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Abstract: The understanding of the interaction between non-steroidal anti-inflammatory drugs and
human serum albumin plays a fundamental role in the development of new drugs and new thera-
peutic strategies. Several studies have been performed, nevertheless, the interaction phenomena are
still not fully understood. In this work, high-field solution Nuclear Magnetic Resonance (NMR) spec-
troscopy was applied to compare the strength of the interaction of diclofenac sodium salt, ketorolac
tris salt and flurbiprofen sodium salt toward albumin. To this aim, mono- and bi-selective relaxation
rate measurements were performed by applying selective π-pulses at the selected frequencies and
by following magnetization recovery. On the basis of the dependence of relaxation parameters
on albumin concentration, normalized affinity indexes were calculated for several protons of the
drugs. Affinity indexes for diclofenac were about five-fold higher in comparison with ketorolac
and flurbiprofen. Aromatic moieties of the three drugs and methine protons at the chiral centers of
ketorolac and flurbiprofen were more involved in the interaction with albumin. In conclusion, NMR
spectroscopy allows not only for the comparison of drug-to-protein affinities but also points out the
nature of the drug sites that are more extensively involved in the interaction.

Keywords: protein/molecule interaction; NSAIDs; selective relaxation rates; affinity index;
binding; NMR

1. Introduction

Nowadays non-steroidal anti-inflammatory drugs (NSAIDs) are among the most
commonly used pharmaceuticals. These compounds are used for the treatment of several
conditions in virtue of their anti-inflammatory, analgesic, antipyretic, and anti-aggregant
properties [1]. Depending on the nature of the drug, oral, intraocular, intravenous, intra-
muscular, topical and rectal administration can be selected. In all cases, the drug reaches
the site of action through the bloodstream, interacting with the proteins present in the
blood plasma, especially human serum albumin (HSA), a globular protein that accounts
for 60% of the total protein content. Efficient drug delivery systems, such as albumin-based
nanoparticles [2], were proposed as well.

The remarkable flexibility together with the high concentration in the blood and
the presence of multiple binding sites make HSA particularly inclined to interact with
small molecules such as anticoagulants, anesthetics, steroids, amino acids and, indeed,
NSAIDs [3]. The strength of this interaction has a direct effect on the bioavailability and on
the metabolism: if the interaction with HSA is too strong, the drug cannot be released in the
body, or a higher concentration is necessary to guarantee therapeutic efficacy. On the other
hand, if the interaction is too weak the drug could be metabolized before reaching the site of
action. In spite of the fact that the knowledge of the drug-to-HSA interaction mechanisms
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is fundamental for optimizing pharmacokinetic, pharmacodynamic, and toxicological
profiles, a profound and complete comprehension of binding phenomena is still far from
being achieved.

Several studies were performed, starting in the 1980s [4–6], to understand and ra-
tionalize the nature of the interactions between NSAIDs and HSA. Different analytical
techniques were exploited to reach this goal: for example, isothermal titration calorimetry
was combined with frontal analysis/capillary electrophoresis to shed light on the ther-
modynamic parameters of the interaction [7]. Fluorescence spectroscopy was employed
for detecting the formation of the drug/albumin complex and obtaining the binding pa-
rameters [8]. Molecular modeling and spectroscopic techniques (fluorescence and UV)
contributed to improving the comprehension of the interaction of HSA with diclofenac
sodium salt, highlighting the pivotal role played by the hydrophobic interactions in the
binding, with hydrogen bonds acting as support [9]. Such interactions were confirmed
also via X-ray crystallography, which pointed out the protein residues involved in the
interaction with the drug [10]. Competitive binding processes were investigated through
circular dichroism and fluorescence spectroscopy [11] and better mastery of more complex
binding processes, e.g., photo-induced ones, was obtained by UV spectroscopy [12].

