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A. Rate expressions for double isotopic substitution in ozone 

In many aspects the theoretical treatment of the doubly substituted isotopologue of ozone 

is similar to that of the singly substituted isotopologue (developed in in the main text), but there is 

one critical difference that makes this case important on its own and requires a careful revamp of 

all relevant equations. Namely, in the doubly substituted case, Channel 1 that hosts the reagents 

with symmetric homonuclear oxygen molecule (18O18O + 16O) becomes the lower energy channel 

and has to be taken as a reference of energy for all the metastable reaction intermediates (scattering 

resonances). This is demonstrated by Figure S1 below and is different from Figure 2 of the main 

text for the singly substituted case. Due to this difference, the ΔZPE effect in the experiment 

switches its direction in the doubly substituted case, compared to the singly substituted case. 

Theoretical treatment of this effect should also be modified appropriately, as follows.    
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In the doubly substituted case the processes of formation, decay and stabilization of 

scattering resonances (metastable intermediates) of ozone are represented by the following 

reaction scheme:  

Including these processes in the rate of change expression for the concentrations of intermediate 

species we can write: 

 

(S1) 

𝑑[O3
∗ ]𝑖

𝑑𝑡
= 𝑘𝑖

form,ch1[88][6] + 𝑘𝑖
form,ch2[68][8]  

− 𝑘𝑖
dec,ch1[O3

∗ ]𝑖 −  𝑘𝑖
dec,ch2[O3

∗ ]𝑖 − 𝑘𝑖
stab,sym[M][O3

∗ ]𝑖 − 𝑘𝑖
stab,asym[M][O3

∗ ]𝑖 

(S2) 

 

Figure S1. Two distinct channels of ozone formation (left and right) and the metastable 

ozone states (middle) in the case of double isotopic substitution. Here “6” denotes 16O 

whereas “8” denotes 18O. Lower energy channel corresponds to the heavier diatomic 

reagent 18O18O with smaller zero-point energy. Upper channel corresponds to the lighter 

diatomic reagent 16O18O. Energy difference of the two channels, ΔZPE, is indicated. 
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In the steady state conditions, applicable to ozone formation reaction, we have: 

As before, the rate coefficients for formation of resonances through two channels are converted 

into the corresponding rate coefficients of decay using two equilibrium constants, but here, in the 

case of double isotopic substitutions, the expressions are different:  

Namely, here the 𝑒−ΔZPE/𝑘𝑇 factor shows up in Channel 2 (in contrast with the singly substituted 

case, where it appears in Channel 1). The value of ΔZPE itself in the doubly substituted case is 

also slightly different than in the singly substituted case. Here we have: 

ΔZPE = ZPE(68) − ZPE(88) = 22.94 cm−1  

Using these formulae, we obtain the following expressions for two product-specific rates of 

recombination process: 

0 = 𝑘𝑖
form,ch1[88][6] + 𝑘𝑖

form,ch2[68][8] − 𝑘𝑖
dec[O3

∗ ]𝑖 − 𝑘𝑖
stab[M][O3

∗ ]𝑖 (S3) 

[O3
∗ ]𝑖 =

𝑘𝑖
form,ch1[88][6] + 𝑘𝑖

form,ch2[68][8]

𝑘𝑖
dec + 𝑘𝑖

stab[M] 
 (S4) 

𝐾𝑖
eq,ch1

  =
(2𝐽 + 1) 𝑒−𝐸𝑖/𝑘𝑇

𝑄ch1
 (S5) 

𝐾𝑖
eq,ch2

  =
(2𝐽 + 1) 𝑒−𝐸𝑖/𝑘𝑇

𝑄ch2𝑒−ΔZPE/𝑘𝑇
 (S6) 

𝑅sym  =  [M][68][8]
𝑘stab

𝑄ch2
∑(2𝐽 + 1)𝑝𝑖

sym
 
Γ𝑖

ch2

ℏ
Γ𝑖

tot

ℏ
+ 𝑘𝑖

stab[M]𝑖

𝑒−
𝐸𝑖−ΔZPE

𝑘𝑇              

                  + [M][88][6]
𝑘stab

𝑄ch1
∑(2𝐽 + 1)𝑝𝑖

sym
 
Γ𝑖

ch1

ℏ
Γ𝑖

tot

ℏ
+ 𝑘𝑖

stab[M]

𝑒−
𝐸𝑖
𝑘𝑇      

𝑖

 

(S7) 
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The following four pathway-specific dynamical partition functions can be introduced to simplify 

these expressions: 

Note that here the ΔZPE shift appears in the expressions for 𝑄̃A and 𝑄̃S, while in the case of single 

isotopic substitution it appeared in 𝑄̃B and 𝑄̃I (see Equations 41-44 of the main text).  

