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Abstract: Baicalin which has multiple biological activities is the main active component of the root of
Scutellaria baicalensis Georgi (SBG). Although its isolation and purification by adsorption methods
have aroused much interest of the scientific community, it suffered from the poor selectivity of the
adsorbents. In this work, an environmentally benign method was developed to prepare ionic liq-
uids (ILs) grafted silica by using IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
([C4mim]NTf2) and ethanol as reaction media. The IL 1-propyl-3-methylimidazolium chloride
([C3mim]Cl) grafted silica ([C3mim]+Cl−@SiO2) was used to adsorb and purify baicalin from the
root extract of Scutellaria baicalensis Georgi (SBG). Experimental results indicated that the adsorption
equilibrium can be quickly achieved (within 10 min). The adsorption behavior of [C3mim]+Cl−@SiO2

for baicalin was in good agreement with Langmuir and Freundlich models and the adsorption was a
physisorption process as suggested by Dubinin–Radushkevich model. Compared with commercial
resins, [C3mim]+Cl−@SiO2 showed the strongest adsorption ability and highest selectivity. After
desorption and crystallization, a purity of baicalin as high as 96.5% could be obtained. These results
indicated that the ILs grafted silica materials were promising adsorbents for the adsorption and
purification of baicalin and showed huge potential in the purification of other bioactive compounds
from natural sources.

Keywords: ionic liquids (ILs); grafted silica; adsorption; baicalin; purification

1. Introduction

Scutellaria baicalensis Georgi (SBG) is one of the traditional medicine plants in Asia.
Its roots are widely used as a remedy for the treatment of infection of the respiratory
tract, inflammation, fever, and have anticancer, antimutagen, antiradical and lowering
blood pressure effects [1–3]. Furthermore, the roots of SBG are also regarded as a popular
functional food and usually used to stew soup with pork tripe or chicken in Asia [4].
Recent work reveals that baicalin is the main active ingredient of the roots of SBG and
exhibits high antioxidant and hydroxyl radicals scavenging activity, which makes baicalin
a potential cancer-chemopreventive agent against tumor promotion [5,6]. The extraction
and purification of baicalin from SBG have aroused extensive concern among the scientific
community. At present, many extraction methods including ultrasound-assisted extraction
(UAE) [7,8], supercritical fluid extraction (SFE) [9], ultrahigh pressure extraction (UPE) [10],
microwave-assisted extraction (MAE) [11], and heat reflux extraction (HRE) [7,12–15] were
developed to isolate baicalin from SBG. After extraction, a purification procedure is needed
to obtain high purity baicalin. In this context, adsorption method with polyamide [13] or
macroporous resin [15] as adsorbents and counter-current chromatography (CCC) [8,14]
have been used to purify baicalin from the extract of SBG. Although CCC was successively
applied to purify baicalin, this technique involves the use of sophisticated instruments,
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which increases the operating cost [15]. Adsorption is a low-cost method with the advantage
of ease of operation. Du et al. [15] used a non-polar macroporous resin (model HPD-100) to
separate and purify baicalin from the extract of SBG. This resin exhibited good adsorption
and desorption properties. After treatment with HPD-100 resin, the purity of baicalin
was 58.3% with a recovery yield of 80.4%. Chi et al. [13] used polyamide resin as an
adsorbent to purify baicalin and studied the adsorption mechanism. The experimental
results showed that the adsorption behavior of polyamide to baicalin agreed with the
Freundlich equation and the baicalin with a purity of 33.86% (wt%) was obtained after
treatment with polyamide.

