	II_{FH}	III_{FH}	$IV_{\rm FH}$	$V_{ m FH}$
r C ₁ -O ₄	1.213	1.219	1.218	1.217	1.218	1.217
$r C_1-H_2$	1.098	1.094	1.096	1.096	1.095	1.096
r C ₁ -H ₃	1.098	1.097	1.096	1.096	1.098	1.097
r O ₆ -H ₅	0.959	0.967	0.967	0.965	0.959	0.960
r O ₆ -N ₇	1.448	1.447	1.439	1.446	1.455	1.451
r N ₇ -H ₈	1.012	1.013	1.013	1.012	1.015	1.015
r N7-H9	1.012	1.013	1.013	1.012	1.012	1.012
$R O_4 \cdots H_5$		1.928	1.985	1.997		
$R H_2 \cdots N_7$		2.640				
$R H_2 \cdots O_6$				2.637	2.461	
$R H_8 \cdots O_4$					2.169	2.218
θ H ₂ -C ₁ -O ₄	121.6	120.9	121.6	121.3	121.1	121.7
θ H ₃ -C ₁ -O ₄	121.6	120.6	121.6	121.1	120.9	121.6
θ H ₂ -C ₁ -H ₃	116.7	118.4	116.7	117.6	118.0	116.7
θ H ₅ -O ₆ -N ₇	101.7	101.5	102.4	102.5	101.6	101.6
$\theta O_6-N_7-H_8$	103.6	103.8	104.1	103.8	103.0	103.4
θ O ₆ -N ₇ -H ₉	103.6	103.8	104.1	103.8	103.5	103.4
θ H ₈ -N ₇ -H ₉	105.8	105.2	105.9	105.5	105.9	105.5
θ O ₄ -H ₅ -O ₆		166.9	151.7	146.9		
θC_1 -H ₂ -N ₇		120.0				
θC_1 -H ₂ -O ₆					128.7	
θ O ₄ -H ₈ -N ₇					156.7	141.3
φ H ₅ -O ₆ -N ₇ -H ₈	124.8	125.1	124.6	124.9	128.2	125.5
φ H ₅ -O ₆ -N ₇ -H ₉	-124.8	-125.1	-124.6	-124.9	-121.6	-124.6
φ C ₁ -O ₄ -H ₅ -O ₆		-0.0	0.4	0.1		
ϕC_1 -H ₂ -N ₇ -O ₆		-0.0				
ϕC_1 -O ₄ -H ₈ -N ₇					0.0	-13.9
φ C ₁ -H ₂ -O ₆ -N ₇					9.8	

Table S1. Selected geometrical parameters of the hydroxylamine and formaldehyde subunits in their binary complexes. For comparison the corresponding parameters of the monomers (M) are also given. The complexes are numbered in the same way as presented in Fig. S1. Bond distances are given in Å, angles in °.

