Palatability Enhancement Potential of Hermetia illucens Larvae Protein Hydrolysate in Litopenaeus vannamei Diets
Abstract
:1. Introduction
2. Results
2.1. Feed Composition
2.2. Assessment of Time to Strike
2.3. Assessment of Palatability
3. Discussion
4. Materials and Methods
4.1. Feed Preparation
4.2. Feed Composition Analysis
4.3. Experimental Animals and Setup
4.4. Assessment of Time to Strike
4.5. Assessment of Palatability
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- EUMOFA. Case Study—Fishmeal and Fish Oil; EUMOFA: Brussels, Belgium, 2019. [Google Scholar]
- Farida, E. Behavioral Studies of Chemoreception by the Pacific White Shrimp Litopenaeus vannamei: Testing Attractability and Palatability of Proprietary Chemical Mixture that Augment Feed Pellets Used in Shrimp Aquaculture. Master’s Thesis, Georgia State University, Atlanta, GA, USA, 2016. [Google Scholar]
- Suresh, A.V.; Kumaraguru vasagam, K.P.; Nates, S. Attractability and Palatability of Protein Ingredients of Aquatic and Terrestrial Animal Origin, and Their Practical Value for Blue Shrimp, Litopenaeus stylirostris Fed Diets Formulated with High Levels of Poultry Byproduct Meal. Aquaculture 2011, 319, 132–140. [Google Scholar] [CrossRef]
- Nunes, A.J.P.; Sá, M.V.C.; Andriola-Neto, F.F.; Lemos, D. Behavioral Response to Selected Feed Attractants and Stimulants in Pacific White Shrimp, Litopenaeus vannamei. Aquaculture 2006, 260, 244–254. [Google Scholar] [CrossRef]
- O’Sullivan, A. Addressing the Challenges for Future Management of Antarctic Krill Fisheries, Considering the Increasing Threat of Climate Change and Overfishing. Master’s Thesis, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands, 2017. [Google Scholar]
- Rodhouse, P.G.; White, M.G. Cephalopods Occupy the Ecological Niche of Epipelagic Fish in the Antarctic Polar Frontal Zone. Biol. Bull. 1995, 189, 77–80. [Google Scholar] [CrossRef]
- Arkhipkin, A.I.; Rodhouse, P.G.K.; Pierce, G.J.; Sauer, W.; Sakai, M.; Allcock, L.; Arguelles, J.; Bower, J.R.; Castillo, G.; Ceriola, L.; et al. World Squid Fisheries. Rev. Fish. Sci. Aquac. 2015, 23, 92–252. [Google Scholar] [CrossRef] [Green Version]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of Insect Use for Feed and Food: Life Cycle Assessment Perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasco, L.; Finke, M.; van Huis, A. Can Diets Containing Insects Promote Animal Health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Mouithys-Mickalad, A.; Schmitt, E.; Dalim, M.; Franck, T.; Tome, N.M.; van Spankeren, M.; Serteyn, D.; Paul, A. Black Soldier Fly (Hermetia illucens) Larvae Protein Derivatives: Potential to Promote Animal Health. Animals 2020, 10, 941. [Google Scholar] [CrossRef] [PubMed]