Based on the above discussion, there is an urgent necessity to develop a high-effective
absorbent in order to obtain high-pure baicalin. As shown in Figure 1, baicalin is an
organic acid, has a large π-conjugated structure and contains hydroxyl groups. These
characteristics mean that baicalin has the tendency to form hydrogen bonds and to interact
with other π-conjugated systems via π-π stacking. Therefore, the adsorbent which has
a π-conjugated structure and contains the groups easy to form hydrogen bonds may be
a good choice to achieve high effective and selective adsorption for baicalin. Recently,
ionic liquids (ILs) and their analogues, deep eutectic solvents (DESs) have been widely
applied to extract bioactive compounds due to their excellent solubility for organic com-
pounds [16–21]. Furthermore, imidazolium-based ILs have a π-conjugated structure and
the H atom of C2–H on the imidazolium cation has the tendency to form hydrogen bonds
with strongly electronegative atoms (e.g., O, N, and halide) (Figure 1) [22–25]. There-
fore, the absorbents with their surfaces modified by ILs may provide high adsorption
capacity and selectivity. At present, silica is usually used as carrier for immobilizing ILs
due to its low-cost and nontoxic properties [26,27]. Two routes are usually adopted to
covalently graft ILs to the surface of silica (Figure 2): (I) halide-containing group (e.g.,
3-chloropropyl) was firstly introduced on the surface of silica via the reaction between
silane coupling agents (e.g., (3-chloropropyl)trimethyoxysilane (CPTMOS)) and silica.
Subsequently, the ILs were immobilized on the surface of silica through quaternization
reaction [28–31]. (II) The ILs containing halide group were firstly synthesized via the re-
action between alkylimidazole and silane coupling agents, following the grafting ILs to
the silica surface via alcohol condensation [27,32,33]. As shown in Figure 2, current meth-
ods for the preparation of IL modified silica involve the use of dimethylformamide and
toluene as reaction media. It is well known that dimethylformamide is carcinogenic [34]
and clinical studies suggest that toluene is a neurotoxin which causes cerebral white mat-
ter damage [35]. It is of great importance to explore an environmental benign method
which avoids the use of high toxic solvents. Toxic experiments indicate that the IL, 1-
butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2) is practi-
cally nontoxic towards marine and freshwater fish based on acute toxicity rating scale by
fish and wildlife service (FWS) [36]. Additionally, the toxic assay by means of glucose-
uptake inhibition experiments also shows that [C4mim]NTf2 is not toxic at a concentration
of 5% (v/v) [37]. These observations suggest that [C4mim]NTf2 is a biocompatible sol-
vent. Furthermore, [C4mim]NTf2 has good solubility to silane reagents, such as tetraethyl
orthosilicate (TEOS) and CPTMOS.

Figure 1. Chemical structures of baicalin and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
([C4mim]NTf2).
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Figure 2. Schematic diagrams of the preparation of ILs grafted silica by reported routes and the proposed method.

Based on the above discussion, the present work suggested an environmentally benign
method to prepare IL-supported silica (Figure 2): the silane reagents, TEOS and CPTMOS,
were dissolved into [C4mim]NTf2 and the hydrolysis occurred at the interface between
IL and water phases (TEOS was allowed to hydrolyze for 20 min before the addition of
CPTMOS due to their different hydrolytic rates). The resultant product was reacted with N-
methylimidazole in the medium of ethanol at 80 ◦C for 8 h to produce the IL-modified silica.
The adsorption and desorption behavior of this material for baicalin was systematically
studied. Finally, it is believed that the IL-grafted silica will have great potential in practical
purification of baicalin and the adsorption and purification of other natural bioactive
compounds.

2. Results and Discussion
2.1. Optimization of the Preparation Conditions of the ILs Grafted Silica

In this work, the ILs grafted silica was prepared by two-step reactions: (I) the co-
hydrolysis and co-condensation of CPTMOS and TEOS in [C4mim]NTf2 medium in the
presence of ammonia solution (NH3) to produce C3Cl@SiO2. (II) The quaternization reac-
tion between C3Cl@SiO2 and imidazole derivatives (MIM, C2OHIM, or BzIM). Therefore,
the reaction conditions such as the mole ratio of CPTMOS to TEOS, the dosages of NH3,
the reaction time of quaternization and the dosage of [C4mim]NTf2 were optimized using
the preparation of [C3mim]+Cl−@SiO2 as a representative. As shown in Figure 3a, with the
mole ratio of CPTMOS to TEOS increasing from 0.25 to 1.0, the adsorption ability of the
final product [C3mim]+Cl−@SiO2 for baicalin increases. The reason lies in that CPTMOS is
the active component, which can react with MIM to produce IL. However, further increase
in the mole ratio of CPTMOS to TEOS leads to the decrease of the adsorption ability of
[C3mim]+Cl−@SiO2. Primary experiments suggest that without the addition of TEOS,
i.e., only using CPTMOS as starting material, the final product [C3mim]+Cl−@SiO2 is
completely soluble in water. That is to say, high mole ratio of CPTMOS to TEOS results in
the loss of IL from the surface of silica, subsequently decreasing the adsorption ability of
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[C3mim]+Cl−@SiO2. based on this observation, 1.0 is selected as the optimal mole ratio of
CPTMOS to TEOS for the preparation of [C3mim]+Cl−@SiO2.

