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Abstract: In this study, we propose ultra-performance liquid chromatography coupled with quadrupole/
time-of-flight mass spectrometry (UPLC-QToF-MS/MS)-guided metabolite isolation as a choice
analytical approach to the ongoing structure–activity investigations of chemical isolates from the
edible lichen, Ramalina conduplicans Vain. This strategy led to the isolation and identification of a new
depside (5) along with 13 known compounds (1–4, 6–14), most of which being newly described in
this lichen species. The structures of the isolates were established by detailed analysis of their spectral
data (IR, NMR, and Mass). The acetone extract was further analyzed by UPLC-Q-ToF-MS/MS in
a negative ionization mode, which facilitated the identification and confirmation of 18 compounds
based on their fragmentation patterns. The antioxidant capacities of the lichen acetone extract (AE)
and isolates were measured by tracking DPPH and ABTS free radical scavenging activities. Most
isolates displayed marked radical scavenging activities against ABTS while moderate activities were
observed against DPPH radical scavenging. Except for atranol (14), oxidative DNA damage was
limited by all the tested compounds, with a marked protection for the novel isolated compound
(5), as previously noted for the acetone extract (p < 0.001). Furthermore, compound (4) and acetone
extract (AE) have inhibited intestinal α-glucosidase enzyme significantly (p < 0.01). Although some
phytochemical studies were already performed on this lichen, this study provided new insights
into the isolation and identification of bioactive compounds, illustrating interest in future novel
analytical techniques.

Keywords: R. conduplicans; lichen; secondary metabolites; antioxidant; DNA damage; α-glucosidase
inhibition

1. Introduction

Lichens are structurally complex and self-sustaining unique consortia comprised of
a fungus host (mycobiont) living with algae or cyanobacteria (photobiont partner) in the
framework of a unique symbiotic type of relationship. In recent years, much attention has
been paid to the biological roles of lichen metabolites because of their potential applica-
tions in perfumery, cosmetics, creative crafts, the dye industry, and the pharmaceutical
sector [1,2]. Moreover, many lichens and their extracts and metabolites have been utilized
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as ingredients in ethnic food preparations and specialties, along with ethnomedicinal ap-
plications [3]. For example, a mixture of lichens called Yangben in the Rai and Limbu
communities of East Nepal is mainly composed of Ramalina species [4]. Among these
fruticose epiphytic species, Ramalina conduplicans Vain is common and one of the most
widely-used edible lichen of the Ramalinaceae family, this is distributed in Central and
Southeastern Asian countries [5].

In Southwestern China, people used to prepare their traditional cold dishes with this
lichen at their marriage banquets [6], and it also has a long history of consumption as a
spice in many places in India and as a traditional food by selected communities in East
Nepal [7,8]. In addition to its useful edible properties, crude extracts from this lichen
are used as ethnomedicine to counteract inflammation, anthelminthic [9], and act as an
anti-diabetic [10], along with antibiotic activities [3,11,12]. Many studies on this lichen
have focused on their nutritional value along with the important trace elements [13] and
antioxidant properties of R. conduplicans [9,14] concerning sekikaic acid and homosekikaic
acid [15]. However, systematic investigations of its constituents for their bioactive potentials
have not been carried out to date.

Therefore, the antioxidant and alpha-glucosidase inhibiting properties of metabolites
from Ramalina conduplicans were investigated here as part of our ongoing exploration of
natural flora for the isolation of bioactive secondary metabolites [16,17]. Accordingly, we
have designed a strategy and workflow based on the Total Ion Current Chromatography
(TIC) of the acetone extract (AE) to recognize and to isolate compounds from R. conduplicans
by UPLC-Q-ToF-MS/MS. AE and all the isolates were assayed for their antioxidant free-
radical scavenging properties, including DNA damage protection and anti-hyperglycemic
potential, through α-glucosidase inhibition.

2. Results and Discussion

The R. conduplicans sample was identified by morphological characteristics and thallus
reactions: K+ pale yellow, KC−, P−, and also negative reaction of the medulla to calcium
hypochlorite solution (C−) (Figure S2, Supplementary Materials). These usual spot tests
are based on the presence of lichen metabolites, but have to be supplemented by accurate
analytical studies to reveal the metabolite content.