The insertion pathway is shown schematically in Fig. S2 below, for the case of double 

isotopic substitution. The case of single isotopic substitution is similar. 

𝑅asym  = [M][68][8] 
𝑘stab

𝑄ch2
∑(2𝐽 + 1)𝑝𝑖

asym
 
Γ𝑖

ch2

ℏ
Γ𝑖

tot

ℏ
+ 𝑘𝑖

stab[M]𝑖

 𝑒−
𝐸𝑖−ΔZPE

𝑘𝑇  

                 + [M][88][6] 
𝑘stab

𝑄ch1
∑(2𝐽 + 1)𝑝𝑖

asym
 
Γ𝑖

ch1

ℏ
Γ𝑖

tot

ℏ
+ 𝑘𝑖

stab[M]𝑖

 𝑒−
𝐸𝑖
𝑘𝑇 

(S8) 

𝑄̃A  ≡  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch2

 Γ𝑖
tot  𝑝𝑖

asym
 𝑒−

𝐸𝑖−ΔZPE
𝑘𝑇

𝑖

 (S9) 

𝑄̃B  ≡  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch1

 Γ𝑖
tot  𝑝𝑖

asym
𝑒−

𝐸𝑖
𝑘𝑇

𝑖

          (S10) 

𝑄̃S  ≡  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch2

 Γ𝑖
tot  𝑝𝑖

sym
𝑒−

𝐸𝑖−ΔZPE
𝑘𝑇

𝑖

 (S11) 

𝑄̃I  ≡  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch1

 Γ𝑖
tot  𝑝𝑖

sym
𝑒−

𝐸𝑖
𝑘𝑇

𝑖

          (S12) 
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The isotope exchange process, and the corresponding equilibrium constant, in the case of 

double substitution are:  

where the factor 𝑒−ΔZPE/𝑘𝑇 is used in Channel 2. The forward direction of the isotope exchange 

here is defined as from Channel 1 to Channel 2, opposite to the singly substituted case. The value 

of this equilibrium constant is expected to be on the order of 2 due to symmetry of the homonuclear 

diatomic reagent in the Channel 1, in which every other rotational state is forbidden by symmetry. 

Using this expression, we can rewrite formula for the rates in the way where all pathways are 

referenced relative to the lowest energy channel, as follows:  

88 + 6 ⇌ 68 + 8 (S13) 

𝐾ex  =  
[68][8]

[88][6]
 =

𝑄ch2𝑒−ΔZPE/𝑘𝑇

𝑄ch1
 (S14) 

𝑅sym =  𝑅S  +  𝑅I  =  𝜅S[M][68][8]  + 𝜅I[M][88][6]  

=  (𝜅S

[68][8]

[88][6]
+ 𝜅I)[88][6][M]  =  𝜅sym[88][6][M] 

(S15) 

 

Figure S2. Schematic of the global PES of ozone that possesses a three-fold symmetry 

with respect to the entrance channels and the product wells. Reagents are indicated by 

black numbers, the product ozone molecules by white numbers, for the case of double 

isotopic substitution. The insertion pathway is shown schematically by red arrows. 
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A relationship between the pathway-specific rate coefficients and the product-specific rate 

coefficients then looks as follows: 

Note that here, in the doubly substituted case, the 𝐾ex sticks to the rate coefficients of pathways A 

and S that originate in the higher energy channel, the Channel 2. Interestingly, the equations for 

product-specific dynamical partition functions  𝑄̃sym and 𝑄̃asym in the doubly-substituted case 

appear to be entirely identical to those derived for the singly-substituted case, simply because these 

formula do not contain any 𝑒−ΔZPE/𝑘𝑇 factors (they analytically cancel, as it was discussed in Sec. 

II of the main text). Therefore, they will not be repeated here.    