Figure 3. Effect of the mole ratio of CPTMOS to TEOS (a) (dosage of [C4mim]NTf2, 1.0 g; NH3 concentration, 4.2 wt%;
quaternization reaction time, 12 h; mole ratio of MIM to C3Cl@SiO2 of the quaternization reaction, 3.0; adsorption test:
[C3mim]+Cl−@SiO2, 40 mg; baicalin aqueous solution, 5.0 × 10−5 mol·L−1, pH 5.0, 10 mL; adsorption time, 1 h; adsorption
temperature, 25 ◦C) and NH3 concentration (b) (dosage of [C4mim]NTf2, 1.0 g; mole ratio of CPTMOS to TEOS, 1.0;
quaternization reaction time, 12 h; mole ratio of MIM to C3Cl@SiO2 of the quaternization reaction, 3.0; adsorption test:
[C3mim]+Cl−@SiO2, 40 mg; baicalin aqueous solution, 5.0 × 10−5 mol·L−1, pH 5.0, 10 mL; adsorption time, 1 h; adsorption
temperature, 25 ◦C) on the adsorption efficiency of [C3mim]+Cl−@SiO2. Experiments were conducted in triplicate.

Generally, NH3 acts as catalyst in the hydrolysis and condensation of TEOS and CPT-
MOS [38,39]. The effect of NH3 concentration on the adsorption ability of [C3mim]+Cl−@SiO2
is shown in Figure 3b. As can be seen, [C3mim]+Cl–@SiO2 has stronger adsorption ability
for baicalin at lower NH3 concentration. The reason may lie in that lower NH3 concen-
tration means lower reaction rates, which results in the better co-condensation of TEOS
and CPTMOS. Furthermore, when 2.1 wt% of NH3 is adopted, the hydrolysis rate of TEOS
is slow (the generation of silica gel requires about 40 min). Therefore, 4.2 wt% of NH3 is
selected for the following experiments.

To optimize the reaction conditions of quaternization, the mole ratio of MIM to
C3Cl@SiO2 was firstly investigated and the results shown in Figure 4a indicate that excess
amount of MIM is needed in order to convert more C3Cl@SiO2 to [C3mim]+Cl−@SiO2.
Based on this observation, 3.0 is selected as the optimal mole ratio of MIM to C3Cl@SiO2.
The effect of reaction time of quaternization shown in Figure 4b suggests that 12 h is enough
for the quaternization reaction between MIM and C3Cl@SiO2. As shown in Figure 4c, with
the use of [C4mim]NTf2 as reaction medium of the hydrolysis and condensation of TEOS
and CPTMOS, [C3mim]+Cl−@SiO2 shows stronger adsorption ability for baicalin. The
reason may lie in that the hydrolysis and condensation of TEOS and CPTMOS occur at the
interface of [C4mim]NTf2 and water phases and thus the reaction rates are lower compared
with the reaction system without the use of [C4mim]NTf2. Lower reaction rate means better
co-condensation of TEOS and CPTMOS. Based on these results, 1.0 g of [C4mim]NTf2 is
selected as the optimal IL dosage.
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Figure 4. Effect of the mole ratio of MIM to C3Cl@SiO2 (a) (dosage of [C4mim]NTf2, 1.0 g; mole ratio of CPTMOS to TEOS,
1.0; NH3 concentration, 4.2 wt%; quaternization reaction time, 12 h; adsorption test: [C3mim]+Cl−@SiO2, 40 mg; baicalin
aqueous solution, 5.0 × 10−5 mol·L−1, pH 5.0, 10 mL; adsorption time, 1 h; adsorption temperature, 25 ◦C), reaction time
of quaternization (b) (dosage of [C4mim]NTf2, 1.0 g; mole ratio of CPTMOS to TEOS, 1.0; NH3 concentration, 4.2 wt%;
mole ratio of MIM to C3Cl@SiO2 of the quaternization reaction, 3.0; adsorption test: [C3mim]+Cl−@SiO2, 40 mg; baicalin
aqueous solution, 5.0 × 10−5 mol L−1, pH 5.0, 10 mL; adsorption time, 1 h; adsorption temperature, 25 ◦C) and dosage of
[C4mim]NTf2 (c) (mole ratio of CPTMOS to TEOS, 1.0; NH3 concentration, 4.2 wt%; mole ratio of MIM to C3Cl@SiO2 of
the quaternization reaction, 3.0; quaternization reaction time, 12 h; adsorption test: [C3mim]+Cl−@SiO2, 40 mg; baicalin
aqueous solution, 5.0× 10−5 mol·L−1, pH 5.0, 10 mL; adsorption time, 1 h; adsorption temperature, 25 ◦C) on the adsorption
efficiency of [C3mim]+Cl−@SiO2. Experiments were conducted in triplicate.