Parameter	М	IGH	II _{GH}	III _{GH}	IV _{GH}	V _{GH}	VI _{GH}	VIIGH	VIII _{GH}
r C ₁ -C ₂	1.518	1.514	1.515	1.519	1.517	1.520	1.519	1.517	1.517
$r C_1 - O_3$	1.215	1.215	1.217	1.218	1.215	1.217	1.217	1.215	1.215
r C ₂ -O ₄	1.215	1.220	1.215	1.219	1.220	1.217	1.217	1.219	1.219
r C ₁ -H ₅	1.100	1.100	1.098	1.098	1.100	1.097	1.098	1.100	1.100
$r C_2-H_6$	1.100	1.099	1.100	1.099	1.096	1.099	1.100	1.097	1.098
r O ₈ -H ₇	0.959	0.968	0.961	0.965	0.965	0.964	0.959	0.959	0.963
$r O_8-N_9$	1.448	1.436	1.451	1.446	1.447	1.447	1.453	1.454	1.447
r N9-H10	1.012	1.013	1.015	1.013	1.013	1.013	1.014	1.014	1.012
r N9-H11	1.012	1.013	1.013	1.013	1.013	1.013	1.013	1.013	1.012
$R O_4 \cdots H_7$		1.988		1.970	1.980	2.070	2.209		2.096
$R O_3 \cdots H_{10}$			2.264						
$R H_5 \cdots N_9$				2.458	2.609				
R O ₈ …H ₅						2.337	2.321		
$R O_4 \cdots H_{10}$								2.227	
$R O_8 \cdots H_6$								2.428	2.559
θ C ₂ -C ₁ -O ₃	121.3	121.7	121.3	119.9	121.3	119.7	119.9	121.5	121.3
θ C ₁ -C ₂ -O ₄	121.3	121.6	121.7	122.0	120.3	122.4	122.0	120.4	120.7
θ C ₂ -C ₁ -H ₅	115.4	115.0	115.5	115.9	115.4	116.5	116.1	115.3	115.3
θC_1 -C ₂ -H ₆	115.4	115.3	115.0	115.6	117.3	115.0	115.3	117.0	116.4
$\theta O_3-C_1-H_5$	123.3	123.3	123.1	124.3	123.3	123.7	124.0	123.2	123.3
θ O ₄ -C ₂ -H ₆	123.3	123.0	123.3	122.4	122.4	122.6	122.7	122.6	122.8
θ H ₇ -O ₈ -N ₉	101.7	102.5	102.0	102.2	101.5	102.9	129.1	101.7	102.6
θO_8 -N ₉ -H ₁₀	103.6	104.8	103.2	103.8	103.8	103.8	103.2	102.8	103.8
θ O ₈ -N ₉ -H ₁₁	103.6	104.4	103.4	103.8	103.8	103.8	103.2	103.5	103.8
θ H ₁₀ -N ₉ -H ₁₁	105.8	106.2	105.3	105.4	105.3	105.6	105.9	105.9	105.6
$\theta C_2 - O_4 - H_7$		100.8	100.7	126.6	112.0	117.1	125.8	100.3	
θC_1 -H ₅ -N ₉			112.1	151.5					
θ C ₂ -O ₄ -N ₉		93.6							
θO_4 -H ₇ -O ₈		148.2		176.9	163.3	144.20	164.9	136.6	
θO_3 -H ₉ -N ₉			135.5						
θ H ₅ -N ₉ -O ₈				104.9					
θ H ₅ -N ₉ -H ₁₀				118.5					
θ H ₅ -N ₉ -H ₁₁				118.5					
θC_2 -H ₆ -N ₉					118.9				
θC_1 -H ₅ -O ₈						135.2	156.3		
θ O ₄ -H ₁₀ -N ₉								151.6	
θ C ₂ -H ₆ -O ₈									106.7
$\phi O_3 - C_1 - C_2 - O_4$	-180.0	166.0	-171.5	-180.0	180.0	-180.0	179.6	-180.0	180.0
ϕO_3 -C ₁ -C ₂ -H ₆	0.0	-10.4	7.0	0.0	0.0	0.0	-0.4	0.0	0.0
φ H ₅ -C ₁ -C ₂ -O ₄	0.0	-11.7	7.1	0.0	0.0	0.0	-0.6	0.0	0.0
$\phi H_7-O_8-N_9-H_{10}$	124.8		130.1	125.0	125.1	124.9	128.4	-128.7	-124.9
$\phi H_7-O_8-N_9-H_{11}$	-124.8		-120.3	-125.0	-125.1	-124.9	-121.3	121.0	124.8
φ C ₂ -O ₄ -H ₇ -O ₈		10.9		0.0	-0.1	0.4	-1.1		-0.3
φ C ₁ -O ₃ -H ₁₀ -N ₉			-26.0						
φ C ₁ -O ₃ -N ₉ -O ₈			-3.5						
φ C ₁ -H ₅ -N ₉ -O ₈				-0.1					
φ C ₂ -H ₆ -N ₉ -O ₈					-0.1				
φ C ₂ -O ₄ -O ₈ -N ₉		2.6							
φ C ₁ -H ₅ -O ₈ -H ₇						-0.1	40.0		
φ C ₁ -H ₅ -O ₈ -N ₉							18.3	0.4	10 -
φ C ₂ -H ₆ -O ₈ -N ₉								-8.1	-12.6
$\phi C_2 - O_4 - H_{10} - N_9$								-1.7	

Table S2. Selected geometrical parameters of the hydroxylamine and glyoxal subunits in their binary complexes. For comparison the corresponding parameters of the monomers (M) are also given. The complexes are numbered in the same way as presented in Fig. S2. Bond distances are given in Å, angles in °.

