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Abstract: The effective separation of dimethyl carbonate (DMC) from its methanol mixture through
simple, inexpensive and low energy-input method is a promising and challenging field in the process
of organic synthesis. Herein, a reversible adsorption strategy through the assistance of superbase
and CO2 for DMC/methanol separation at ambient condition was described. The process was
demonstrated effectively via the excellent CO2 adsorption efficiency. Notably, the protocol was also
suitable to other alcohol (i.e., monohydric alcohol, dihydric alcohol, trihydric alcohol) mixtures. The
study provided guidance for potential separation of DMC/alcohol mixture in the scale-up production.
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1. Introduction

Dimethyl carbonate (DMC), defined as a green chemical, has many applications in
synthetic chemistry, and it is also used as a solvent, an additive in gasoline, a depurative,
and a surfactant [1–3]. During the past ten years, much attention has been paid to the
carbon dioxide (CO2)-based synthetic routes to DMC, such as transesterification of cyclic
carbonate and methanol [4–7] and carbonylation of CO2 [8–12]/urea [13] with methanol
(Scheme 1). Notably, in these processes, because of the thermodynamic equilibrium and
limited catalytic ability, excess methanol was generally used for obtaining the high efficiency.
Therefore, the target product was always mixed with methanol, and the easily formed
DMC/MeOH binary azeotrope (approximate methanol/DMC composition of 70%:30%)
increased the complexity of DMC separation [14–16]. Until now, the available separation
methods have included extractive distillation, liquid–liquid extraction, selective adsorption,
lower temperature crystallization, and the membrane/distillation integrated process, etc.
Among them, pressure distillation technique is used in industrial processes, and the energy
input is very high. Therefore, improvement and innovation are urgently required for the
enhancement of separation efficiency and the decrease in energy consumption.
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Scheme 1. CO2-sourced routes to dimethyl carbonate (DMC). 
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Scheme 1. CO2-sourced routes to dimethyl carbonate (DMC).

In 2005, Jessop et al. reported a reversible nonpolar-to-polar solvent [17]. In their
work, a non-ionic liquid including an alcohol and an organic base was converted into
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a salt in liquid form upon exposure to a CO2 atmosphere, and then reverted back to its
non-ionic form when exposed to nitrogen or argon gas. After this, the reversible process
was employed as an effective strategy for CO2 capture [18–20]. Referring to these studies,
we speculated that performing the reversible adsorption strategy with CO2, a suitable base
and MeOH could also be a potential candidate for the separation of the MeOH/DMC
mixture. After the adsorption reaction, DMC stays in the liquid phase and the new formed
solid adduct precipitates (Scheme 2). For the mechanism, methanol is initially activated
by 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) and subsequently attacks on the CO2 molecule
with the generation of ionic solid adduct which precipitates from the system.
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Herein, a reversible adsorption strategy utilising superbase, CO2, and methanol for
DMC separation from its methanol mixture at ambient condition was proposed, and the
detailed parameters being related to the adsorption efficiency such as component, solvent,
temperature and pressure were studied. The work aims to provide a separation protocol
featuring as low energy input, renewable, simple and high separation efficiency.

2. Results and Discussion

Initially, various bases in combination with stoichiometric methanol were exam-
ined on the absorption capacity under the neat conditions (Scheme 3). The conjugated
and strong organic bases such as 1,8-diazabicyclo(5.4.0)undec-7-enes (DBU), DBN and
1,1,3,3-tetramethylguanidine (TMG) belonging to superbase [21] showed high absorp-
tion ability for 1 h under ambient pressure of CO2. In addition, the common bases
such as pyridine derivative, N,N,N’,N’-tetramethyl-1,6-hexanediamine (TMHDA) and
1-methylimidazole (MeIM) displayed weak absorption ability. The basicity and conju-
gated structure of base candidates were both key factors for high and fast CO2 absorption.
Among them, 7.4 mmol CO2 was captured through 10 mmol methanol and 10 mmol DBN
under identical conditions.