In summary, the optimal conditions for the preparation of the ILs grafted silica are as
follows: mole ratio of CPTMOS to TEOS, 1.0; NH3 concentration, 4.2 wt%; mole ratio of
MIM to C3Cl@SiO2, 3.0; reaction time, 12 h; dosage of [C4mim]NTf2, 1.0 g.

The N-(2-hydroxyethyl)imidazolium- and N-benzylimidazolium-based ILs grafted
silica [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2 were also synthesized according
to the above reaction conditions.

2.2. Characterization of ILs Grafted Silica

Elemental analysis and FT-IR spectra were used to confirm whether the ILs were
grafted onto the surface of silica. Elemental analysis indicates that the N contents (wt%)
of C3Cl@SiO2, [C3mim]+Cl−@SiO2, [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2
are <0.01%, 1.52%, 1.26%, and 1.26%, respectively. The increase in the N content con-
firms the successful grafting ILs onto the silica surface. The FT-IR spectra of C3Cl@SiO2,
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[C3mim]+Cl−@SiO2, [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2 are illustrated in
Figure 5. As can be seen, compared with C3Cl@SiO2, a new absorption peak can be observed
for the ILs grafted silica (1564−1 for [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2 and
1573 cm−1 for [C3mim]+Cl−@SiO2), which corresponds to the C=N stretching vibration of
the imidazolium ring [40,41]. This observation also suggests that the ILs are successfully
grafted onto the silica surface.

Figure 5. FT-IR spectra of C3Cl@SiO2, [C3mim]+Cl−@SiO2, [C3C2OHim]+Cl−@SiO2, and [C3Bzim]+Cl−@SiO2.

The TEM and SEM images of [C3mim]+Cl−@SiO2 are shown in Figure 6 and the TEM
and SEM images of [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2 are demonstrated in
Figures S1 and S2 in the Supplementary Materials. As can be seen from the TEM images,
the ILs grafted silica products show a rough and wormhole-like structure. Their specific
surface areas were determined and the experimental results indicate that the specific
surface areas of [C3mim]+Cl−@SiO2, [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2 are
16.5 m2·g−1, 23.3 m2·g−1 and 18.4 m2·g−1, respectively. The SEM images of the ILs grated
silica products (Figure 6 and Figures S1 and S2) show that all the products are amorphous
and accumulations of small particles at micron scale. To further determine the particle
size, all the products were tested by laser particle size analyzer and the results shown in
Figure 7 and Figures S3 and S4 in the Supplementary Materials indicate that the average
particle sizes of [C3mim]+Cl−@SiO2, [C3C2OHim]+Cl−@SiO2, and [C3Bzim]+Cl−@SiO2
are 5.9 µm, 6.8 µm, and 10.7 µm, respectively.

Figure 6. FE-SEM (a) and TEM (b) images of [C3mim]+Cl−@SiO2.
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Figure 7. Particle size distribution of [C3mim]+Cl−@SiO2.