			Experim	ental	Calculated							
Approximate –		Ar			N_2		Δν					
description -	v M	v GH	Δv^1	v M	v GH ²	Δv^1	Ідн	IIGH	III _{GH}	IV _{GH}		
NH ₂ OH												
v(OH)	3635.5	3521.0 3512.4	-118.8	3637.6	3541.1 3520.9 3515.8	-96.5 -119.2	-145(77)	-19(66)	-106(383)	-103(356)		
δ(NOH)	1351.2	1412.1 1410.2	+60.9	1367.4	1416.6 <i>1399.7</i>	+49.2 + <i>3</i> 2. <i>3</i>	+61(63)	-12(13)	+72(29)	+71(34)		
ω(NH ₂)	1118.3	1129.0 1125.8	+9.1	1133.0	1142.6	+9.6	+14(111)	+19(147)	+24(112)	+22(122)		
v(NO)	895.6			895.3	898.8	+3.5	+14(3)	-4(10)	+9(8)	+6(8)		
СНОСНО												
v(CH)	2860.1 2854.9	2857.6	-0.4	2857.1	2875.6	+18.5	-9(60) +12(39)	-6(64) +12(34)	+15(53) +20(1)	+1(52) +51(8)		
v(C=O)	1724.5	1719.0	-5.5	1730.1	1720.2 <i>1723.1</i>	-9.9 -7.0	-4(122) +4(23)	+3(115) +5(9)	-11(126) -6(20)	-13(89) -6(33)		
γ(CH)	812.1 807.8			807.4	820.8	+13.4	+37(0)	+19(1)	+23(8)	+16(2)		

Table S3. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vGH - vM$) for the CHOCHO-NH₂OH (GH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes I_{GH} - IV_{GH}.

¹ In the case when the splitting of the band was observed the average of the two wavenumbers at which the two peaks appear was taken into account to calculate Δv value. ² The wavenumbers in italic are due to complex of different structure (see text).

			Experin	nental	Calculated							
Approximate –		Ar			N_2		Δν					
uesemption -	v M	v GH	Δv^1	v M	v GH	Δv^1	IGH	IIGH	III _{GH}	IV _{GH}		
ND ₂ OD												
v(OD)	2685.1	2604.0 2598.0	-84.1	2686.9	2619.2 2616.7	-68.9	-106(42)	-14(36)	-77(202)	-75(184)		
δ(NOD)	1034.5	1068.0 1064.5	+33.5	1043.2			+38(6)	-7(3)	+38(7)	+41(7)		
ω(ND ₂)	915.0			916.5	927.1	+10.6	+0(29)	+12(44)	+14(40)	+14(42)		
v(NO)	818.4			827.6	838.0 836.6	+9.7	+28(41)	-10(52)	+21(40)	+16(44)		
СНОСНО												
v(CH)	2860.1 2854.9			2857.1	2876.3	+19.2	-10(59) +12(36)	-6(64) +12(34)	+15(48) +20(1)	+1(51) +51(9)		
v(C=O)	1724.5	1719.6	-4.9	1730.1	1720.5	-9.6	-5(125) +4(25)	+3(127) +5(9)	-11(128) -6(20)	-13(93) -6(33)		
γ(CH)	812.1 807.8			807.4	820.9	+13.5	+41(5)	+19(2)	+22(4)	+16(3)		

Table S4. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vGH - vM$) for the CHOCHO-ND₂OD (GH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes I_{GH} - IV_{GH}.

¹ In the case when the splitting of the band was observed the average of the two wavenumbers at which the two peaks appear was taken into account to calculate Δv value.

Table S5. Selected geometrical parameters of the hydroxylamine and methylglyoxal subunits in their binary complexes. For comparison the corresponding parameters of the monomers (M) are also given. The complexes are numbered in the same way as presented in Fig. S3. Bond distances are given in Å, angles in °.