NMR constitutes an analytical technique largely employed in the investigation of
drug/biomacromolecule interactions [13,14]. As a matter of fact, NMR spectroscopy allows
determining not only the complexation stoichiometry and the association constants or, more
generally, the affinity of the drug for the protein, but also the stereochemical parameters,
thus providing information about the nature of the sites more extensively involved in
the interaction. In this work, an NMR investigation was performed on the interaction
between HSA and three drugs belonging to the group of arylalcanoic acid derivatives
that are among the most used NSAIDs, known for their antipyretic and anti-inflammatory
properties: ketorolac tris salt (KTR), diclofenac sodium salt (DCF) and flurbiprofen sodium
salt (FBP), reported in Scheme 1. The interaction was investigated by measuring the mono-
selective spin-lattice relaxation rates (R1

ms) of KTR, DCF and FBP nuclei in the presence of
HSA since this parameter is much more sensitive to the occurrence of interactions compared
to the non-selective relaxation rate (R1

ns) [15].
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Scheme 1. Chemical structures and numbering schemes for NMR analysis of (a) KTR, (b) DCF and
(c) FBP.

The interaction between KTR and HSA has already been studied mainly via chromato-
graphic methods [16] and, to the best of our knowledge, has not been investigated in detail
via NMR, whereas there is only one NMR study focused on the low-affinity interaction
between HSA and DCF, based on the analysis of chemical shift and linewidth of the 13C
NMR signals of the drug in the presence of the protein [17]. Regarding FBP, its interaction
with HSA was followed via NMR diffusion measurements, which were used for the cal-
culation of the ligand–protein dissociation constant and the stoichiometry of binding [18].
The presence of a fluorine nucleus on the skeleton, moreover, made possible the use of 19F
NMR spectroscopy as an investigation tool [19].

2. Results and Discussion

Proton mono-selective relaxation rates (R1
ms) of KTR, DCF and FBP in their free

state and in a mixture with HSA were calculated from the corresponding mono-selective
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relaxation times (T1
ms) measured for each drug in D2O (pH 7.4, phosphate buffer, 0.1 M),

according to Equation (1).
R1

ms = 1/T1
ms (1)

This parameter was chosen as an interaction probe taking into consideration the
experimental conditions in which the studies were carried out. The notable difference in
the molecular weight of the species involved, in fact, does not allow working with solutions
at the equimolar ratio, since the NMR signals of the small molecule (the drug) would be
hardly superimposed on those belonging to the macromolecule. Therefore, it is necessary
to exploit a parameter highly sensitive to the interaction even when the macromolecule is
in strong defect with respect to the drug, such as the mono-selective relaxation rates.

It is important to underline that, rather than R1
ms, the corresponding normalized

relaxation rate (∆R/Rf, where ∆R = Robs − Rf) constitutes a very efficient tool for comparing
the entity of the interaction of different protons of the drug. The determination of R1

ms

of the drugs’ nuclei in mixtures containing different amounts of HSA allows extracting
their normalized affinity indexes ([AN]), a measure of the drug–HSA global affinity and
a useful parameter to compare the ability of different ligands to interact with the same
macromolecule.

For protons at a fixed and known distance, the cross-relaxation terms (σ) can be
obtained as the difference between bi- and mono-selective relaxation rates, allowing the
bound molar fractions (xb) to be calculated, as discussed in Appendix A [15,20,21].

2.1. KTR/HSA Mixtures

No superimposition was observed for KTR nuclei in the proton spectrum (Figure S1),
hence it was possible to measure the relaxation parameters for almost all nuclei. All KTR
protons increased their relaxation rate with an increasing HSA concentration, as reported in
Table S1. The normalized values, reported in Table 1, indicate that the protons belonging to
the two aromatic moieties (H1 and H4/H5) and the proton in α-position with respect to the
carboxylate group (H6) are highly involved in the interaction. As an example, proton H1
undergoes more than a ten-fold increase in its mono-selective relaxation rate, which goes
from 0.26 s−1 in the free state to 3.03 s−1 (Table S1) in the presence of the highest amount of
protein (2 mg/mL).