2.3. Adsorption Performance

In this work, the three ILs grafted silica products were used to adsorb baicalin from
aqueous phase and the results shown in Figure 8 suggest that at lower baicalin concen-
tration (5.0 × 10−5 mol·L−1), the three ILs grafted silica particles have similar adsorp-
tion ability (>97%) and [C3mim]+Cl−@SiO2 has the strongest absorption ability com-
pared with [C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2 at higher baicalin concentra-
tion (9.0 × 10−3 mol·L−1). The reason may be that compared with [C3mim]+Cl−@SiO2,
[C3C2OHim]+Cl−@SiO2, and [C3Bzim]+Cl−@SiO2 bear larger size groups (hydroxyethyl
for [C3C2OHim]+Cl−@SiO2 and benzyl for [C3Bzim]+Cl−@SiO2), which hinders the inter-
action between adsorbents and baicalin decreasing the adsorption ability of adsorbents.
This phenomenon is the so-called steric hindrance effect. To investigate the adsorption
ability and mechanism of the ILs grafted silica particles, the equilibrium data were firstly
fitted by Langmuir (Equation (3)) and Freundlich (Equation (4)) models and the results are
listed in Table 1. As can be seen from Table 1, the 1/n values in the Freundlich equation are
less than 1.0 (0.2959 to 0.3679), suggesting that the adsorption of baicalin on the ILs grafted
silica can occur easily [15,42,43]. Besides, both of the two models are suitable to describe
the adsorption behavior of ILs grafted silica for baicalin, indicating the fact that both
monolayer and heterogeneous surface conditions exist under the selected experimental
conditions. This phenomenon was also observed when macroporous resin was used to
adsorb and purify baicalin [15]. To further explore the types of adsorption, the equilibrium
data were analyzed with the Dubinin–Radushkevich isotherm model. The results listed in
Table 1 indicate that the E values (average free energy) are in the range of 2.26 kJ·mol−1

to 2.44 kJ·mol−1, suggesting that the adsorption of baicalin onto the ILs grafted silica is a
physisorption process due to E < 8.00 kJ·mol−1 [44,45].

Finally, considering the fact that [C3mim]+Cl−@SiO2 has the strongest adsorption
ability for baicalin, it is selected in the following experiments.

Table 1. Isotherm model parameters for the adsorption of baicalin onto ILs grafted silica (pH 5.0, 25 ◦C).

Isothermal Absorption
Models Parameters [C3mim]+Cl−@SiO2 [C3C2OHim]+Cl−@SiO2 [C3Bzim]+Cl−@SiO2

Langmuir model
Fitted equation 1/Qe = 0.0039/Ce + 0.0028 1/Qe = 0.0035/Ce + 0.0034 1/Qe = 0.0037/Ce + 0.0038

Correlation
coefficient (r) 0.9991 0.9981 0.9920

Qm (mg·g−1) 357.1 294.1 263.2

Freundlich model

Fitted equation lnQe = 0.3679lnCe + 5.0774 lnQe = 0.3264lnCe + 5.0144 lnQe = 0.2959lnCe + 4.9458
r 0.9929 0.9841 0.9990

1/n 0.3679 0.3264 0.2959
KF (mg·g−1) 160.4 150.6 140.6

Dubinin–Radushkevich
model

Fitted equation lnQe = −0.0977ε2 + 5.5808 lnQe = −0.0837ε2 + 5.4671 lnQe = −0.0846ε2 + 5.3615
r 0.9741 0.9833 0.9622

E (kJ·mol−1) 2.26 2.44 2.43
Qm (mg·g−1) 265.3 236.8 213.0
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Figure 8. Adsorptionefficiencyof[C3mim]+Cl−@SiO2, [C3C2OHim]+Cl−@SiO2 and[C3Bzim]+Cl−@SiO2. (a)Cbaicalin = 5.0× 10−5 mol·L−1

and (b) Cbaicalin = 9.0 × 10−3 mol·L−1. Experimental conditions: adsorbent, 40 mg; volume of baicalin aqueous solution,
10 mL; pH 5.0; adsorption temperature, 25 ◦C. Experiments were conducted in triplicate.