- Liao, I.C.; Chien, Y.-H. The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean. In In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts; Galil, B.S., Clark, P.F., Carlton, J.T., Eds.; Invading Nature—Springer Series in Invasion Ecology; Springer: Dordrecht, The Netherlands, 2011; pp. 489–519. ISBN 978-94-007-0591-3. [Google Scholar]
- Morais, S.; Derby, C. A palatability enhancer that improves the performance of feed pellets in shrimp aquaculture. AquaFeed 2019, 11, 48–49. [Google Scholar]
- Devine, D.V.; Atema, J. Function of Chemoreceptor Organs in Spatial Orientation of the Lobster, Homarus americanus: Differences and Overlap. Biol. Bull. 1982, 163, 144–153. [Google Scholar] [CrossRef]
- Reeder, P.B.; Ache, B.W. Chemotaxis in the Florida Spiny Lobster, Panulirus argus. Anim. Behav. 1980, 28, 831–839. [Google Scholar] [CrossRef]
- Smith, D.M.; Tabrett, S.J.; Barclay, M.C.; Irvin, S.J. The Efficacy of Ingredients Included in Shrimp Feeds to Stimulate Intake. Aquac. Nutr. 2005, 11, 263–272. [Google Scholar] [CrossRef]
- Kani, Y.; Yoshikawa, N.; Okada, S.; Abe, H. Comparison of Extractive Components in Muscle and Liver of Three Loliginidae Squids with Those of One Ommastrephidae Species. Fish. Sci. 2007, 73, 940–949. [Google Scholar] [CrossRef]
- Nunes, A.J.P.; Soares, A.N.; Sabry-Neto, H.; Burri, L. Effect of Dietary Graded Levels of Astaxanthin Krill Oil and High Protein Krill Meal on the Growth Performance and Stress Resistance of Post Larval Litopenaeus vannamei under Hyper-Intensive Nursery Culture. Aquac. Nutr. 2020. [Google Scholar] [CrossRef]
- Lee, C.; Lee, K.-J. Dietary Protein Requirement of Pacific White Shrimp Litopenaeus vannamei in Three Different Growth Stages. Fish. Aquat. Sci. 2018, 21, 30. [Google Scholar] [CrossRef] [Green Version]
- Panini, R.L.; Freitas, L.E.L.; Guimarães, A.M.; Rios, C.; da Silva, M.F.O.; Vieira, F.N.; Fracalossi, D.M.; Samuels, R.I.; Prudêncio, E.S.; Silva, C.P.; et al. Potential Use of Mealworms as an Alternative Protein Source for Pacific White Shrimp: Digestibility and Performance. Aquaculture 2017, 473, 115–120. [Google Scholar] [CrossRef]
- Ayisi, C.L.; Hua, X.; Apraku, A.; Afriyie, G.; Kyei, B.A. Recent Studies Toward the Development of Practical Diets for Shrimp and Their Nutritional Requirements. Hayati J. Biosci. 2017, 24, 109–117. [Google Scholar] [CrossRef]
- Sissener, N.H. Are We What We Eat? Changes to the Feed Fatty Acid Composition of Farmed Salmon and Its Effects through the Food Chain. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef] [Green Version]
- Ramprasath, V.R.; Eyal, I.; Zchut, S.; Shafat, I.; Jones, P.J.H. Supplementation of Krill Oil with High Phospholipid Content Increases Sum of EPA and DHA in Erythrocytes Compared with Low Phospholipid Krill Oil. Lipids Health Dis. 2015, 14, 142. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Gong, M.; Wei, W.; Jin, J.; Wang, X.; Wang, X.; Jin, Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 514–534. [Google Scholar] [CrossRef] [Green Version]