The solvent effect is one of most key factors for CO2 capture in the CH3OH/DMC
mixture, and therefore was investigated using DBN as a base here (Table 1). As seen
from the results for the first 1h (entries 1–4), the initial absorption rate decreased sharply.
Furthermore, the absorptive amount increased a lot after 16 h. These results reveal that
the organic media could reduce the reaction rate, and the reason is probably that the low
CO2 solubility limited the molecule transfer. In addition, polar solvent is beneficial for
the enhancement of CO2 absorption rate. To verify these speculations, the solubility of
CO2 in the solvent used in Table 1 was explored (Supplementary Materials, Table S1).
The order of solubility under ambient conditions is as follows: S(DMF, 58.02 mg/L) >
S(DMC, 19.92 mg/L) > S(toluene, 14.58 mg/L) > S(hexane, 6.63 mg/L). The results support
the hypothesis that the CO2 diffusion process was hindered by the medium. Meanwhile,
the trend of the absorption capacity for 16 h was also consistent with the solubility rule
(entries 1–4). Moreover, the increase in the temperature could lead to the further decrease
in absorption rate (entry 3 vs. 5 and entry 6 vs. 7). Consider the absorption efficiency
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(entry 6) and operation convenience, the next experiments were carried out at room
temperature. With an increase in the pressure, the absorption process was sharply enhanced
and saturated absorption loading was achieved even in a shorter time (entries 9–11). Under
the pressured conditions, the absorption process also quickly reached the balance for other
solvents but with an absorption capacity slightly lower than the maximum absorption
capacity (entries 12–14).
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Table 1. Parameters investigation on the absorption a.

Entry Solvent Pressure/MPa Temp./◦C
CO2 Absorption Loading/mmol

20 min 1 h 100 min 16 h

1 hexane 0.1 12 - 1.05 - 6.01
2 toluene 0.1 12 - 1.65 - 7.56
3 DMC 0.1 12 - 1.34 - 8.78
4 DMF 0.1 12 - 1.92 - 9.02
5 DMC 0.1 25 - 0.56 1.60 -
6 - 0.1 25 - 9.50 9.60 -
7 - 0.1 35 - 0 0.25 -
8 DMF 0.1 25 - 1.89 2.70 9.41
9 DMF 1.0 25 9.42 - - -
10 DMF 2.0 25 9.45 - - -
11 DMF 3.4 25 9.47 - - -
12 toluene 1.0 25 8.63 - - -
13 toluene 1.8 25 8.72 - - -
14 DMC 1.0 25 8.21b - - 8.22

a Conditions: MeOH (10 mmol, 0.32 g), DBN (10 mmol, 1.24 g), solvent (3 mL), CO2 balloon (0.1 MPa). b 40 min. Blank absorption was
deducted for all the data. N,N-dimethylformamide (DMF)
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The effect of DMC concentration on the absorption was also investigated under at-
mospheric pressure (Figure 1). With the increase in DMC content in the mixture, the CO2
absorption loading decreased quickly during the same time. In total, the absorption effi-
ciency is not enough for application in the separation of CH3OH/DMC mixture. Therefore,
further improvement was obtained through increasing CO2 pressure. Under 1.0 MPa CO2
for only 20 min, high CO2 absorption capacity was gained (Figure 1b). The separation
efficiency of DMC/MeOH is up to 98.7% (Figure 1c).
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Figure 1. Adsorption separation strategy for DMC and MeOH mixture. Conditions: MeOH (10 mmol,
0.32 g), DBN (10 mmol, 1.24 g), DMC (15–90 wt%, 0.63–32 mmol, 0.057–2.88 g), 25 ◦C, (a) CO2 balloon,
2 h; (b,c) CO2 1.0 MPa, 20 min. Blank absorption was not deducted for the data.

Here, the freezing-centrifugation technology was used in the separation process. First
of all, the adducts are sensitive to the temperature and water, and they will decompose
under the heat condition (approximate 35 ◦C, see entry 7 of Table 1). In addition, in the
separation process, one of the most crucial factors is the solubility of the adducts in the
DMC or other solvents. The lower solubility will give a higher proportion or purity of
DMC in the mother liquid. Taken an example, with the assistance of PhCH3, the ratio
of DMC to CH3OH (most in adduct form) in the mother liquid is up to 20. The DBN,
CH3OH and CO2 from the adduct were successively recovered with heat (> 35 ◦C). The
study provided a new and potential method for DMC and CH3OH mixture separation by
a low energy-input manner.

In the process of the “two step” method, namely the transesterification of cyclic
carbonate (ethylene carbonate or propylene carbonate) and methanol [22], several alcohols
coexist, which further increases the complexity of separation. Therefore, typical alcohols
including monohydric alcohol, dihydric alcohol, trihydric alcohol and their mixtures
were also verified here. As seen in Table 2, both monohydric alcohol and polyhydric
alcohol showed high CO2 absorption efficiency (entries 1–4). However, with the increase in
hydroxyl quantity in alcohol molecule, the absorption rate reduced. The reason is probably
that the elevated viscosity hinders CO2 molecule transfer. Furthermore, the mixtures of
methanol and dihydric alcohols were also demonstrated effectively for CO2 absorption
with high rate and capacity (entries 5–8).
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Table 2. The absorption investigation on the mixture of DMC and various alcohol candidates.