Table 1. 1H mono-selective relaxation rates R1
ms (s−1) (600 MHz, 25 ◦C, D2O, pH = 7.4) of some

protons of KTR (2 mM) in its free state; normalized mono-selective relaxation rates (∆R1
ms/Rf, ∆R1

ms

= Robs − Rf) of KTR protons in mixtures with HSA at different molar ratios; cross-relaxation rate (σij,
s−1) calculated for proton pair H4-H5 and corresponding bound molar fraction (xb).

[HSA] mg/mL KTR:HSA H1 H4 H5 H6 H7 H7′ H8 H8′ σ4-5 xb

0 / 0.26 0.31 0.21 0.28 0.81 0.74 0.79 0.92 0.05
0.1 1315:1 1.18 0.62 1.08 0.79 0.73 0.93 0.75 0.88 0.00 0.01
0.5 264:1 3.49 2.85 3.44 2.89 2.42 2.75 2.32 2.11 −0.11 0.04
1.0 132:1 5.95 5.17 5.28 5.68 4.35 4.63 4.04 4.19 −0.19 0.07
1.5 88:1 8.10 7.00 7.89 8.08 5.47 5.90 5.30 4.74 −0.23 0.08
2.0 66:1 10.58 8.34 9.70 9.41 6.69 6.50 6.41 6.27 −0.29 0.09

The linear fitting of normalized mono-selective relaxation rates vs. albumin concentra-
tion allowed calculating [AN] (see Appendix A) for KTR nuclei (Figure 1), and values of
normalized affinity indexes ranging from 1.8 × 105 M−1 to 3.2 × 105 M−1 were obtained
(see also Table S2 in Supplementary Material). Data confirm that the aromatic protons
H1 and H4/H5 and proton H6, directly linked to the carboxyl group, are the nuclei more
influenced by the protein.
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Figure 1. Normalized mono-selective relaxation rates plotted vs. HSA concentration and calculated
affinity indexes for KTR protons.

By simultaneous inversion of aromatic protons H4 and H5, at a known and fixed
distance, the bi-selective relaxation rate Rbs

4-5 was measured to obtain the observed cross-
relaxation rate σ4-5 (σ4-5 = R4-5

bs − R4
ms), listed in Table 1. The parameter assumes a

positive value (0.05 s−1) for the free drug, as expected on the basis of its characteristics
of motion, whereas the interaction with the protein determines a shift to negative values,
typical of the slow motion region, where macromolecules and their complexes lie. The
cross-relaxation term is highly sensitive to the variation of drug/protein molar ratio; in fact,
it changes its values from 0 s−1 (KTR/HSA 1315:1) to −0.29 s−1(KTR/HSA 66:1).

On assuming that the reorientation time (τc) of the complex is controlled by albumin
(τc

HSA = 20 ns) [22], and by keeping in mind the distance r4-5 (2.61 Å) [23], a value of
−3.69 s−1 is calculated for σb on the basis of Equation (A5) (Appendix A). Once σobs, σf
and σb were obtained, the molar fraction in the bound state for each mixture KTR/HSA can
be calculated from Equation (A6) (Appendix A). In the mixture with the higher KTR/HSA
ratio (1315:1), about 1% of the drug is bound to the albumin and this amount slightly
increases with decreasing of the molar ratio (9% for the mixture 66:1).

The plot of the normalized cross-relaxation terms in the function of the protein con-
centration gave a global normalized affinity index of 1.8 × 105 M−1 for KTR (the slope of
the line in Figure S4 in Supplementary Material).