- Tonheim, S.K.; Nordgreen, A.; Høgøy, I.; Hamre, K.; Rønnestad, I. In Vitro Digestibility of Water-Soluble and Water-Insoluble Protein Fractions of Some Common Fish Larval Feeds and Feed Ingredients. Aquaculture 2007, 262, 426–435. [Google Scholar] [CrossRef]
- Kagan, M.L.; West, A.L.; Zante, C.; Calder, P.C. Acute Appearance of Fatty Acids in Human Plasma—A Comparative Study between Polar-Lipid Rich Oil from the Microalgae Nannochloropsis oculata and Krill Oil in Healthy Young Males. Lipids Health Dis. 2013, 12, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Bhail, S.; Sanguansri, L.; Augustin, M.A. Improving the Oxidative Stability of Krill Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 2014, 91, 1347–1354. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Duan, Y.; Zhang, P.; Miao, Z. Effects of Temperature, Salinity, Body Length, and Starvation on the Critical Swimming Speed of Whiteleg Shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 157, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Fuzessery, Z.M.; Childress, J.J. Comparative Chemosensitivity to Amino Acids and Their Role in the Feeding Activity of Bathypelagic and Littoral Crustaceans. Biol. Bull. 1975, 149, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Murueta, J.H.; García-Carreño, F.L. Nutritive Value of Squid and Hydrolyzed Protein Supplement in Shrimp Feed. Aquaculture 2002, 210, 371–384. [Google Scholar] [CrossRef]
- Wang, G.; Yu, E.; Li, Z.; Yu, D.; Wang, H.; Gong, W. Effect of Bioactive Peptides (BPs) on the Development of Pacific White Shrimp (Litopenaeus vannamei Boone, 1931). J. Ocean Univ. China 2016, 15, 495–501. [Google Scholar] [CrossRef]
Component | Diet A (Control: No Palatability Enhancers Added) | Diet B (Containing Squid Meal and Krill Oil) | Diet C (Containing 1% Insect Protein Hydrolysate) | Diet D (Containing 2% Insect Protein Hydrolysate) |
---|---|---|---|---|
Moisture (g/kg) | 4.3 ± 0.0 | 5.5 ± 0.0 | 4.3 ± 0.0 | 4.4 ± 0.0 |
Crude protein (g/kg) | 39.7 ± 0.2 | 39.3 ± 0.3 | 39.0 ± 0.2 | 39.4 ± 0.3 |
Fat (g/kg) | 9.0 ± 0.2 | 9.0 ± 0.1 | 9.1 ± 0.0 | 9.0 ± 0.1 |
Ash (g/kg) | 7.9 ± 0.1 | 7.5 ± 0.1 | 7.8 ± 0.1 | 7.9 ± 0.0 |
Calorific value (MJ/kg) | 20.3 ± 0.0 | 20.3 ± 0.0 | 20.3 ± 0.0 | 20.3 ± 0.0 |
Amino Acids (g/kg Feed) | Diet A (Control: No Palatability Enhancers Added) | Diet B (Containing Squid Meal and Krill Oil) | Diet C (Containing 1% Insect Protein Hydrolysate) | Diet D (Containing 2% Insect Protein Hydrolysate) |
---|---|---|---|---|
Alanine | 22.0 ± 0.8 | 22.0 ± 1.0 | 23.2 ± 2.0 | 22.0 ± 0.5 |