Parameter	М	I _{MHk}	I _{MHa}	II _{MHk}	II _{MHa}	III _{MHk}	III _{MHa}	IV _{MHk}	IV _{MHa}
$r C_1-C_2$	1.528	1.524	1.524	1.524	1.524	1.528	1.528	1.527	1.526
r C ₁ -O ₃	1.215	1.215	1.221	1.215	1.217	1.217	1.217	1.214	1.220
r C ₂ -O ₄	1.221	1.225	1.221	1.223	1.221	1.225	1.222	1.225	1.097
$r C_1-H_5$	1.101	1.101	1.099	1.100	1.100	1.099	1.100	1.100	1.097
$r C_2 - C_6$	1.499	1.495	1.499	1.497	1.497	1.496	1.494	1.492	1.498
$r C_6-H_7$	1.083	1.083	1.084	1.084	1.083	1.083	1.083	1.084	1.083
$r C_{c}-H_{o}$	1 088	1 088	1.088	1 088	1.087	1.088	1 090	1 089	1 088
$r C_6 H_0$	1.000	1.000	1.000	1.000	1.007	1.000	1.090	1.009	1.000
$r O_{4}$ H ₁₀	0.050	0.068	0.068	0.060	0.061	0.066	0.065	0.067	0.965
$r O_{11} \cdot II_{10}$	1 448	1 440	1 /37	1 452	1.450	1 445	1 446	1 445	1 447
1 U ₁₁ -IN ₁₂	1.440	1.440	1.457	1.452	1.430	1.445	1.440	1.445	1.447
Г IN12-П13	1.012	1.015	1.015	1.010	1.010	1.015	1.015	1.015	1.015
$\Gamma_{112}-\Pi_{14}$	1.012	1.015	1.015	1.012	1.015	1.015	1.015	1.015	1.015
$R O_4-H_{10}$		1.956	1 000			1.930	1.0.61	1.930	1.0.64
$R O_3-H_{10}$			1.980	a 100			1.961		1.964
$R O_4-H_{13}$				2.190					
$R O_3 - H_{13}$					2.236				
R N9-H5						2.447			2.637
$R N_9-H_8$							2.432		
R N ₉ -H ₇								2.501	
θ C ₂ -C ₁ -O ₃	122.8	122.8	122.8	122.6	123.2	121.5	123.5	122.7	121.8
$\theta C_1 - C_2 - O_4$	117.7	118.1	118.1	118.0	117.6	118.1	116.7	116.8	117.5
$\theta C_2 - C_1 - H_5$	114.1	114.0	114.2	114.1	113.9	121.5	114.2	114.2	116.0
θ O ₃ -C ₁ -H ₅	123.1	123.2	122.9	123.2	122.9	123.8	122.3	123.2	122.2
$\theta C_1 - C_2 - C_6$	117.3	117.3	117.1	117.2	117.4	117.7	117.6	118.0	117.5
$\theta O_4 - C_2 - C_6$	125.0	124.5	124.8	124.6	125.0	124.2	125.6	125.2	125.0
$\theta H_7 - C_6 - H_9$	110.5	110.5	110.1	110.2	110.7	110.7	111.0	111.0	110.5
θ H ₇ -C ₆ -H ₀	110.5	110.5	110.1	110.2	110.7	110.7	110.3	111.0	110.5
$\Theta H_7 C_6 H_9$	106.6	106.7	106.7	106.7	107.2	106.7	106.6	106.2	106.6
$A H_{10} O_{11} N_{10}$	100.0	100.7	100.7	100.7	107.2	100.4	100.0	100.2	100.0