2.2. DCF/HSA Mixtures

Greater variations in comparison to KTR were obtained for the aromatic nuclei of
DCF in the presence of HSA (from a 17- to a 28-fold increase). The greatest variation was
observed for H2, belonging to the chlorine-substituted aromatic ring: its mono-selective
relaxation rate, equal to 0.17 s−1 in the free state, already increases up to 0.57 s−1 with
a small amount of protein (0.1 mg/mL), and it remarkably undergoes almost a 29-fold
increase in the mixture at the lowest molar ratio (66:1, Table 2 and Table S3 in Supplementary
Material). A similar increment in the relaxation parameter is observed for the other aromatic
proton H3.
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Table 2. 1H mono-selective relaxation rates R1
ms (s−1) (600 MHz, 25 ◦C, D2O, pH = 7.4)

of some protons of DCF (2 mM) in its free state; normalized mono-selective relaxation rates
(∆R1

ms/Rf, ∆R1
ms = Robs − Rf) of DCF protons in mixtures with HSA at different molar ratios;

cross-relaxation rate (σij, s−1) calculated for proton pair H6-H5 and corresponding bound molar
fraction (xb).

[HSA] mg/mL DCF:HSA H2 H3 H5 H6 H7 σ6-5 xb

0 / 0.17 0.24 0.34 0.38 1.22 0.04
0.1 1315:1 2.36 1.79 1.50 1.35 0.49 −0.05 0.02
0.5 264:1 8.38 6.85 5.64 5.07 1.05 −0.36 0.07
1.0 132:1 16.38 14.14 11.70 9.44 1.83 −0.77 0.15
1.5 88:1 21.73 17.90 14.37 13.50 2.42 −1.01 0.19
2.0 66:1 28.55 25.50 19.86 17.64 3.32 −1.59 0.29

H5 and H6, belonging to the same aromatic ring of H3, are strongly involved in the
interaction as well. Contrary to what was observed for KTR, methylene protons (H7) in the
α-position to the carboxyl group showed the lowest effect (Table 2).

The normalized affinity indexes, obtained as the slope of the linear fittings shown
in Figure 2, resulted very high and remarkably differentiated for DCF protons (Table S4),
highlighting the differences in the binding of different groups of DCF with the HSA sites.
This result is in agreement with the data obtained via fluorescence and crystallography
measurements [9,10], where the important role of the hydrophobic interactions on the
binding to the protein was pointed out.
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affinity indexes for DCF protons.

Similarly to KTR, aromatic protons H5 and H6, at a known and fixed distance (2.49 Å) [24],
were simultaneously inverted to obtain R5-6

bs and the corresponding cross-relaxation term
(σ5-6). On the basis of Equation (A5) (Appendix A), a bound cross-relaxation term σb equal
to−5.53 s−1 was obtained by assuming τc of the complex equal to τc

HSA = 20 ns. As already
discussed for KTR, the bound molar fractions at different molar ratios can be calculated
from Equation (A6) (Appendix A) once σobs, σf and σb are given. The comparison of the
calculated xb for DCF and KTR protons (Tables 1 and 2, respectively) pointed out that
the molar fraction of the two drugs is small and comparable (1% for KTR and 2% for
DCF) in the solution with the lowest amount of protein (0.1 mg/mL), probably because
the concentration of HSA is too low to observe significant differences in their activity.
However, with the increase in the concentration of the protein, KTR and DCF show a very
different affinity for the albumin, and this difference increases when increasing the protein
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concentration. At the lowest molar fraction, when the HSA concentration reaches 2 mg/mL,
9% of KTR is bound, in contrast to 29% of DCF.

The affinity index, calculated on the basis of the cross-relaxation term (Figure S5 in
Supplementary Materials), is equal to 9.2 × 105 M−1, five times higher than that measured
for KTR.

2.3. FBP/HSA Mixtures

Unfortunately, the extensive superimposition between the aromatic resonances (Figure S3)
did not allow for the implementation of cross-relaxation measurements for any proton
pair of the drug. The mono-selective relaxation measurements performed pointed out
remarkable differences in the involvement of different FBP nuclei in their interaction with
HSA (Table 3 and Table S5), highlighting once again the primary role of the aromatic moiety
of the drugs on the binding with HSA. While very small variations are observed for the
methyl group of FBP, the relaxation rates of the aromatic proton H3 and methine proton
(H7) in the α-position with respect to the carboxylate increase to a similar extent to what
was observed for KTR.