2.1. Chemical Profiling, Isolation, and Structure Elucidation

A HPTLC (Figure S3, Supplementary Materials) co-migration with standards and the
UPLC-PDA profile (Figure S4, Supplementary Materials) of the acetone extract of R. condu-
plicans suggested the presence of a dozen of visible compounds, among which salazinic
acid, usnic acid, sekikaic acid, homosekikaic acid, and divaricatic acid were identified
against standards and appeared to represent the most abundant compounds. Initial LC-
QToF-MSE analyses of the acetone extract of R. conduplicans indicated the presence of dep-
sides, depsidones, and monophenolic acids based on High-Resolution Mass Spectroscopy
(HRMS). Molecular formulae for C10–35H10–50O2–15 were generated from mass ranges m/z
150–750 coupled with the fragment ions and their MS spectral data (accurate mass and
fragmentation pattern) and compared to online databases (DNP, Reaxys, SciFinder).

Mass spectrometry (MS) and, particularly, quadruple time-of-flight coupled to Liquid
Chromatography (UPLC-Q-ToF-MS) has been widely utilized for profiling metabolites due
to its superiority in high-resolution mass, precision, and sensitivity [18], and was helpful to
clearly discriminate between the depsides, depsidones, simple phenol acids, dibenzofurans,
and hydroxyl fatty acids based on the fragmentation of lichen molecules [16]. Therefore,
the acquired TIC of the R. conduplicans extracts, obtained within 16 min, were analyzed
from spectra obtained in negative mode and, thus, are effective for characterizing trace com-
ponents (Figure 1). Metabolite assignments were made based on their polarity related to
their retention time (Rt) and molecular formulae from accurate molecular weight measure-
ment, along with adducts [M − H]−/ fragment ions and Ring Double Bond Equivalence
(RDBE). In the present study, a total of 18 compounds were clearly characterized from
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the crude extract of R. conduplicans by molecular formulae generated by ToF-MS/MS and
MS/MS including their fragmentation profiles, as reported in the literature and presented
in Table S1 (Supplementary Materials).
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Figure 1. TIC of (A) R. conduplicans acetone extract and (B) enriched fraction-4.

Based on the fragmentation of isolates, we have identified compounds (1–5) and (7–9)
along with atranorin belonging to depsides. The literature clearly indicates that sekikaic
acid is an abundant molecule in Ramalina species [19]. Sekikaic acid (1) is a m-depside
corresponding to the esterification of two divaricatinic acid units and is found with Rt
at 11.98 min and m/z 417.1547 (C22H25O8) with fragments m/z 209 and m/z 225 corre-
sponding to the A ring and B ring, respectively [20]. Compounds 1, 3, 5, 7, 8, and 9, having
a common fragment m/z 209 (Figures S47 and S48, Supplementary Materials), clearly
indicate the difference in locating the other Bring. These depsides can be considered as
ester derivatives of divaricatinic acid (11) while compound 2 is a divaric acid derivative
(recognized at Rt 7.50 min, m/z 195.0657). The other identified monoaromatic compounds
correspond to 2,4-di-O-methyldivaric acid (6), 4-O-methyldivaricatic acid (10), divaricatinic
acid (11), olivetolic acid (12), divarinolmonomethylether (13), and atranol (14). In this run,
three additional compounds were ionized and fragmented (Rt = 8.53 min, Rt = 11.88 min,
and Rt = 13.17 min) and not determined. The fragmentation feature of Compound 5 (m/z
401.1954 [M − H]− (calcd. for [C23H28O6]− 401,1964)) suggested the coupling of a divar-
icatinic acid moiety to an olivetol monomethylether moiety (Figure S17, Supplementary
Materials). Based on these fragmentation studies, we assigned compounds as shown in the
Supporting Information section and in Table S1, including the monoaromatic divaric acid,
along with the common and already-described atranorin (depside), usnic acid (related to
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dibenzofurans), and salazinic acid (a depsidone). The structures were concluded through
MS/MS fragmentation patterns and compared with in-house standards.