Arginine | 24.0 ± 0.9 | 24.0 ± 1.0 | 24.1 ± 0.5 | 22.8 ± 1.5 |
Aspartic acid | 36.1 ± 0.3 | 35.0 ± 0.0 | 36.4 ± 0.9 | 36.0 ± 0.8 |
Cystine | 5.0 ± 0.6 | 4.8 ± 0.5 | 5.1 ± 0.5 | 5.0 ± 0.1 |
Glutamic acid | 73.0 ± 0.2 | 69.2 ± 0.1 | 69.9 ± 0.1 | 68.0 ± 0.9 |
Glycine | 25.8 ± 0.5 | 26.3 ± 0.3 | 25.9 ± 0.3 | 25.8 ± 0.3 |
Histidine | 9.1 ± 0.3 | 9.4 ± 0.4 | 9.1 ± 0.4 | 9.3 ± 0.5 |
Isoleucine | 15.8 ± 0.4 | 16.2 ± 0.6 | 16.4 ± 0.4 | 15.9 ± 0.4 |
Leucine | 28.1 ± 0.4 | 28.3 ± 0.6 | 28.4 ± 0.3 | 27.7 ± 0.2 |
Lysine | 25.3 ± 0.1 | 26.4 ± 0.2 | 25.5 ± 0.0 | 25.0 ± 0.0 |
Methionine | 8.6 ± 0.7 | 8.7 ± 0.4 | 9.0 ± 0.3 | 8.7 ± 0.3 |
Phenylalanine | 18.8 ± 3.2 | 16.8 ± 0.6 | 17.0 ± 0.3 | 16.7 ± 0.6 |
Proline | 22.4 ± 1.3 | 22.1 ± 0.7 | 20.6 ± 0.3 | 21.8 ± 0.6 |
Serine | 18.3 ± 0.1 | 18.0 ± 0.3 | 17.5 ± 0.3 | 18.4 ± 0.6 |
Threonine | 15.4 ± 0.2 | 15.4 ± 0.2 | 14.1 ± 2.0 | 15.4 ± 0.5 |
Tryptophan | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.3 ± 0.0 |
Tyrosine | 12.3 ± 0.6 | 13.0 ± 0.6 | 12.2 ± 0.5 | 12.7 ± 0.9 |
Valine | 18.5 ± 0.8 | 18.4 ± 0.7 | 18.9 ± 0.6 | 18.7 ± 0.9 |
Fatty Acids (g/kg Fat) | Diet A (Control: No Palatability Enhancers Added) | Diet B (Containing Squid Meal and Krill Oil) | Diet C (Containing 1% Insect Protein Hydrolysate) | Diet D (Containing 2% Insect Protein Hydrolysate) |
---|---|---|---|---|
Lauric acid | 4.0 ± 0.6 | 2.0 ± 1.5 | 1.0 ± 0.0 | 6.0 ± 0.0 |
Myristic acid | 74.0 ± 4.6 | 87.0 ± 9.8 | 74.0 ± 1.5 | 73.0 ± 3.8 |
Pentadecanoic acid | 5.0 ± 0.0 | 5.0 ± 0.6 | 5.0 ± 0.0 | 5.0 ± 0.0 |
Palmitic acid | 212.0 ± 9.8 | 229 ± 23.8 | 217.0 ± 6.1 | 210.0 ± 10.8 |
Palmitoleic acid | 69.0 ± 3.5 | 82.0 ± 7.2 | 70.0 ± 1.5 | 69.0 ± 2.9 |
Heptadecanoic acid | 4.0 ± 0.6 | 4.0 ± 0.6 | 5.0 ± 0.6 | 5.0 ± 0.6 |
Stearic acid | 43.0 ± 1.5 | 43.0 ± 4.2 | 46.0 ± 1.5 | 44.0 ± 3.6 |
Oleic acid | 109.0 ± 4.4 | 125.0 ± 10.0 | 113.0 ± 2.6 | 114.0 ± 8.5 |
Linoleic acid | 109.0 ± 1.0 | 99.0 ± 7.2 | 107.0 ± 0.6 | 110.0 ± 1.5 |
α-Linolenic acid | 17.0 ± 0.6 | 15.0 ± 1.5 | 17.0 ± 0.6 | 18.0 ± 0.6 |
Arachidic acid | 3.0 ± 0.0 | 2.0 ± 0.6 | 3.0 ± 0.0 | 3.0 ± 0.6 |
Eicosadienoic acid | 4.0 ± 0.0 | 3.0 ± 1.2 | 4.0 ± 0.0 | 4.0 ± 0.0 |
Arachidonic acid | 10 ± 0.6 | 7.0 ± 2.1 | 9.0 ± 0.6 | 9.0 ± 1.5 |
Eicosapentaenoic acid | 123.0 ± 13.1 | 90.0 ± 29.5 | 116.0 ± 7.0 | 115.0 ± 21.7 |
Behenic acid | 2.0 ± 0.0 | 2.0 ± 0.0 | 2.0 ± 0.0 | 2.0 ± 0.6 |
Erucic acid | 6.0 ± 0.0 | 7.0 ± 0.6 | 6.0 ± 0.6 | 6.0 ± 0.6 |
Docosabexaenoic acid | 90.0 ± 12.8 | 76.0 ± 26.2 | 84.0 ± 7.0 | 82.0 ± 21.8 |
Lignoceric acid | 1.0 ± 0.6 | 10.0 ± 0.6 | 2.0 ± 0.0 | 1.0 ± 0.6 |
Nervonic acid | 11.0 ± 0.0 | 10.0 ± 0.6 | 12.0 ± 0.6 | 11.0 ± 0.0 |
Component | Insect Protein Hydrolysate 1 |
---|---|
Moisture (g/kg) | 55 |
Crude protein (g/kg) | 455 |
Crude fat (g/kg) | 35 |