Entry DMC/wt%
Alcohol Candidate

CO2
Absorption/mmol

Separation Efficiency of
MeOH/%Alcohol Type Loading (mmol)

or Mole Ratio

1 22.9 EtOH 10 9.52 95.2
2 30.6 EG 5 8.92 89.2
3 26.5 PG 5 8.45 84.5
4 30.9 Glycerol 3.33 7.28 72.8
5 30.3 MeOH and EG 2:1 9.64 96.4
6 28.1 MeOH and PG 2:1 9.78 97.8
7 10 MeOH and PG 2:1 9.76 97.6
8 80 MeOH and PG 2:1 9.15 91.5

Conditions: DBN (10 mmol, 1.24 g), 10 mmol –OH group in alcohol or mixture, CO2 1.0 MPa, 20 min, 25 ◦C. Blank absorption was not
deducted for the data; ethylene glycol (EG), 1,2-propylene glycol (PG).

3. Materials and Methods
3.1. General Information

General analytic methods. 1H-NMR spectra were recorded on 400 MHz spectrom-
eters (Bruker AVANCE IIITM 400 MHz, Baden, Switzerland) using DMSO-d6 as solvent
referenced to DMSO-d6 (2.50 ppm). 13C-NMR was recorded at 100.6 MHz in DMSO-d6
(39.52 ppm). Multiplets were assigned as singlet, doublet, triplet, doublet of doublet,
multiplet, and broad singlet.

3.2. Materials

CH3OH (analytical reagent, >99.5%, Tianjin Fengchuan Chemistry Reagent Limited
Company, Tianjin, China). Carbon dioxide (99.999%, Shanxi Yihong Gas Industry Limited
Company, Taiyuan, Shanxi, China). The reagents, i.e., 1,8-diazabicyclo(5.4.0)undec-7-enes
(DBU, 99%), 1,5-diazabicyclo(4.3.0)non-5-ene (DBN, 98%), 1,1,3,3-tetramethylguanidine
(TMG, 99%), N,N,N′,N′-tetramethyl-1,6-hexanediamine (TMHDA, 99%) and 1-methylimid-
azole (MeIM, 99%), were obtained from Aladdin (Aladdin Industrial Corporation, Shanghai,
China) and were used as received.

3.3. General Procedure for the Absorption Reaction

The absorption process was performed in a 50 mL autoclave with a glass vessel
inside equipped with magnetic stirring under 1.0 MPa CO2 (10 mL Schlenk tube under
atmospheric pressure of CO2). After introducing DBN (10 mmol, 1.24 g), CH3OH (10 mmol,
0.32 g), and DMC (0–90 wt%), the autoclave was sealed and filled with CO2 to keep
the pressure of CO2 under 1.0 MPa. Then, the reaction mixture was stirred at 25 ◦C for
20 min. When the absorption reaction was completed, the residual CO2 was carefully
released. The absorbed CO2 was calculated by the increased weight of the glass vessel.
Note that these adducts are very sensitive to the water and temperature. NMR technology
was selected for the characterization of these adducts. During the process, trace water
molecules were introduced, and a small part of the adducts was decomposed. However,
the characterization was not obviously affected, as indicated by the spectrum.

3.4. General Procedure for the Separation

Freezing-centrifugation technology was used in the separation process. We took an
example with the conditions of DBN (10 mmol, 1.24 g), CH3OH (10 mmol, 0.32 g), DMC
(27 wt%), and PhCH3 (10 mL) under 1.0 MPa CO2 at 25 ◦C for 20 min. After completing the
absorption reaction (see Procedure 3.3.), the tube was sealed and stored at −7 ◦C for one
hour, and then centrifuged at 3000 revolutions per minute for one minute. The upper liquid
was brought out and analyzed by gas chromatography. The precipitate was decomposed
over heat and recovered.
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4. Conclusions

In conclusion, we have demonstrated an unprecedentedly reversible adsorption strat-
egy using a superbase, CO2, and methanol for DMC separation at ambient conditions.
The low temperature and viscosity, high CO2 pressure, and medium are verified to be
beneficial for the adsorption process. This strategy is compatible with a wide range of
DMC concentrations, with excellent separation efficiency. The effective separation of DMC
from its methanol mixture through simple, inexpensive, and low energy input method
is also suitable for other alcohols (i.e., monohydric alcohol, dihydric alcohol, trihydric
alcohol) or their mixture. The exploration of the whole separation technology is underway
in our laboratory.

Supplementary Materials: The following are available online, Table S1: Solubility of CO2 in different
solvents; Part 2: NMR Data of the Adducts; Part 3: Spectral Copies of the Adducts.
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