$0 \Pi_{10} - O_{11} - IN_{12}$	101.7	102.0	102.3	101.9	102.0	102.2	102.0	102.2	101.4
$0 O_{11} - IN_{12} - II_{13}$	103.0	104.5	104.9	103.1	102.5	103.9	103.5	103.0	103.8
$0 U_{11} - N_{12} - \Pi_{14}$	105.0	104.0	104.2	105.4	105.5	105.9	104.2	105.0	105.8
θ H ₁₃ -N ₁₂ -H ₁₄	105.8	105.8	106.2	105.4	105.7	105.4	105.3	105.3	105.3
$\theta O_4 - H_{10} - O_{11}$		151.5	140 6			1/8./	171 7	1/9./	164 5
θ O ₃ -H ₁₀ -O ₁₁			148.6				171.7		164.5
θ C ₁ -O ₃ -H ₁₀			99.9						112.2
$\theta O_4 - H_{13} - N_{12}$				139.7					
$\theta O_3 - H_{13} - N_{12}$					138.2				
θC_1 -H ₅ -N ₉						155.2			118.5
θC_6 -H ₈ -N ₉							153.38		
θ C ₆ -H ₇ -N ₉								156.6	
φ O ₃ -C ₁ -C ₂ -O ₄	180.0	169.3	169.1	170.2	172.3	-180.0	178.0	-180.0	-180.0
ϕ O ₄ -C ₁ -C ₂ -H ₅	0.0	-8.1	-7.2	-8.0	-6.0	0.0	-1.9	0.0	0.0
ϕ H ₅ -C ₁ -C ₂ -C ₆	-180.0	174.3	174.6	173.8	174.7	-180.0	178.5	-180.0	-180.0
$\phi O_3 - C_1 - C_2 - C_6$	0.0	-8.4	-9.1	-7.8	-7.0	0.0	-1.6	0.0	0.0
$\phi O_4 - C_2 - C_6 - H_7$	0.1	3.9	4.4	6.7	-3.1	0.0	1.4	0.3	0.0
$\phi O_4 - C_2 - C_4 - H_8$	-121.6	-117.6	-116.5	-1143	-125.1	-121.8	-120.5	-121.8	-1217
$\phi O_4 O_2 O_0 H_0$	121.0	125.9	126.6	129.0	117.6	121.0	120.0	121.0	121.7
$\phi = 0_4 + 0_2 + 0_{11} + 0_{12} + 0_{$	121.7	119.3	116.9	129.0	126.8	121.0	135.1	122.4	121.7
φ H ₁₀ -O ₁₁ -N ₁₂ -H ₁₃	124.0	170.0	1317	127.2	120.0	125.0	115.1	123.2	125.0
$\varphi \Pi_{10} = O_{11} = O_{12} = \Pi_{14}$	-124.0	-129.9	-131.7	-121.2	-123.1	-125.0	-115.1	-124.9	-125.0
$\psi O_4 - \Pi_{10} - O_{11} - N_{12}$		-11.5				0.1		-34.5	
$\psi C_2 - O_4 - \Pi_{10} - O_{11}$		20.4	2.4			0.1		55.5	0.2
$\phi U_3 - H_{10} - U_{11} - N_{12}$			5.4				04.0		-0.2
$\phi C_1 - O_3 - H_{10} - O_{11}$			3.6	0.0			-96.8		0.2
ϕO_4 -H ₁₃ -N ₁₂ -O ₁₁				8.9					
φ C ₂ -O ₄ -H ₁₃ -N ₁₂				-26.1					
ϕC_1 -O ₃ -H ₁₃ -N ₁₂					-26.2				-0.1
ϕC_1 -C ₆ -H ₈ -N ₁₂							-95.8		
$\phi C_1 - C_6 - H_7 - N_{12}$								-0.4	