B. Rate expressions for channel-specific processes 

Since 𝑅tot = 𝑅A + 𝑅B + 𝑅S + 𝑅I, we can regroup the four contributions into two rates that 

correspond to two entrance channels:  

First consider the case of single isotopic substitution. Using the definitions of Eqs. (36-39, 45-48) 

of the main text, one immediately obtains expressions for the corresponding rate coefficients: 

𝑅asym =  𝑅A  +  𝑅B  =  𝜅A[M][68][8]  +  𝜅B[M][88][6]   

=  (𝜅A

[68][8]

[88][6]
+ 𝜅B)[88][6][M]  =  𝜅asym[88][6][M] 

(S16) 

𝜅sym =  𝜅S𝐾ex + 𝜅I = 𝑘stab
𝑄̃sym 

𝑄ch1
 (S17) 

𝜅asym =  𝜅A𝐾ex + 𝜅B = 𝑘stab
𝑄̃asym 

𝑄ch1
 (S18) 

𝑅ch2 =  𝑅A +  𝑅S  (S19) 

𝑅ch1 =  𝑅B + 𝑅I (S20) 
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Two dynamical partition functions for these processes can be defined as a simple sum: 

Using Equation 41-44 of the main text we obtain the following expressions (through properties of 

the individual resonances):  

This result is also quite interesting. These expressions indicate that the splitting of  𝑝𝑖
tot onto 𝑝𝑖

sym
 

and 𝑝𝑖
asym

 has no influence on 𝑄̃ch1 vs. 𝑄̃ch2 since the same overall stabilization probability enters 

both expressions. In this case the difference between  𝑄̃ch1 and 𝑄̃ch2 comes entirely from splitting 

of Γ𝑖
tot onto Γ𝑖

ch1 and Γ𝑖
ch2, for individual resonances. In this procedure, Γ𝑖

ch1 comes with the ΔZPE 

shift of energy reference, as emphasized above. 

In the doubly substituted case:  

𝜅ch1 = 𝜅B + 𝜅I =  𝑘stab
𝑄̃B + 𝑄̃I

𝑄ch1
 (S21) 

𝜅ch2 = 𝜅A + 𝜅S =   𝑘stab
𝑄̃A + 𝑄̃S

𝑄ch2
 (S22) 

𝑄̃ch1 ≡  𝑄̃B + 𝑄̃I (S23) 

𝑄̃ch2 ≡  𝑄̃A + 𝑄̃S (S24) 

𝑄̃ch1 ≡  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch1

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖 − ΔZPE

𝑘𝑇

𝑖

 (S25) 

𝑄̃ch2 ≡  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch2

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖 
𝑘𝑇

𝑖

            (S26) 

𝑄̃ch1 ≡ 𝑄̃B + 𝑄̃I =  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch1

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖
𝑘𝑇          

𝑖

 (S27) 

𝑄̃ch2 ≡ 𝑄̃A + 𝑄̃S =  ∑(2𝐽 + 1) 𝑤𝑖

 Γ𝑖
ch2

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖−ΔZPE

𝑘𝑇

𝑖

 (S28) 
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Again, the difference from the singly substituted case is that here the 𝑒−ΔZPE/𝑘𝑇 factor comes with 

the upper Channel 2.  

C. Rate expressions for low-pressure and high-pressure limits 

Low-pressure limit is relevant to the atmospheric chemistry, to some laboratory studies, 

but is also important methodologically. In the limit of zero pressure of bath gas, [M] = 0,  the 

weights of all resonances achieve their maximum value 𝑤𝑖 = 1, which simplifies the equations as 

follows (in the case of single-substitution): 

𝑄̃tot
∘  = ∑(2𝐽 + 1) 𝑝𝑖

tot 𝑒−
𝐸𝑖
𝑘𝑇

𝑖

                      (S29) 

𝑄̃sym
∘ = ∑(2𝐽 + 1) 𝑝𝑖

sym

𝑖

𝑒−
𝐸𝑖
𝑘𝑇                     (S30) 

𝑄̃asym
∘ = ∑(2𝐽 + 1) 𝑝𝑖

asym

𝑖

𝑒−
𝐸𝑖
𝑘𝑇                   (S31) 

𝑄̃ch1
∘  = ∑(2𝐽 + 1) 

 Γ𝑖
ch1

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖 − ΔZPE

𝑘𝑇

𝑖

 (S32) 

𝑄̃ch2
∘ =  ∑(2𝐽 + 1) 

 Γ𝑖
ch2

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖 
𝑘𝑇

𝑖

            (S33) 