Table 3. 1H mono-selective relaxation rates R1
ms (s−1) (600 MHz, 25 ◦C, D2O, pH = 7.4) of some

protons of FBP (2 mM) in its free state and normalized mono-selective relaxation rates (∆R1
ms/Rf,

∆R1
ms = Robs − Rf) of FBP protons in mixtures with HSA at different molar ratios.

[HSA] mg/mL FBP:HSA H3 H7 H8

0 / 0.34 0.34 1.33
0.1 1315:1 0.71 0.70 0.09
0.5 264:1 3.06 3.08 0.42
1.0 132:1 6.30 5.77 0.67
1.5 88:1 7.59 7.38 0.97
2.0 66:1 8.73 10.46 1.59

The different behavior of the methyl group is more evident in the mixture at the lowest
molar ratio (66:1), where a value of 3.45 s−1 was measured for H8 (Table S3), corresponding
to a moderate increase (normalized relaxation rate of 1.59 in Table 3), in contrast to an
average ten-fold increase observed for protons H3 and H7 (Table 3). The affinity indexes
calculated (Figure 3) confirm the involvement of the aromatic protons and the carboxyl
group of FBP in the interaction with HSA.
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the methyl group of FBP, the relaxation rates of the aromatic proton H3 and methine pro-
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what was observed for KTR. 

Table 3. 1H mono-selective relaxation rates R1ms (s−1) (600 MHz, 25 °C, D2O, pH = 7.4) of some protons 
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0 / 0.34 0.34 1.33 

0.1 1315:1 0.71 0.70 0.09 

0.5 264:1 3.06 3.08 0.42 

1.0 132:1 6.30 5.77 0.67 

1.5 88:1 7.59 7.38 0.97 

2.0 66:1 8.73 10.46 1.59 

The different behavior of the methyl group is more evident in the mixture at the low-

est molar ratio (66:1), where a value of 3.45 s−1 was measured for H8 (Table S3), correspond-

ing to a moderate increase (normalized relaxation rate of 1.59 in Table 3), in contrast to an 

average ten-fold increase observed for protons H3 and H7 (Table 3). The affinity indexes 

calculated (Figure 3) confirm the involvement of the aromatic protons and the carboxyl 

group of FBP in the interaction with HSA. 

 

Figure 3. Normalized mono-selective relaxation rates plotted vs. HSA concentration, and calculated 

affinity indexes for FBP protons. 

Figure 3. Normalized mono-selective relaxation rates plotted vs. HSA concentration, and calculated
affinity indexes for FBP protons.
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3. Materials and Methods
3.1. Materials

Ketorolac tris salt (≥99%), diclofenac sodium salt (≥98%), flurbiprofen sodium salt
(pharmaceutical secondary standard), human serum albumin (66 kDa) and phosphate
buffer powder, 0.1 M were purchased from Sigma Aldrich (St. Louis, MI, USA). Deuterated
water (D2O, 99.9%) was purchased from Deutero GmbH (Kastellaun, Germany). All
chemical compounds were used without any further purification.

3.2. NMR Measurements

The NMR experiments were carried out on a Varian INOVA600 spectrometer equipped
with a 5 mm probe operating at 600 MHz for 1H nuclei; the temperature was controlled to
±0.1 ◦C.

Samples were degassed to remove paramagnetic dissolved oxygen. Degassing was
carried out using five freeze–pump–thaw cycles.

The spin-lattice mono-selective relaxation times (T1
ms) were measured by using the

inversion recovery pulse sequence (180◦-τ-90◦-t)n and by applying a selective π-pulse at
the selected frequency. Measurements were carried out for selected protons belonging to
KTR, DCF and FBP, in the free state and in the presence of HSA; the drug concentration
was kept equal to 2 mM for all three drugs, whereas the HSA concentration was increased
from 0.1 mg/mL to 2 mg/mL.