Proteins < 1000 da (% of total proteins) | >98 |
Free amino acids (% of total proteins) | 45 |
Component (g/kg) | Free Amino Acids |
---|---|
Alanine | 32 |
Arginine | 20 |
Aspartic acid | 9 |
Cystine | 2 |
Glutamic acid | 16 |
Glycine | 10 |
Histidine | 11 |
Isoleucine | 6 |
Leucine | 10 |
Lysine | 14 |
Methionine | 1 |
Phenylalanine | 7 |
Proline | 20 |
Serine | 8 |
Threonine | 10 |
Tryptophan | 4 |
Tyrosine | 15 |
Valine | 13 |
Component | Diet A (Control: No Palatability Enhancers Added) | Diet B (Containing Squid Meal and Krill Oil) | Diet C (Containing 1% Insect Protein Hydrolysate) | Diet D (Containing 2% Insect Protein Hydrolysate) |
---|---|---|---|---|
Fish Meal LT70 (G/Kg) | 300.0 | 300.0 | 300.0 | 300.0 |
Soymeal 48 (G/Kg) | 250.0 | 193.0 | 240.3 | 230.7 |
Wheat | 389.6 | 417.8 | 389.6 | 389.8 |
Squid Meal 83 | 0.0 | 30.0 | 0.0 | 0.00 |
Insect Protein Hydrolysate | 0.0 | 0.0 | 10.0 | 20.0 |
Fish Oil | 46.0 | 34.7 | 45.9 | 45.7 |
Krill Oil | 0.0 | 10.0 | 0.0 | 0.0 |
Premix * | 10.0 | 10.0 | 10.0 | 10.0 |
Calcium Carbonate | 3.6 | 3.5 | 3.8 | 3.8 |
MCP | 0.8 | 1.0 | 0.4 | 0.0 |
Total | 1000.0 | 1000.0 | 1000.0 | 1000.0 |
Analysis | Method |
---|---|
Moisture content | Regulation (EC) 152/2009 |
Crude protein—Dumas N*6.25 | NEN-EN-ISO 16634 |
Crude fat (after pre-extraction and hydrolysis) | Regulation (EC) 152/2009 |
Fatty acid composition (GC-FID, BF3) | ISO-12966-2/-4 |
Amino acid composition | ISO 13903:2005; Regulation (EC) 152/2009 |
Calorific value | ISO 1928:2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terrey, D.; James, J.; Tankovski, I.; Dalim, M.; van Spankeren, M.; Chakraborty, A.; Schmitt, E.; Paul, A. Palatability Enhancement Potential of Hermetia illucens Larvae Protein Hydrolysate in Litopenaeus vannamei Diets. Molecules 2021, 26, 1582. https://doi.org/10.3390/molecules26061582
Terrey D, James J, Tankovski I, Dalim M, van Spankeren M, Chakraborty A, Schmitt E, Paul A. Palatability Enhancement Potential of Hermetia illucens Larvae Protein Hydrolysate in Litopenaeus vannamei Diets. Molecules. 2021; 26(6):1582. https://doi.org/10.3390/molecules26061582
Chicago/Turabian StyleTerrey, David, Jack James, Ivan Tankovski, Monika Dalim, Michel van Spankeren, Arpita Chakraborty, Eric Schmitt, and Aman Paul. 2021. "Palatability Enhancement Potential of Hermetia illucens Larvae Protein Hydrolysate in Litopenaeus vannamei Diets" Molecules 26, no. 6: 1582. https://doi.org/10.3390/molecules26061582
APA StyleTerrey, D., James, J., Tankovski, I., Dalim, M., van Spankeren, M., Chakraborty, A., Schmitt, E., & Paul, A. (2021). Palatability Enhancement Potential of Hermetia illucens Larvae Protein Hydrolysate in Litopenaeus vannamei Diets. Molecules, 26(6), 1582. https://doi.org/10.3390/molecules26061582