2.4. Selection of the Adsorption Conditions of [C3mim]+Cl−@SiO2

In this work, the parameters affecting the adsorption ability of [C3mim]+Cl−@SiO2
including adsorption time, pH and adsorption temperature were investigated. Data shown
in Figure 8 indicate that the adsorption of baicalin can be completed in 10 min. Therefore,
10 min is selected as the optimal adsorption time. The experimental results illustrated in
Figure 9 suggest that the adsorption efficiency increases with the pH increasing from 2.0
to 5.0 and then keeps constant with further increasing the pH values. It is known that the
dissociation constant (pKa) of baicalin is 2.9 [46]. When pH > pKa, baicalin exists in the
form of anion, meaning that there exists strong electrostatic attraction between baicalin
anion and the cation of [C3mim]+Cl−@SiO2. That is to say, high adsorption efficiency
would be achieved when pH > pKa; 5.0 is thus regarded as the optimal pH value. As shown
in Figure 10, the adsorption ability of [C3mim]+Cl−@SiO2 decreases with the increase
of temperature, indicating that the adsorption of baicalin is an exothermic adsorption
process [47] and lower temperature is favorable for extraction. Thus, room temperature
25 ◦C is selected for the adsorption of baicalin.
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Figure 9. Effect of pH of water phase on the adsorption efficiency of [C3mim]+Cl−@SiO2. Experi-
mental conditions: Cbaicalin = 5.0 × 10−5 mol·L−1; [C3mim]+Cl−@SiO2, 40 mg; volume of baicalin
aqueous solutable 10 mL; adsorption time, 10 min; adsorption temperature, 25 ◦C. Experiments were
conducted in triplicate.

Figure 10. Effect of temperature on the adsorption efficiency of [C3mim]+Cl−@SiO2. Experimental
conditions: Cbaicalin = 5.0 × 10−5 mol·L−1; [C3mim]+Cl−@SiO2, 40 mg; volume of baicalin aqueous
solution, 10 mL; adsorption time, 10 min; pH 5.0. Experiments were conducted in triplicate.

2.5. Adsorption and Purification of Baicalin from the Root Extract of SBG

Under the selected adsorption conditions, [C3mim]+Cl−@SiO2 was used to absorb
baicalin from the root extract of SBG. It is found that the baicalin concentration in the
root extract of SBG is 1.9 × 10−3 mol·L−1. Data shown in Figure 11 indicate that 0.2 g
of [C3mim]+Cl−@SiO2 can effectively adsorb baicalin from 10 mL of the extract (96.5%)
and this adsorption condition is thus selected. To achieve the desorption of baicalin,
[C3mim]+Cl−@SiO2 was washed with ethanol aqueous solution (50%, v/v, pH 3.0 adjusted
by HCl) and the desorption efficiency is 97.4%. After removing most of the solvent by
vacuum distillation, the baicalin powder crystallizes and its purity is 96.5% (determined
by the aforementioned HPLC method). Typical HPLC chromatograms of baicalin before
and after purification with [C3mim]+Cl−@SiO2 are shown in Figure 12. It can be seen that
baicalin is successfully purified by [C3mim]+Cl−@SiO2.
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Figure 11. Effect of dosage of [C3mim]+Cl−@SiO2 on the adsorption of baicalin from 10 mL of the
root extract of SBG. Experimental conditions: Cbaicalin = 1.9 × 10−3 mol·L−1; adsorption time, 10 min;
pH 5.0; adsorption temperature, 25 ◦C. Experiments were conducted in triplicate.

Figure 12. HPLC chromatograms of the root extract of SBG (a), the root extract of SBG after adsorption
(b), and baicalin obtained from the desorption solution (c).

2.6. Reusability of [C3mim]+Cl−@SiO2 and Comparison with Literature Methods

In this work, the reusability of [C3mim]+Cl−@SiO2 is investigated and the results
shown in Figure 13 indicate that [C3mim]+Cl−@SiO2 can be reused at least seven times
without loss of its adsorption efficiency. Furthermore, as mentioned above, the HPD-100
macroporous resin and polyamide resin were used to adsorb and purify baicalin. Therefore,
a comparison on the adsorption performance between [C3mim]+Cl−@SiO2 and the com-
mercial adsorbents (HPD-100 macroporous resin and polyamide resin) was conducted and
the results listed in Table 2 indicate that [C3mim]+Cl−@SiO2 has the strongest adsorption
ability and the fastest adsorption rate and provides the highest purity compared with
HPD-100 macroporous resin and polyamide resin.
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Figure 13. Reusability of [C3mim]+Cl−@SiO2 for the adsorption of baicalin from the root extract
of SBG. Experimental conditions: adsorption temperature, 25 ◦C; adsorption time, 10 min; pH, 5.0;
[C3mim]+Cl−@SiO2, 0.2 g; volume of the root extract of SBG, 10 mL. Experiments were conducted
in triplicate.

Table 2. Comparison on the adsorption performance between [C3mim]+Cl–@SiO2 and commercial
adsorbents.