The experimental error in the relaxation rate measurements was 5%. The errors relative
to affinity indexes are reported in the Supplementary Material (Tables S2, S4 and S6).

In Appendix A, the theoretical discussion of the NMR approach with respect to mono-
selective relaxation rates, cross-relaxation terms, and affinity indexes is reported.

3.3. NMR Characterization Data (Numbering Scheme Referred to Scheme 1)

KTR- 1H NMR (600 MHz, 2 mM, D2O pH 7.4 (0.1 mM), 298 K), δ (ppm) referred to the
residual solvent (4.64 ppm): 7.64 (d, 3J3-2 = 7.6 Hz, 2H, H3), 7.52 (t, 3J1-2 = 7.6 Hz, 1H, H1),
7.42 (t, 3J2-1 = 3J2-3 = 7.6 Hz, 2H, H2), 6.85 (d, 3J4-5 = 4.2 Hz, 1H, H4), 6.03 (d, 3J5-4 = 4.2 Hz,
1H, H5), 4.32 (m, 1H, H8), 4.18 (m, 1H, H8′ ), 3.83 (dd, 3J6-7 = 8.9 Hz, 3J6-7′ = 6.0 Hz, 1H, H6),
3.57 (s, 6H, H9), 2.71 (m, 1H, H7), 2.57 (m, 1H, H7′ ).

DCF- 1H NMR (600 MHz, 2 mM, D2O pH 7.4 (0.1 mM), 298 K), δ (ppm) referred to
the residual solvent (4.64 ppm): 7.35 (d, 3J2-1 = 8.2 Hz, 2H, H2), 7.14 (dd, 3J6-5 = 7.4 Hz,
4J6-4 = 1.3 Hz, 1H, H6), 7.03 (t, 3J1-2 = 8.2 Hz, 1H, H1), 6.99 (dt, 3J4-5 = 3J4-3 = 7.4 Hz,
J4

4-6 = 1.4 Hz, 1H, H4), 6.84 (dt, 3J5-6 = 3J5-4 = 7.4 Hz, 4J5-3 = 1.3 Hz, 1H, H5), 6.35 (dd,
3J3-4 = 7.4 Hz, 4J3-5 = 1.3 Hz, 1H, H3), 3.53 (s, 2H, H7).

FBP- 1H NMR (600 MHz, 2 mM, D2O pH 7.4 (0.1 mM), 298 K), δ (ppm) referred to
the residual solvent (4.64 ppm): 7.49 (d, 3J3-2 = 7.9 Hz, 2H, H3), 7.39 (t, 3J2-1 = 3J2-3 = 7.9 Hz,
2H, H2), 7.34 (t, 3J4-5 = 4J4-F = 8.0 Hz, 1H, H4), 7.32 (t, 3J1-2 = 7.9 Hz, 1H, H1), 7.09 (dd,
3J5-4 = 8.0 Hz, 4J5-6 = 1.4 Hz, 1H, H5), 7.05 (dd, 3J6-F = 12.2 Hz, 4J6-5 = 1.4 Hz, 1H, H6), 3.55
(q, 3J7-8 = 7.2 Hz, 1H, H7), 1.29 (d, 3J8-7 = 7.2 Hz, 3H, H8).

4. Conclusions

The affinity of ketorolac tris salt, diclofenac sodium salt and flurbiprofen sodium salt
towards human serum albumin was evaluated via mono-selective relaxation rate mea-
surements, thus upholding their reliability for a detailed investigation of drug/protein
interactions. The exploitation of this NMR parameter, in fact, allows for identifying the
moieties of the small molecule more extensively affected by the presence of the biomacro-
molecule, thus leading to reliable hypotheses about the interaction mechanisms that take
place in solution and offering a tool for the design of tailored drugs.