Subsequently, the acetone extract was subjected to column chromatography to give
eight fractions (I to VIII). An LC–MSE analysis of all fractions revealed the presence of
depsides in III–VI fractions (Figures S4–S6, Supplementary Materials). Thus, the targeted
isolation and purification of III–VI fractions yielded the isolation of one new depside (5),
along with other known depsides (1–4 and7–9) and monoaromatic compounds (6 and
10–14). The spectra and fragmentation patterns of these molecules were shown in the
Supporting Information section (Figures S7–S46, Supplementary Materials).

The structures of the isolated compounds (Figure 2) were determined by a combination
of spectroscopic data (HRESIMS, 1H and 13C NMR) and in comparison with the reported lit-
erature data. They were identified as sekikaic acid (1) [21], 4′-O-methylnorhomosekikaic acid
(2) [22], homosekikaic acid (3) [22], hyperhomosekikaic acid (4) [23], 2,4-dimethyldivaric acid
(6) [24], divaricatic acid (7) [25], decarboxydivaricatic acid (8) [26], decarboxystenosporic
acid (9) [26], methyldivaricatinate (10) [24], divaricatinic acid (11) [21], olivetolic acid
(12) [27], divarinolmonomethylether (13) [21], and atranol (14) [28].
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Compound 5 was isolated as white amorphous powder and identified as a new
compound. Its molecular formula was established as C23H29O6 based on a HRESIMS ion at
m/z 401.1954 [M − H]− (calcd. for [C23H28O6]−, 401.1964). The 1H and 13C NMR data of 5
(Table 1) showed the presence of four aromatic protons, (δH 6.53 (d, J = 1.8 Hz, 1H), 6.51
(d, J = 1.8 Hz, 1H), 6.46 (d, J = 2.6 Hz), and 6.40 (d, J = 2.6 Hz); δC 120.0, 110.7, 105.4, and
100.8) and one ester carbonyl (δC 170.3). In addition, two methoxyl groups (δH 3.86 (3H, s),
3.81 (3H, s)) and two n-alkane side chains of two methylene groups that were adjacent to a
benzene ring (δH 3.02–2.93 (m, 2H), 2.62–2.51 (m, 2H)) were also distinguished from the
NMR spectra, respectively (Table S2, Supplementary Materials). These spectral features,
together with the characteristic ester carbonyl group at C-7 (δC 170.3) in the 13C NMR
spectrum, strongly imply that 5 is a depside-type derivative [16,29].

Table 1. NMR data of compound 5 (400 & 100 MHz, acetone-d6) *.

S no 1H NMR of 5 13C NMR of 5

1 – 107.35

2 – 166.10

3 6.46 (d, J = 2.6 Hz, 1H) 112.07

4 – 166.10

5 6.40 (d, J = 2.6 Hz, 1H) 100.65

6 – 149.91

7 – 170.47

1′ 6.53 (d, J = 1.8 Hz, 1H) 110.80

2′ – 151.36

3′ – 154.12

4′ – 143.54

5′ 6.51 (d, J = 1.8 Hz, 1H) 105.49

6′ – 150.38

1′′ 3.0–2.93 (m, 2H) 40.06

2′′ 1.82–1.68 (m, 2H) 26.58

3′′ 0.93 (t, J = 7.6, 3H) 15.60

1′′ 2.62–2.51 (m, 2H) 37.69

2′′′ 1.67–1.59 (m, 2H) 32.89

3′′′ 1.41–1.30 (m, 2H) 33.25

4′′′ 1.41–1.30 (m, 2H) 24.18

5′′′ 0.93 (t, J = 7.6 Hz, 3H) 15.30

OMe-7′ 3.81 (s, 3H) 57.31

OMe-8 3.86 (s, 3H) 56.83
* = values are assigned with the comparison of sekikaic acid data and COSY/NOESY correlations.