𝑄̃A
∘    = ∑(2𝐽 + 1)

 Γ𝑖
ch2

 Γ𝑖
tot  𝑝𝑖

asym
 𝑒−

𝐸𝑖
𝑘𝑇         

𝑖

 (S34) 

𝑄̃B
∘  = ∑(2𝐽 + 1) 

 Γ𝑖
ch1

Γ𝑖
tot 𝑝𝑖

asym
𝑒−

𝐸𝑖 − ΔZPE
𝑘𝑇

𝑖

 (S35) 
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An important point to emphasize is that 𝑄̃tot
∘ , 𝑄̃sym

∘  and 𝑄̃asym
∘  do not include the widths of 

resonances, at all. Therefore, in the limit of zero-pressure any isotope effects in symmetric vs. 

asymmetric ozone molecules driven by resonance width (lifetimes of the metastable states) are 

expected to disappear. The expressions for 𝑄̃ch1
∘ , 𝑄̃ch2

∘ , 𝑄̃A
∘ , 𝑄̃B

∘ , 𝑄̃S
∘ and 𝑄̃I

∘ still contain resonance 

widths, but only in the relative ratios Γ𝑖
ch1/Γ𝑖

tot and Γ𝑖
ch2/Γ𝑖

tot. Therefore, the absolute values of 

resonance widths do not really matter. What remains important is a partition (splitting) of Γ𝑖
tot 

between the two reaction channels.  

In the high-pressure limit [M] →  ∞ the resonance weight decreases as a function of 

pressure and increases as a function of width: 

This leads to the following expressions: 

𝑄̃tot
∞   = ∑(2𝐽 + 1)

Γ𝑖
tot

ℏ𝑘stab[M]
 𝑒−

𝐸𝑖
𝑘𝑇

𝑖

          (S39) 

𝑄̃sym
∞  = ∑(2𝐽 + 1)

Γ𝑖
tot

ℏ𝑘stab[M]

𝑝𝑖
sym

𝑝𝑖
tot  𝑒−

𝐸𝑖
𝑘𝑇

𝑖

 (S40) 

𝑄̃asym
∞ = ∑(2𝐽 + 1)

Γ𝑖
tot

ℏ𝑘stab[M]

𝑝𝑖
asym

𝑝𝑖
tot

𝑖

 𝑒−
𝐸𝑖
𝑘𝑇  (S41) 

𝑄̃S
∘  = ∑(2𝐽 + 1) 

 Γ𝑖
ch2

Γ𝑖
tot 𝑝𝑖

sym
𝑒−

𝐸𝑖
𝑘𝑇           

𝑖

 (S36) 

𝑄̃I
∘  = ∑(2𝐽 + 1)

 Γ𝑖
ch1

Γ𝑖
tot 𝑝𝑖

sym
 𝑒−

𝐸𝑖 − ΔZPE
𝑘𝑇

𝑖

 (S37) 

𝑤𝑖 ≈  

Γ𝑖
tot

ℏ
𝑘𝑖

stab[M]
 (S38) 
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           𝑄̃ch1
∞  = ∑(2𝐽 + 1) 

 Γ𝑖
ch1

ℏ𝑘stab[M]
 𝑒−

𝐸𝑖 − ΔZPE
𝑘𝑇  

𝑖

 (S42) 

𝑄̃ch2
∞  = ∑(2𝐽 + 1) 

 Γ𝑖
ch2

ℏ𝑘stab[M]
 𝑒−

𝐸𝑖 
𝑘𝑇

𝑖

 (S43) 

𝑄̃A
∞  = ∑(2𝐽 + 1)

 Γ𝑖
ch2

ℏ𝑘stab[M]

𝑝𝑖
asym

𝑝𝑖
tot 𝑒−

𝐸𝑖
𝑘𝑇           

𝑖

 (S44) 

𝑄̃B
∞  = ∑(2𝐽 + 1)

Γ𝑖
ch1

ℏ𝑘stab[M]

𝑝𝑖
asym

𝑝𝑖
tot

𝑖

𝑒−
𝐸𝑖 − ΔZPE

𝑘𝑇  (S45) 

𝑄̃S
∞  = ∑(2𝐽 + 1)

  Γ𝑖
ch2

ℏ𝑘stab[M]

𝑝𝑖
sym

𝑝𝑖
tot

𝑖

𝑒−
𝐸𝑖
𝑘𝑇               (S46) 

