

Supplementary Materials

Silica Monolith for the Removal of Pollutants from Gas and Aqueous Phases

Vanessa Miglio ^{1,2}, Chiara Zaccone ^{1,2}, Chiara Vittoni ^{1,2}, Ilaria Braschi ^{2,3,*}, Enrico Buscaroli ³, Giovanni Golemme ⁴, Leonardo Marchese^{1,2} and Chiara Bisio ^{1,2,5,*}

- ¹ Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, viale T. Michel 11, 15121 Alessandria, Italy; vanessa.miglio@uniupo.it (V.M.), chiara.zaccone@uniupo.it (C.Z.), chiara.vittoni@uniupo.it (C.V.), leonardo.marchese@uniupo.it (L.M.)
- ² Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, viale T. Michel 11, 15121 Alessandria, Italy
- ³ Department of Agricultural and Food Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna, Italy; enrico.buscaroli2@unibo.it
- ⁴ Department of Environmental Engineering, University of Calabria, Via P. Bucci 45A, 87036 Rende, Italy; giovanni.golemme@unical.it
- ⁵ CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", via G. Venezian 21, 20133 Milano, Italy
- * Correspondence: chiara.bisio@uniupo.it (C.B.); ilaria.braschi@unibo.it (I.B.); Tel.: +39 0131 360216 (C.B.); +39 051 2096533 (I.B.)

Figure S1. FT-IR spectra of self-supported pellets of Mono-ICE calcined sample after treatment in vacuum at beam temperature (b.t., 35 °C) for 30 min.

Figure S2. Comparison between the first (Frame A) and the second repetition (Frame B) of N_2 adsorption and desorption isotherms of Mono-ICE-A (a), Mono-ICE-B (b) and Mono-ICE-C (c).

Figure S3. N₂ adsorption and desorption isotherms (Frame A) and pore size distribution (Frame B) of Mono-ICE-A-36h (a), Mono-ICE-B-36h (b) and Mono-ICE-C-36h (c).

Sample	SSA _{BET} ¹ [m ² /g]	VT ² [cm ³ ·g ⁻¹]	V _{mesop} ³ [cm ³ ·g ⁻¹]	V _{mesop} ³ [cm ³ ·g ⁻¹]	V _{mesop} ³ [cm ³ ·g ⁻¹]	
			30-80 Å	20-100 Å	20-65 Å	65-100 Å
MCM-41	1103	1.31	0.90	0.95	0.83	0.12

Table S1. Main Textural Features of MCM-41 Silica.

¹ Brunauer-Emmet-Teller (BET) specific surface area (SSA); ² Total pore volume by NLDFT method; ³ Volume of mesopores NLDFT method.

Figure S4. N_2 adsorption and desorption isotherms (Frame A) and pore size distribution (Frame B) of MCM-41 - before and after water treatment at 50 °C for 36 h.

Figure S5. Relative concentration (%) over time of 1.5×10^{-2} mM Rhodamine B in water solution in the presence of commercial MCM-41 powder, before (a**I**) and after (b**O**) water treatment.

Figure S6. Adsorbed amount (g) over time of 1.46×10^{-2} mM Rhodamine B in water solution (63.4 mL) in the presence of Mono-ICE (317 mg).

Figure S7. Zwitterionic form of Rhodamine B prevailing in water at $pH \ge 4.2$