A stronger affinity of DCF for HSA with respect to KTR and FBP, which behave
similarly, was highlighted. The leading involvement of the aromatic moieties was clearly
pointed out for all the analyzed compounds; in particular, in the case of DCF, the aromatic
ring with the chlorine atoms is more affected by the interaction compared to the other
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one. No significant differences between the two aromatic groups of KTR were observed,
whereas the strong superimposition observed for FBP resonances did not allow the analysis
of the F-bearing ring, thus preventing the comparison between the aromatic moieties.

Bi-selective relaxation measurements, associated with the mono-selective ones, al-
lowed for the determination of the cross-relaxation rates and of the bound molar fractions
for KTR and DCF; the global affinity of the two drugs for HSA, calculated from the cross-
relaxation terms in the bound state, confirmed that DCF interacts more strongly with the
protein, with its affinity index being five times higher with respect to KTR.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196647/s1, Figure S1: 1H NMR (600 MHz, D2O, pH
7.4, 298 K) spectrum of KTR (2 mM); Figure S2: 1H NMR (600 MHz, D2O, pH 7.4, 298 K) spectrum of
DCF (2 mM); Figure S3: 1H NMR (600 MHz, D2O, pH 7.4, 298 K) spectrum of FBP (2 mM); Table S1:
1H mono-selective relaxation rates (∆R1

ms/Rf, ∆R1
ms = Robs − Rf) (600 MHz, 25 ◦C, D2O, pH = 7.4)

of some protons of KTR (2 mM) alone and in mixtures with HSA at different molar ratios; Table S2-
Affinity indexes ([AN], M−1) and corresponding standard errors (ε, M-1) calculated for KTR protons
from NMR data; Figure S4: ∆σ/σf of KTR (2 mM) plotted in function of HSA concentration; Table S3:
1H mono-selective relaxation rates (∆R1

ms/Rf, ∆R1
ms = Robs − Rf) (600 MHz, 25 ◦C, D2O, pH = 7.4)

of some protons of DCF (2 mM) alone and in mixtures with HSA at different molar ratios; Table S4-
Affinity indexes ([AN], M−1) and corresponding standard errors (ε, M-1) calculated for DCF protons
from NMR data; Figure S5: ∆σ/σf of DCF (2 mM) plotted in function of HSA concentration; Table S5:
1H mono-selective relaxation rates (∆R1

ms/Rf, ∆R1
ms = Robs − Rf) (600 MHz, 25 ◦C, D2O, pH = 7.4)

of some protons of FBP (2 mM) alone and in mixtures with HSA at different molar ratios; Table S6-
Affinity indexes ([AN], M−1) and corresponding standard errors (ε, M−1) calculated for FBP protons
from NMR data.
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Appendix A 1H Mono-Selective Relaxation Rates, Cross-Relaxation Terms, and
Affinity Indexes

In the fast exchange regime, any NMR parameter (Pobs) is the weighted average of its
value in the free (Pf) and bound state (Pb), according to Equation (A1):

Pobs = Pfxf + Pbxb (A1)

where xf and xb are the molar fractions in the free and bound state, respectively.
When a drug interacts with a protein, the dynamics of the complex are driven by the

latter, and it is possible to assume that the reorientation time of the complex (τc) corresponds
to that of the macromolecule. As a consequence of the interaction, the drug goes from the
fast motion region (ω2τc

2 « 0.6;ω = Larmor frequency), characteristics of small molecules
in their free state, to the slow-motion region (ω2τc

2 » 0.6) where macromolecules and
their complexes are found. The non-selective relaxation parameter R1

ns increases with
the increase in ω2τc

2 up to 0.6, and then it reaches a maximum and starts decreasing

https://www.mdpi.com/article/10.3390/molecules27196647/s1
https://www.mdpi.com/article/10.3390/molecules27196647/s1
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(Equation (A2)); on the contrary, the function R1
ms has a point of flex in correspondence

of 0.6, and then keeps increasing with increasing of ω2τc
2 (Equation (A3)) [25–27]. This

high sensitivity to the change of motion regime explains why R1
ms is usually preferred for

investigations requiring a strong excess of drug with respect to the macromolecule [28].