𝑄̃I
∞  = ∑(2𝐽 + 1)

 Γ𝑖
ch1

ℏ𝑘stab[M]

𝑝𝑖
sym

𝑝𝑖
tot

𝑖

𝑒−
𝐸𝑖 − ΔZPE

𝑘𝑇  (S47) 

We see that in this limiting case 𝑄̃tot
∞ , 𝑄̃sym

∞  and 𝑄̃asym
∞  contain Γ𝑖

tot, while 𝑄̃ch1
∞ , 𝑄̃ch2

∞ , 𝑄̃A
∞, 𝑄̃B

∞, 

𝑄̃S
∞ and 𝑄̃I

∞ contain either Γ𝑖
ch1 or Γ𝑖

ch2. But, neither of these come as a ratio, so, the absolute 

values of resonance widths are important in the high-pressure regime. In contrast, the absolute 

values of stabilization probabilities become unimportant. They either completely cancel, as in 𝑄̃tot
∞ , 

𝑄̃ch1
∞  and 𝑄̃ch2

∞ , or come to play but only as relative ratios 𝑝𝑖
sym

/𝑝𝑖
tot and 𝑝𝑖

sym
/𝑝𝑖

tot in expressions 

for 𝑄̃sym
∞ , 𝑄̃asym

∞ , 𝑄̃A
∞, 𝑄̃B

∞, 𝑄̃S
∞ and 𝑄̃I

∞.  

For completeness, we list all these formula for the low- and high-pressure in the doubly-

substituted case:  

𝑄̃tot
∘  = ∑(2𝐽 + 1) 𝑝𝑖

tot 𝑒−
𝐸𝑖
𝑘𝑇

𝑖

                                    (S48) 

𝑄̃sym
∘ = ∑(2𝐽 + 1) 𝑝𝑖

sym

𝑖

𝑒−
𝐸𝑖
𝑘𝑇                                 (S49) 
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𝑄̃asym
∘ = ∑(2𝐽 + 1) 𝑝𝑖

asym

𝑖

𝑒−
𝐸𝑖
𝑘𝑇                             (S50) 

𝑄̃ch1
∘  = ∑(2𝐽 + 1) 

 Γ𝑖
ch1

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖 
𝑘𝑇

𝑖

                       (S51) 

𝑄̃ch2
∘ =  ∑(2𝐽 + 1) 

 Γ𝑖
ch2

Γ𝑖
tot  𝑝𝑖

tot 𝑒−
𝐸𝑖− ΔZPE 

𝑘𝑇

𝑖

            (S52) 

𝑄̃A
∘    = ∑(2𝐽 + 1)

 Γ𝑖
ch2

 Γ𝑖
tot  𝑝𝑖

asym
 𝑒−

𝐸𝑖− ΔZPE
𝑘𝑇

𝑖

           (S53) 

𝑄̃B
∘  = ∑(2𝐽 + 1) 

 Γ𝑖
ch1

Γ𝑖
tot 𝑝𝑖

asym
𝑒−

𝐸𝑖
𝑘𝑇                       

𝑖

 (S54) 

𝑄̃S
∘  = ∑(2𝐽 + 1) 

 Γ𝑖
ch2

Γ𝑖
tot 𝑝𝑖

sym
𝑒−

𝐸𝑖− ΔZPE
𝑘𝑇                

𝑖

 (S55) 

𝑄̃I
∘  = ∑(2𝐽 + 1)

 Γ𝑖
ch1

Γ𝑖
tot 𝑝𝑖

sym
 𝑒−

𝐸𝑖
𝑘𝑇                         

𝑖

 (S56) 

𝑄̃tot
∞   = ∑(2𝐽 + 1)

Γ𝑖
tot

ℏ𝑘stab[M]
 𝑒−

𝐸𝑖
𝑘𝑇                     

𝑖

 (S57) 

𝑄̃sym
∞  = ∑(2𝐽 + 1)

Γ𝑖
tot

ℏ𝑘stab[M]

𝑝𝑖
sym

𝑝𝑖
tot  𝑒−

𝐸𝑖
𝑘𝑇

𝑖

           (S58) 

𝑄̃asym
∞ = ∑(2𝐽 + 1)

Γ𝑖
tot

ℏ𝑘stab[M]

𝑝𝑖
asym

𝑝𝑖
tot

𝑖

 𝑒−
𝐸𝑖
𝑘𝑇         (S59) 