A comparison of 1H NMR and 13C NMR data from5 with those of 4′-O-methylnorhomo-
sekikaic acid, which were isolated from the same species, indicated an overall similarity,
except for the absence of a COOH group and the presence of two additional methylenes.
This reasoning was further supported by its 13C NMR spectrum, which showed the ab-
sence of a carbonyl COOH group, and its 1H NMR spectrum indicated the presence of
an additional aromatic proton at 6.53 (d, J = 1.8 Hz, 1H). A comprehensive analysis of 2D
NMR (COSY, and HSQC) data, especially the 1H–1H COSY spectrum, revealed two discrete
spin systems, including -CH-CH2-CH3- (from H-1′′, H-2′′ and H-3′′) and -CH-CH2-CH2-
CH2-CH3 (from H-1′′′ to 5′′′), as drawn with bold lines in Figure 3. The position of the
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n-pentyl group at C-6′ and n-propyl chain at C-6 was confirmed on the basis of the NOESY
correlations (H-1′′′/H-5′, H-1′′′/H-1′ and H-1′′/H-5) (Figure 3) and in comparison with
the sekikaic acid data. In addition, the MS/MS spectrum of 5 showed (Figure 4) product
ions m/z 209, thereby indicating the breakage of the C–O bond between two aromatic rings
supported by the fragments at m/z 165 and 137. Based on these spectral characteristics, the
structure of 5 was established and trivially named as decarboxyhomosekikaic acid.
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3. Biological Activity
3.1. Assessment of Compounds and Extract for Free Radicals Scavenging and Antioxidant Activity

The amphiphilic nature of the ABTS•+ cation was used to identify both hydrophilic and
hydrophobic antioxidants in dietary materials, whereas the DPPH- radical was used to mea-
sure an antioxidant’s reducing power [30]. These fundamental chemical experiments reveal
the radical scavenging and reduction characteristics of the potential antioxidant candidates.

Acetone extract (AE) and all isolated compounds (1–14) scavenged ABTS•+ and DPPH-

radicals and the results are presented in Table 2. The results have demonstrated that AE
and all the other compounds potently neutralized ABTS•+ radicals (more than 70%) and
have shown activity equal to the ascorbic acid standard, except for compound 13, which
only scavenged radicals by 50%.The pattern and potentials in decreasing order of ABTS•+

scavenging potentials were observed as follows:olivetolic acid (12) > compound 5 > divari-
nolmonomethylether (13) > decarboxydivaricatic acid (8) > 4-O-methylnorhomo sekikaic
acid (2) > atranol (14) > divaricatic acid (7) > decarboxystenosporic acid (9) > sekikaic acid
(1) > 2,4-dimethyldivaric acid (6) > homo sekikaic acid (3) > methyldivaricatinate (10). In
the case of the DPPH-radical scavenging assay, acetone extract (AE) and compound 14
scavenged DPPH-radicals potently by more than 50%, whereas 1, 2, 3, 4, 5, 6, 12, and 13
countervailed DPPH-radicals (20–40%) moderately. It is important to mention that potent
ABTS•+ scavenging activities were observed in all compounds, but DPPH scavenging
activity was detected to be moderate in all compounds except compound 14 (Table 2). As
ABTS•+ is a planar radical, it can be used to identify antioxidants even with low redox
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potentials. However, due to the steric barrier of the N• radical, they may react slowly or
not at all when tested on DPPH radicals [31]. This might be the reason why extracts and
compounds scavenge ABTS•+ more potently than DPPH-radicals. To check whether this
radical scavenging activity is related to antioxidant properties, we challenged genomic
DNA with hydrogen peroxide (H2O2)-induced oxidative damage.

Table 2. Free radical scavenging activities of AE and compounds (1–14) of Ramalina conduplicans.

Compound Name (Code)
DPPH Assay

% Scavenging
(SC50, µg/mL)

ABTS Assay
% Scavenging,
(SC50, µg/mL)

Sekikaic acid (1) 37.75 ± 0.65 99.05 ± 0.00 (2.45)

4-O-methylnorhomosekikaic
acid (2) 36.78 ± 1.57 98.57 ± 0.00 (1.40)

Homosekikaic acid (3) 38.28 ± 1.22 98.10 ± 0.00 (2.81)

Hyperhomosekikaic acid (4) 27.32 ± 0.34 79.52 ± 1.02 (17.44)

Compound 5 46.29 ± 3.70 100.48 ± 0.68 (0.44)

2,4-dimethyldivaric acid (6) 29.67 ± 0.89 100.20 ± 0.34 (2.46)

Divaricatic acid (7) 8.57 ± 1.65 99.28 ± 1.02 (2.09)

Decarboxydivaricatic acid (8) 17.17 ± 1.74 100.28 ± 0.00 (0.75)