Adsorbent Qe (mg·g−1)
Adsorption Time

(min)
Purity of Baicalin After

Desorption

[C3mim]+Cl−@SiO2 (this
work) 357.1 10 96.5%

HPD-100 macroporous
resin [15] 178.57 180 58.3%

Polyamide resin [13] 233.23 20 33.86%

3. Materials and Methods
3.1. Materials

Tetraethyl orthosilicate (TEOS, 98%) and (3-chloropropyl)trimethyoxysilane (CPTMOS,
97%) were obtained from Acros Organics (Bridgewater, NJ, USA). N-methylimidazole
(MIM, 99%) and baicalin (98%) were supplied by Aladdin Bio-Chem Technology Co.
(Shanghai, China). N-(2-hydroxyethyl)imidazole (C2OHIM, 98%) and N-benzylimidazole
(BzIM, 98%) were purchased from Changzhou Chongkai Chemical Co., Ltd. (Changzhou,
China). Roots of SBG were purchased from Hebeikangan Bio-Technology Co., Ltd. (Anguo,
China) and ground into powder with a particle size of around 100 mesh. Macroporous resin
(model HPD-100, 60–16 mesh) was obtained from Donghong Chemical Co., Ltd. (Kunshan,
China). 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2)
was purchased from Lanzhou Institute of Chemical Physics (Lanzhou, China).

3.2. Methods
3.2.1. Synthesis of ILs Grafted Silica

Typically, 1.0 g of TEOS was dissolved into 1.0 g of [C4mim]NTf2, followed by the
addition of 1.5 mL of ammonia solution (4.2 wt%). This mixture was stirred at room
temperature for 20 min to produce silica gel and then 0.95 g of CPTMOS was added. The
resultant mixture was subject to another 3 h of stirring. After dissolving with ethanol
and filtering, CPTMOS-modified silica (denoted as C3Cl@SiO2) was obtained. To graft
N-methylimidazolium-based IL on the surface of silica, CPTMOS-modified silica (0.2 g)
and N-methylimidazole (0.33 g) were dispersed into 15 mL of ethanol. This mixture was
stirred at 80 ◦C for 12 h to generate IL-modified silica (denoted as [C3mim]+Cl−@SiO2).
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The synthesized [C3mim]+Cl−@SiO2 was washed with ethanol and then dried at 60 ◦C for
3 h. The grafting of N-(2-hydroxyethyl)imidazolium- and N-benzylimidazolium-based ILs
on the surface of silica followed a similar way and the resultant products were denoted as
[C3C2OHim]+Cl−@SiO2 and [C3Bzim]+Cl−@SiO2, respectively.

3.2.2. Characterization of ILs Grafted Silica

All the ILs grafted silica products were characterized by an elemental analyzer (model
FLASH 2000, Thermo Fisher Scientific, Belmont, MA, USA), a field-emission scanning
electron microscope (FE-SEM, Quanta 250 FEG, Thermo Fisher Scientific, Hillsboro, OR,
USA), a transmission electron microscope (TEM, model Tecnai G2 20, FEI, Hillsboro, OR,
USA), a surface area and porosity analyzer (model ASAP 2460, Micromeritics Instrument
Corp., Norcross, GA, USA), a Fourier transform infrared (FT-IR) spectrophotometer (model
V70, Bruker Optic GmbH, Ettlingen, Germany) and a laser particle sizer (model Mastersizer
2000, Malvern Instruments Ltd., Malvern, UK). The FT-IR spectra of the ILs grafted silica
in transmission mode were measured by the KBr pressed disc method. The particle size
distribution of the ILs grafted silica was determined by the laser diffraction method using
Mastersizer 2000 and water was used as dispersive solvent.

3.2.3. Preparation of the Root Extract of SBG

The preparation of the root extract of SBG was conducted by referring to the reported
work with minor modification [12,15]: 1.0 g of SBG powder and 100 mL of water were
mixed under stirring at 100 ◦C for 30 min. After filtering, the water phase was collected
and stored in refrigerator before use.