Parameter	М	V _{MHk}	V _{MHa}	VI _{MHk}	VI _{MHa}	VII _{MHk}	VIII _{MHk}	VIII _{MHa}
$r C_1-C_2$	1.528	1.529	1.528	1.528	1.526	1.529	1.528	1.527
r C ₁ -O ₃	1.215	1.216	1.217	1.214	1.219	1.218	1.215	1.219
r C ₂ -O ₄	1.221	1.224	1.221	1.225	1.221	1.224	1.224	1.221
$r C_1-H_5$	1.101	1.098	1.100	1.100	1.099	1.099	1.101	1.097
$r C_2-C_6$	1.499	1.496	1.496	1.495	1.498	1.497	1.495	1.499
r C ₆ -H ₇	1.083	1.083	1.083	1.084	1.083	1.083	1.084	1.083
r C ₆ -H ₈	1.088	1.088	1.088	1.088	1.088	1.088	1.089	1.088
r C ₆ -H ₉	1.088	1.088	1.088	1.088	1.088	1.088	1.088	1.088
r O ₁₁ -H ₁₀	0.959	0.965	0.964	0.965	0.964	0.959	0.959	0.959
r O ₁₁ -N ₁₂	1.448	1.446	1.447	1.446	1.447	1.454	1.454	1.454
$r N_{12}-H_{13}$	1.012	1.013	1.013	1.013	1.012	1.012	1.013	1.014
$r N_{12}-H_{14}$	1.012	1.013	1.013	1.013	1.012	1.015	1.015	1.013
$R O_4-H_{10}$		2.005		1.978				
R O ₁₁ -H ₅		2.359			2.642	2.331		2.460
$R O_3 - H_{10}$			1.990		2.047			
$R O_{11}-H_0$			2 539					
R Ou-H ₇			2.007	2 401			2 362	
$R O_4 - H_{14}$				2.101		2 166	2.157	
$R O_{2}-H_{12}$						2.100	2.137	2 207
$\theta C_2 - C_1 - O_2$	122.8	121.6	123.6	1227	122.2	121.5	122.8	122.07
$\theta C_1 - C_2 - O_4$	1177	118 /	125.0	116.0	117 5	118 1	117 0	1177
$0 C_1 = C_2 = C_4$	11/./	115.4	11/0.7	110.7	117.5	11/10	117.0	117.7
$0 C_2 - C_1 - \Pi_5$	173 1	113.1	114.0	114.1	113.1	114.9	114.1	113.0
$0 O_3 - C_1 - \Pi_5$	123.1	125.5	122.4	123.2	122.0	125.0	123.1	122.4
$0 C_1 - C_2 - C_6$	117.5	117.4	110.0	117.7	117.5	117.5	117.7	117.4
$0 0_4 - C_2 - C_6$	123.0	124.2	123.3	123.4	123.1	124.4	123.3	124.9
θ H ₇ -C ₆ -H ₈	110.5	110.0	110.4	110.7	110.5	110.0	110.8	110.5
θ H ₇ -C ₆ -H ₉	110.6	110.7	110.5	110.7	110.5	110.7	110.9	110.5
θ H ₈ -C ₆ -H ₉	100.0	100.5	100.1	100.5	100.0	106.4	100.2	100.5
$\theta H_{10} - O_{11} - N_{12}$	101./	102.9	102.3	102.7	102.6	101.7	101.6	101.7
$\theta O_{11} - N_{12} - H_{13}$	103.6	103.8	103.8	103.8	103.8	103.5	103.5	102.9
θ O ₁₁ -N ₁₂ -H ₁₄	103.6	103.8	103.8	103.8	103.8	103.2	103.2	103.5
θ H ₁₃ -N ₁₂ -H ₁₄	105.8	105.5	105.5	105.5	105.5	105.9	105.9	106.0
θ O ₄ -H ₁₀ -O ₁₁		151.0		155.0				
θ C ₁ -O ₃ -H ₁₀		138.1			101.3			
θO_3 -H ₁₀ -O ₁₁			162.9		142.4			
θ C ₂ -H ₉ -O ₁₁			119.2					
θ C ₂ -H ₇ -O ₁₁				139.6			163.2	
θ C ₁ -H ₅ -O ₁₁					104.8			125.7
θ O ₄ -H ₁₄ -N ₁₂						167.4	169.5	
θO_3 -H ₁₃ -N ₁₂								153.2
$\phi O_3-C_1-C_2-O_4$	180.0	180.0	-178.1	180.0	180.0	-180.0	179.8	179.8
ϕO_4 -C ₁ -C ₂ -H ₅	0.0	0.0	1.8	0.0	0.0		-0.1	0.0
ϕ H ₅ -C ₁ -C ₂ -C ₆	-180.0	180.0	-178.2	180.0	180.0	-180.0	-180.0	179.9
$\phi O_3-C_1-C_2-C_6$	0.0	0.0	1.9	0.0	0.0	0.0	0.0	-0.1
φ O ₄ -C ₂ -C ₆ -H ₇	0.1	0.0	-0.7	-0.1	0.0	0.2	2.0	0.0
φ O ₄ -C ₂ -C ₆ -H ₈	-121.6	-121.8	-122.2	-122.1	-121.6	-121.6	-120.0	-121.6
φ O ₄ -C ₂ -C ₆ -H ₉	121.7	121.8	121.2	121.9	121.6	122.0	124.2	121.6
φ H ₁₀ -O ₁₁ -N ₁₂ -H ₁₃	124.8	124.9	124.9	124.9	124.9	121.4	121.8	128.5
φ H ₁₀ -O ₁₁ -N ₁₂ -H ₁₄	-124.8	-124.9	-125.0	-124.9	-124.9	-128.4	-128.0	-121.3
$\phi O_4 - H_{10} - O_{11} - N_{12}$		179.9		-179.9				
ϕ C ₂ -O ₄ -H ₁₀ -O ₁₁		0.0		0.0				
$0 O_3 - H_{10} - O_{11} - N_{12}$		0.0	164 4	0.0				
$0 C_1 - O_2 - H_{10} - O_{11}$			29		-03			
$\Psi = 0_1 = 0_2 = 0_{11} = 0_{11}$			2.1	03	0.5		-0.7	
$\Psi C_2 C_0 \Pi - O_{11}$				0.5	-03		-0.7	
$\psi C_1 - \Pi_2 - O_{11} - \Pi_{10}$					-0.5	15	3.0	
$\psi \cup_2 \cup_4 - \Pi_1 4 - 1 \mathbb{N}_{12}$						1.3	3.0	
$\psi C_2 - C_1 - \Pi_5 - O_{11}$						12.2		27
$\psi C_1 - C_3 - \Pi_{13} - IN_{12}$								2.1 1 0
$\psi O_3 - C_1 - \Pi_5 - O_{11}$	-	-		-				-4.ð