𝑄̃ch1
∞  = ∑(2𝐽 + 1) 

 Γ𝑖
ch1

ℏ𝑘stab[M]
 𝑒−

𝐸𝑖 
𝑘𝑇                    

𝑖

 (S60) 

𝑄̃ch2
∞  = ∑(2𝐽 + 1) 

 Γ𝑖
ch2

ℏ𝑘stab[M]
 𝑒−

𝐸𝑖− ΔZPE 
𝑘𝑇          

𝑖

 (S61) 
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D. Technical details of calculations 

 

The following changes were made in this work, relative to the earlier work of Teplukhin et al.14: 

a) The value of temperature was changed from 296 K used by Teplukhin to 𝑇 = 293 K used 

here, since the experiments of Mauersberger were conducted at this temperature. Note that 

temperature enters the factor 𝑒−ΔZPE/𝑘𝑇 in all the equations derived above, the standard 

expressions for electronic, translational, and rotational partition functions of reagents, the 

ideal gas equation to determine concentration [M] at given pressure, and the formula for 

RMS speed of molecules to express 𝑘stab through σstab . Since T-dependences are 

relatively smooth (the reactions are only slightly exoergic and endoergic), this correction 

resulted in a relatively small change. 

b) In order to treat the upper and lower channels of the recombination reaction equally, the 

contributions of resonances below dissociation thresholds were neglected. Such 

contributions are typically small and originate from the numerical errors of calculations, 

that predict some non-zero widths (decay rates) to the states slightly below dissociation 

threshold, which is unphysical. In the previous work all bound states below the lower 

𝑄̃A
∞  = ∑(2𝐽 + 1)

 Γ𝑖
ch2

ℏ𝑘stab[M]

𝑝𝑖
asym

𝑝𝑖
tot 𝑒−

𝐸𝑖− ΔZPE
𝑘𝑇  

𝑖

 (S62) 

𝑄̃B
∞  = ∑(2𝐽 + 1)

Γ𝑖
ch1

ℏ𝑘stab[M]

𝑝𝑖
asym

𝑝𝑖
tot

𝑖

𝑒−
𝐸𝑖
𝑘𝑇             (S63) 

𝑄̃S
∞  = ∑(2𝐽 + 1)

  Γ𝑖
ch2

ℏ𝑘stab[M]

𝑝𝑖
sym

𝑝𝑖
tot

𝑖

𝑒−
𝐸𝑖− ΔZPE

𝑘𝑇
     (S64) 

𝑄̃I
∞  = ∑(2𝐽 + 1)

 Γ𝑖
ch1

ℏ𝑘stab[M]

𝑝𝑖
sym

𝑝𝑖
tot

𝑖

𝑒−
𝐸𝑖
𝑘𝑇               (S65) 
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dissociation threshold (𝐸𝑖 < 0) were correctly neglected, but the resonances within ΔZPE 

energy range were allowed to decay onto both Channels 1 and 2. This is unphysical since 

the upper channel (Channel 1 in the singly substituted case and Channel 2 in the doubly 

substituted case) is still closed at energies 0 < 𝐸𝑖 < ΔZPE. Therefore, it makes sense to 

neglect the decay of resonances through the upper channel for 𝐸𝑖 < ΔZPE. Moreover, the 

energy of dissociation thresholds grows with the quantum number 𝐾 (body-fixed Z-

projection of 𝐽), since for the symmetric-top rotor case this is a good quantum number that 

correlates with rotational quantum number 𝑗 of the diatomic reagent (66, 68 or 88). For 

ozone molecule with the quantum number 𝐾 only the states of a diatomic reagent with 𝑗 ≥

𝐾 are permitted asymptotically, making the threshold energies rotation-dependent: 𝐸𝑖 >

𝐾(𝐾 + 1)𝐵lower for the lower channel and 𝐸𝑖 > ΔZPE + 𝐾(𝐾 + 1)𝐵upper for the upper 

channels. Note that the values of diatomic rotational constant 𝐵 are different for the two 

channels and are different in the singly and doubly substituted cases too. The values of 

vibrational ΔZPE are also different in the singly and doubly substituted cases. And the 

upper and lower channels switch in the singly and doubly substituted cases. Since the 

overall picture is this complex and it is hard to estimate the overall effect of all these details, 

we decided, in the updated version of theory, to take into account all these factors, in order 

to avoid any bias. This modification also resulted in a relatively small change.  

c) Finally, a bug was discovered in the code of Teplukhin, where the reduced mass of 16O16O 

was used erroneously for the pathway B in the doubly substituted case (should be 18O18O). 