3.2.4. Determination of Baicalin

The baicalin concentration in water phase was determined by high performance
liquid chromatography (HPLC) using an Agilent 1200 HPLC system (Agilent Technologies,
Santa Clara, CA, USA). The chromatographic conditions are as follows: mobile phase, the
mixture of acetonitrile (17%, v/v) and 0.1% (v/v) of acetic acid aqueous solution (83%,
v/v); flow-rate, 0.8 mL·min−1; separation column, ZORBAX Eclipse XDB-C18 column
(4.6 × 150 mm, 5 µm, Agilent); column temperature, 30 ◦C; detection wavelength, 275 nm;
injection volume, 5 µL.

3.2.5. Adsorption and Desorption of Baicalin

For a typical adsorption procedure, 40 mg of [C3mim]+Cl−@SiO2 was mixed with
10 mL of baicalin aqueous solution (5.0 × 10−5 mol·L−1, pH 5.0) under stirring at room
temperature for 10 min. After filtering, [C3mim]+Cl–@SiO2 powder was washed with
ethanol aqueous solution (50%, v/v, pH 3.0 adjusted by HCl) to recover baicalin and to
regenerate the absorbent.

The adsorption capacity (Qe) and adsorption efficiency (E) are expressed by the
following equations (Equations (1) and (2)):

Qe =
V(C0 − Ce)

m
(1)

E =
(C0 − Ce)

C0
× 100% (2)

where Qe (mg·g−1 dry absorbent), V, C0, Ce, m, E, are the adsorption capacity of absorbent
to baicalin at equilibrium, volume of baicalin solution, initial baicalin concentration, equi-
librium concentration of baicalin after adsorption, dry weight of adsorbent and adsorption
efficiency, respectively.

The adsorption behavior of adsorbent was analyzed using Langmuir, Freundlich, and
Dubinin–Radushkevich equations [15,42–45], respectively:
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Langmuir equation (Equation (3)):

1
Qe

=
1

QmKL

1
Ce

+
1

Qm
(3)

Freundlich equation (Equation (4)):

ln Qe = ln KF +
1
n

ln Ce (4)

where Qe, Qm, KL, Ce, KF, and 1/n are the adsorption capacity (mg·g−1 dry absorbent),
the maximum adsorption capacity (mg·g−1 dry absorbent), the Langmuir constant, the
equilibrium concentration of baicalin after adsorption, the Freundlich constant and an
empirical constant related to the adsorption intensity, respectively.

The Dubinin–Radushkevich equations are expressed as (Equations (5)–(7)):

ln Qe = ln Qm− Kε2 (5)

ε = RTln(1 + 1/Ce) (6)

E = 1/
√

2K (7)

where K (mol2·kJ−2) is the activity coefficient related to mean free energy of adsorption; ε
(kJ·mol−1) is the Polanyi potential; R (8.314 J·mol−1·K−1) is the gas constant and T (K) is
Kelvin temperature; E (kJ·mol−1) is the average free energy of adsorption.

4. Conclusions

In this work, a two-step method was developed to prepare ILs grafted silica: (I) the
co-hydrolysis and co-condensation of CPTMOS and TEOS in [C4mim]NTf2 medium to
produce C3Cl@SiO2; and (II) the quaternization reaction between C3Cl@SiO2 and imida-
zole derivatives to generate ILs grafted silica. Compared with the reported methods, the
developed technique to prepare ILs grafted silica was easier to operate and more envi-
ronmentally benign because the use of toxic solvents, such as dimethylformamide and
toluene was avoided. Compared with the commercial HPD-100 macroporous resin and
polyamide resin, the synthesized IL grafted silica, [C3mim]+Cl−@SiO2 exhibited strongest
adsorption ability, fastest adsorption rate and could provide highest purity of baicalin
(96.5%). These results suggested that ILs were promising media for the preparation of
silica-based materials and had huge potential in the synthesis of other functional materials.
Finally, ILs grafted silica exhibited great potential in the separation and purification of
baicalin from SBG and may be applied for the adsorption and purification of other bioactive
compounds with similar chemical structures.

Supplementary Materials: The following are available online. Figure S1: The FE-SEM (A) and
TEM (B) images of [C3C2OHim]+Cl−@SiO2; Figure S2. The FE-SEM (A) and TEM (B) images of
[C3Bzim]+Cl–@SiO2; Figure S3. Particle size distribution of [C3C2OHim]+Cl–@SiO2; Figure S4.
Particle size distribution of [C3Bzim]+Cl–@SiO2.
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