Table S5. - Continuation

· · · · · · · · · · · · · · · · · · ·	Experimental									Calcu	lated			
Approximate -		Ar			N_2					Δ	v			
uescription	v M	v MH	Δv^1	v M	v MH	Δv^1	IMHk	IIMHk	III _{MHk}	IV _{MHk}	I _{MHa}	II _{MHa}	III _{MHa}	IV _{MHa}
NH ₂ OH													-	
v(OH)	3635.5	3511.7 3507.6	-125.8	3637.6	3505.7 3495.2	-137.1	-148(138)	-14(62)	-127(494)	-132(520)	-156(73)	-17(68)	-92(367)	-112(402)
δ(NOH) ²	1351.2	1404.1	+52.9	1367.4	1402.7 1400.3	+34.1	+64(58)	-13(12)	+81(28)	+86(27)	+62(51)	-17(17)	+64(31)	+74(33)
ω(NH ₂)	1118.3	1134.1 1131.2	+14.4	1133.0	1139.3 1140.6	+7.0	+17(117)	+19(148)	+23(109)	+21(105)	+11(109)	+13(152)	+22(110)	+21(120)
v(NO)	895.6	904.8 902.9	+8.3	895.3			+9(5)	-4(7)	+8(8)	+6(7)	+13(6)	-2(7)	+7(7)	+5(8)
CH ₃ COCHO											•			
v(CH)	2843.1 2840.7	2858.2	+16.3	2844.7 2840.2 2835.9			-1(60)	+8(60)	+20(1)	+4(60)	+24(51)	+5(57)	+17(57)	+57(11)
v _{ket} (C=O)	1733.5	1737.7	+4.2	1739.0 1737.2 1735.9	1741.3	+3.9	-5(132)	0(134)	-3(64)	-2(18)	+4(61)	0(53)	-4(38)	-3(80)
vald(C=O)	1726.4	1705.4	-21.0	1730.1 1727.9	1710.8	-18.2	+6(27)	+7(11)	-14(126)	-4(145)	-10(97)	+2(88)	0(137)	-17(65)
δ(CH ₃) ²	1420.0	1416.1	-3.9	1423.2 1420.8			0(8) +3(24) -3(36)	-1(8) -1(18) -3(32)	-2(10) -2(20) +2(36)	+3(8) -2(10) +7(32)	+5(6) +3(25) -2(31)	+4(8) 0(11) -5(29)	+13(9) +6(10) +10(25)	+1(10) 0(15) 0(30)
v _{as} (C-C)	1228.3	1233.7	+5.4	1234.5 1229.9	1240.5 1237.1	+6.6	+5(14)	+9(16)	+8(13)	+15(20)	+5(15)	+6(15)	+3(16)	+1(16)
v _s (C-C)	777.1	784.7	+7.6	780.9 779.5 777.6	785.8 782.3	+4.8	+6(15)	+6(13)	+4(13)	+6(13)	+6(15)	+5(11)	+5(14)	+2(20)