This was corrected in the updated version of the code, and resulted in a significant change 

of 𝜅B and 𝐾ex, but no change in the isotope effects where these two moieties enter together 

and the effect of the diatomic mass cancels. 
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The characteristic values of resonance widths for three kinds of states were computed as average 

using the following formula: 

Γ̃cov =
∑ 𝑄̃𝑖

cov Γ𝑖𝑖

∑ 𝑄̃𝑖
cov

𝑖

 

Γ̃vdw =
∑ 𝑄̃𝑖

vdw Γ𝑖𝑖

∑ 𝑄̃𝑖
vdw

𝑖

 

Γ̃free =
∑ 𝑄̃𝑖

free Γ𝑖𝑖

∑ 𝑄̃𝑖
free

𝑖

 

where 𝑄̃𝑖
𝑥𝑥𝑥 = (2𝐽 + 1) 𝑒− 

𝐸𝑖
𝑘𝑇 𝑤𝑖 𝑝𝑖

𝑥𝑥𝑥 is a contribution of each resonance into the dynamical 

partition function 𝑄̃, used here as a weighting factor in the averaging. The values of 𝑄̃𝑖
cov, 𝑄̃𝑖

vdw 

and 𝑄̃𝑖
free are obtained by substitution of 𝑝𝑖

cov, 𝑝𝑖
vdw and 𝑝𝑖

free into this formula in place of  𝑝𝑖
𝑥𝑥𝑥. 

Note that Γ𝑖 is the total resonance width. The average values of resonance width in symmetric and 

asymmetric isotopomers were computed in the same way, but using 𝑝𝑖
sym

 and 𝑝𝑖
asym

 in place of 

 𝑝𝑖
𝑥𝑥𝑥. Zero-pressure limit was assumed for calculations of all average values, which corresponds 

to 𝑤𝑖 = 1 for each resonance, regardless of its width (as in 𝑄̃𝑖
° above). 

 Location of the effective transition state that separates the covalently bound ozone 

molecule from the weekly-bound van der Waals complex is accurately determined by inspecting 

the dependence of adiabatic energy (of 2D solution for hyper-angles θ and φ) as a function of 

hyperradius ρ. Such dependence indicates a well-defined barrier near ρ† ~ 5.5 Bohr, sensitive to 

the rotational excitation (quantum numbers J and K), recombination pathway under consideration, 

and the number of isotopic substitutions. First, the covalent well probability 𝑝𝑖
cov is obtained by 

integrating the vibrational wave function of scattering resonance through the range 0 < ρ < ρ†. The 

contributions of symmetric and asymmetric ozone molecules, 𝑝𝑖
sym

 and 𝑝𝑖
asym

, are determined 

using hyper-angle φ (see Fig. 4 in the main text). One third of the range in the vicinity of symmetry 
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axis (2π/3 < φ < 4π/3) corresponds to symmetric ozone isotopomer, while the remaining two thirds 

of the φ-range correspond to asymmetric ozone molecules. 

 A complex absorbing potential (CAP) in the form suggested by Manolopoulos [J. Chem. 

Phys. 117, 9552 (2002)] was used to impose the boundary conditions. The CAP was defined with 

the minimum absorption energy 𝐸min = 7 cm-1 and spans the range of ~ 6 Bohr going inward from 

the end of the 𝜌-grid. The optimized DVR-grid for 𝜌 coordinate covered the range of 3 ≤ 𝜌 ≤ 15 

Bohr and consisted of 88 points. It is nearly impossible to converge every individual state above 

the dissociation threshold. Therefore, our convergence parameters were adjusted to ensure 

convergence of the overall recombination rate coefficient to within few percent. Convergence of 

the individual states depends on their properties. Broad resonances with Γ ~ 10 cm-1 are converged 

to within 1 cm-1 or better (both energy and width). Narrower resonances are converged much 

better. Convergence of broader resonances is not important, since they make negligibly small 

contributions to the dynamical partition function 𝑄 (their weights 𝑤𝑖 are close to 1, but their 

probabilities 𝑝𝑖
cov are close to 0). 

  


