

Supplementary Information

Effect of Substituents of Cerium Pyrazolates on Carbon Dioxide Activation

Uwe Bayer, Adrian Jenner, Jonas Riedmaier, Cäcilia Maichle-Mössmer, and Reiner Anwander*

1) NMR Spectra (solvent signals are marked with *)

Figure S1. ¹H NMR spectrum (C₆D₆, 400.13 MHz, 26 °C) of 2.

Figure S2. ¹H NMR spectrum (C₆D₆, 400.13 MHz, 26 °C) of 3.

Figure S3. ¹H NMR spectrum (THF- d_8 , 400.13 MHz, 26 °C) of 4.

Figure S4. ⁷Li NMR spectrum (THF-ds, 116.64 MHz, 26 °C) of 4.

Figure S5. ¹H NMR spectrum (THF-*ds*, 400.13 MHz, 26 °C) of 5.

Figure S6. ⁷Li NMR spectrum (THF-ds, 116.64 MHz, 26 °C) of 5.

Figure S7. Stacked ¹H NMR spectra (C₆D₆, 400.13 MHz, 26 °C) of 1 (green trace, top) and 1 + CO₂ (blue trace, bottom).

Figure S8. Stacked ¹H NMR spectra (C₆D₆, 400.13 MHz, 26 °C) of 2 (green trace, top) and 2 + CO₂ (blue trace, bottom).

Figure S9. Stacked ¹H NMR spectra (C₆D₆, 400.13 MHz, 26 °C) of 3 (green trace, top) and 3 + CO₂ (blue trace, bottom).

Figure S10. ¹H NMR spectrum (THF-*d*₈, 400.13 MHz, 26 °C) of 4 + CO₂.

Figure S11. ¹H NMR spectrum (THF-ds, 400.13 MHz, 26 °C) of 5 + CO₂.

2) Crystallographic Data

Crystals for X-ray structure analysis were grown using saturated solutions of toluene/*n*-hexane (2), THF/Et₂O (4, 5). Suitable crystals for were handpicked in a glovebox, coated with Parabar 10312 and stored on microscope slides, and mounted rapidly outside the glovebox onto a micro loop. Data collection was done on a Bruker APEX II Duo diffractometer by using QUAZAR optics and Mo K α (λ = 0.71073 Å). The data collection strategy was determined using COSMO [1] employing ω scans. Raw data were processed by APEX 3 [2] and SAINT [3], corrections for absorption effects were applied using SADABS [4]. The structures were solved by direct methods and refined against all data by full-matrix least-squares methods on F² using SHELXTL [5] and SHELXLE [6]. All atoms were refined anisotropically. Disorder models are calculated using DSR [7], a program included in ShelXle, for refining disorder.

Plots were generated by using CCDC Mercury 3.19.1 [8]. Further details regarding the refinement and crystallographic data are listed in Table S1 and in the CIF files.

	2	4	5
formula	C74H60CeN8	C72H112Ce2Li2N8O10	C72H80CeLiN4O6
CCDC	2069960	2069959	2069961
M [g⋅mol ⁻¹]	1201.42	1543.81	1244.46
λ [Å]	0.71073	0.71073	0.71073
color	purple	colorless	colorless
crystal dimensions [mm]	0.500 x 0.095 x 0.092	0.172 x 0.150 x 0.113	0.259 x 0.153 x 0.080
crystal system	orthorhombic	triclinic	triclinic
space group	Pbcn	PĪ	$P\overline{1}$
a [Å]	23.7563(12)	11.6442(14)	12.3890(10)
b [Å]	12.7848(7)	13.6044(16)	13.5313(11)
c [Å]	19.3528(10)	14.1370(17)	18.6323(15)
α [°]	90	61.905(3)	88.927(2)
β [°]	90	71.159(3)	88.581(2)
γ [°]	90	86.648(3)	81.026(2)
V [ų]	5877.8(5)	1857.9(4)	3084.0(4)
Ζ	4	1	2
F(000)	2472	802	1298
T [K]	173(2)	100(2)	100(2)
Qcalcd [g·cm ⁻³]	1.358	1.380	1.340
μ[mm ⁻¹]	0.827	1.269	0.795
Data / restraints / param- eters	7918 / 123 / 442	10020 / 0 / 424	14249 / 1585 / 997
Goodness of fit	1.017	1.022	1.041
$R_1 (I > 2\sigma (I))^{[a]}$	0.0297	0.0353	0.0657
ωR2 (all data) ^[b]	0.0811	0.0823	0.1804

 ${}^{[a]}R_1 = \Sigma(||F0| - |Fc||) / \Sigma |F0|, F0 > 4s(F0). \ _{\omega}R_2 = \{\Sigma[w(F02 - Fc2)2 / \Sigma[w(F02)^2]\}^{1/2} / \Sigma[w(F02)^2] \}$

3) References

- 1. COSMO, v. 1.61; Bruker AXS Inc.: Madiso, Wi, 2012.
- 2. APEX 3, 2017.3-0, Bruker AXS Inc., Madison, WI, 2017.
- 3. SAINT v. 8.38A, Bruker AXS Inc., Madison, WI, 2017.
- 4. SADABS Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. J. Appl. Cryst. 2015, 48, 3-10.
- 5. Sheldrick G.M., SHELXT Acta Cryst. 2015, A71, 3-8.
- 6. Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284, doi:10.1107/S0021889811043202.
- Kratzert, D.; Holstein, J.J.; Krossing, I. DSR: Enhanced Modelling and Refinement of Disordered Structures with SHELXL. J. Appl. Crystallogr. 2015, 48, 933–938, doi:10.1107/S1600576715005580.
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. *Mercury CSD 2.0 – New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr.* 2008, 41, 466–470, doi:10.1107/S0021889807067908.