Table S6. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vMH - vM$) for the CH₃COCHO-NH₂OH (MH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes $I_{MHk} - IV_{MHk}$ and $I_{MHa} - IV_{MHa}$.

¹ In the case when the splitting of the band was observed the average of the two wavenumbers at which the two peaks appear was taken into account to calculate Δv value. 2 The 1416.1 and 1404.1 cm⁻¹ bands observed in the spectra of the complex in Ar matrix are assigned to the coupled δ (NOH)+ δ (CH₃) vibrations.

			Experin	nental		· · · ·	Calculated								
Approximate -		Ar	•		N_2			Δν							
description -	v M	v MH	Δv^1	v M	v MH	Δv^1	IMHk	II _{MHk}	III _{MHk}	IV _{MHk}	I _{MHa}	II _{MHa}	III _{MHa}	IV _{MHa}	
ND ₂ OD															
v(OD)	2685.1	2596.4 2593.2	-90.3	2686.9	2595.6 2593.5	-92.3	-109(73)	-10(34)	-93(253)	-96(264)	-114(40)	-12(37)	-67(189)	-61(207)	
v(NO)	818.4	821.1	+2.7	827.6			+22(44)	-10(50)	+22(38)	+23(37)	+23(33)	-8(50)	+14(33)	+16(44)	
CH ₃ COCHO															
v(CH)	2843.1 2840.7	2858.6	+16.7				-2(58)	+8(59)	+20(1)	+4(56)	+24(51)	+6(57)	+17(54)	+57(12)	
v _{ket} (C=O)	1733.5	1737.0	+3.5	1739.0 1737.2 1735.9			-6(137)	0(144)	-3(63)	-7(144)	+3(59)	+3(52)	-4(37)	-3(79)	
vald(C=O)	1726.4	1705.9	-20.5	1730.1 1727.9			+6(30)	+7(12)	-14(128)	+1(19)	-10(103)	+1(102)	0(139)	-17(70)	
δ(CH ₃)	1420.0			1366.1 1364.5 1368.2	1369.2	+2.9	+6(1)	+4(1)	+27(3)	+27(3)	+4(7) +3(14) -2(33)	+4(8) 0(12) -5(34)	0(16) +6(21) +10(23)	+1(10) 0(16) 0(30)	
v _{as} (C-C)	1228.3			1234.5 1229.9	1241.4 1238.8	+7.9	+13(18)	+9(16)	+8(14)	+16(22)	+6(17)	+6(16)	+3(15)	+1(16)	
v _s (C-C)	777.1			780.9 779.5 777.6	785.6 783.7	+5.4	+8(11)	+5(12)	+4(13)	+5(13)	+5(12)	+3(11)	+5(13)	+2(21)	

Table S7. The comparison of the observed wavenumbers (cm⁻¹) and wavenumber shifts ($\Delta v = vMH - vM$)) for the CH₃COCHO-ND₂OD (MH) complexes present in the Ar and N₂ matrices with the corresponding calculated values for the complexes $I_{MHk} - IV_{MHk}$ and $I_{MHa} - IV_{MHa}$.

¹ In the case when the splitting of the band was observed the average of the two wavenumbers at which the two peaks appear was taken into account to calculate Δv value.