R1
ns = 0.1 (γ4è2rij

−6) [3τc/(1 +ω2τc
2) + 12τc/(1 + 4ω2τc

2)] (A2)

R1
ms = 0.1 (γ4è2rij

−6) [3τc/(1 +ω2τc
2) + 6τc/(1 + 4ω2τc

2) + τc] (A3)

where γ is the gyromagnetic ratio and èis the reduced Plank’s constant. If two nuclei ij
are simultaneously inverted, it is possible to measure the bi-selective relaxation rate R1

bs;
the difference between R1

bs and R1
ms gives the cross-relaxation term σij, a parameter that

is dependent on the τc of the drug and from the proton distance rij. For small molecules
in the fast-motion region, σij can be calculated according to Equation (A4), whereas for
macromolecules and their complexes one must refer to Equation (A5).

σij = 0.5γ4è2rij
−6τc (A4)

σij = −0.1γ4è2rij
−6τc (A5)

In the case of a drug/protein complex, Equation (A5) can be used for calculating the
bound cross-relaxation term (σb) for a proton pair at a known distance, when τc is known
for the protein. Considering that a large excess of the ligand is used with respect to the
macromolecule, the free molar fraction of the drug can be approximated to 1, and, from
Equation (A1), the bound molar fraction of the drug can be obtained (Equation (A6)).

xb = (σobs − σf)/σb (A6)

The extent to which different drug nuclei are involved in the interaction with the
protein can be better evaluated by calculating the normalized mono-selective relaxation
rate (Equation (A7)).

∆R/Rf = (Robs − Rf)/Rf (A7)

It is then possible to rewrite Equation (A1) in the form of Equation (A8), approximating
the molar fraction of the free ligand to 1.

Robs = Rf + Rbxb (A8)

In the occurrence of a 1:1 complexation equilibrium between the drug (L) and the
macromolecule (M), the hetero association constant K can be expressed according to
Equation (A9):

K = [ML]/(([M0] − [ML])[L]) (A9)

where [ML] is the concentration of the drug/macromolecule complex, [M0] is the initial
concentration of the macromolecule and [L] is the drug concentration. Therefore, xb (equal
to [ML]/[L]) can be obtained from Equation (A9) and Robs can be expressed as follows
(Equation (A10)):

Robs = Rf + RbK[M0]/(1 + K[L]) (A10)

By plotting Robs in the function of [M0], a straight line should be obtained; the slope of
the line is the affinity index [A] (Equation (A11)):

[A] = KRb/(1 + K[L]) (A11)

which can be normalized to obtain [AN] (Equation (A12)).

[AN] = [A]/Rf = KRb/(Rf(1 + K[L])) (A12)
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For n binding sites of equal strength, the affinity index is (Equation (A13)):

[A] = KRb[L]n−1/(1 + K[L]n) (A13)

For n binding sites, each with a different thermodynamic equilibrium constant, the
affinity index takes the form of Equation (A14):

[A] =

n

∑
i

(
ni

nt

KiRbi [L]
ni−1

1 + Ki[L]
ni

)
(A14)

Independently from the complexation stoichiometry, a linear relationship always corre-
lates the relaxation rate and the macromolecule concentration (Equations (A15) and (A16)):

Robs = Rf + [A][M0] (A15)

and
∆R/Rf = (Robs − Rf)/Rf = [AN][M0] (A16)

The linear fitting of the relaxation rates as a function of the macromolecule concentra-
tion [AN] can be obtained, providing a measure of ligand–macromolecule global affinity.
The determination of this parameter represents a useful approach to compare the ability
of different ligands to interact with the same macromolecule or to compare the ability of
different macromolecules to bind the same drug.
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