Decarboxystenosporic acid (9) 13.04 ± 0.73 96.7 ± 0.5 (2.41)

Methyl divaricatinate (10) 6.50 ± 0.76 100.0 ± 1.0 (2.90)

Divaricatinic acid (11) ND 100.0 ± 0.5 (2.63)

Olivetolic acid (12) 41.94 ± 1.11 92.7 ± 0.0 (0.13)

Divarinolmonomethylether (13) 21.12 ± 1.21 51.7 ± 2.5 (0.57)

Atranol (14) 74.66 ± 2.59 (18.65) 88.9 ± 7.3 (2.05)

Acetone Extract (AE) 50.64 97.3

Ascorbic Acid 93.25 ± 1.23 (3.96) 99.02 ± 0.03 (0.47)
ND = Not determined. The activity is expressed as % scavenging with regard to ascorbic acid scavenging activity.
The SC50 is indicated for the most active compounds.

3.2. Protective Effect of R. conduplicans AE and Isolated Compounds on Oxidative DNA Damage

The Fenton’s reaction produces the hydroxyl radical, which is a ROS that is detrimental
to the human body. Hydroxyl radicals react with different nucleobases, thereby induc-
ing the formation of mutated bases that eventually lead to DNA damage [32]. Figure 5
demonstrated that FR damaged DNA significantly (p < 0.001) compared to the control
(DMSO + DNA). Though all compounds showed significant protection against hydroxyl
radical-induced DNA damage (p < 0.001, cpd 10: p < 0.05), compound 14 could not prevent
the oxidative damage to DNA (Figures 5 and S49). The genoprotective activity of these com-
pounds and the AE may be attributed to the presence of free radical scavenging potential.

3.3. Assessment of In Vitro Antihyperglycemic Activity of Compounds and Extract as Intestinal
α-Glucosidase Enzyme Inhibition

The α-glucosidase enzyme is a key enzyme that catalyses disaccharide digestion. The
inhibition of α-glucosidase in the intestine slows digestion and the overall rate of glucose
absorption into the blood. This has proven to be one of the most effective ways for lowering
post-prandial blood glucose levels and, as a result, preventing the onset of late diabetes
complications [33]. Sekikaic acid (1) was already recognized to inhibit α-glucosidase along
with usnic acid and salazinic acid from other Ramalina species, but it is not the most effective
compound [34]. As per Figure 6, it was stated that acetone extract (AE) and compound 4
have displayed better α-glucosidase inhibition (p < 0.01) than Acarbose.
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Figure 5. In vitro DNA damage assay. Compounds (1–14) and R. conduplicans. AE were incubated
with DNA and Fenton’s Reagent and DNA damage was recorded with Agarose Gel electrophoresis.
Respective graphical representation. ### p < 0.001; vs. control (DMSO + DNA). *** p < 0.001,
* p < 0.05; vs.DMSO + DNA + FR, One-way ANOVA followed by Tukey’s multiple comparison test
was used to calculate values. Values are represented as mean ± SD, n = 3. AE = Acetone Extract,
FR = Fenton’s Reagent.
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Figure 6. Intestinal α-glucosidase inhibitory assay. Compounds (1–8), (11–14), and acetone extract
(AE) were incubated with α-glucosidase enzyme and the release of p-nitrophenol was determined.
*** p < 0.001, ** p < 0.01; vs. Acarbose. One-way ANOVA followed by Tukey’s multiple comparison
test was applied to compare differences. Values are represented as mean ± SD, n = 3. AE = Acetone
Extract. Activity was not detected for compounds 9 and 10.

On the other hand, compounds 8, 11, 12, and 14 demonstrated inhibitory effects
comparable to those of the standard Acarbose (Figure 6). As contrasted activities can
be observed between structurally-related compounds, structure–activity relationships
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can be considered. This is the case between depsides 3 and 4, suggesting a positive
influence of the C1-pentyl chain with regard to substitution by a C1-propyl chain. When
this length modification of the alkyl chain occurs on the B ring of decarboxylated derivatives
(active compound 8 versus inactive compound 9) the opposite influence can be observed.
The presence of a C6′-carboxylic group lowers the α-glucosidase inhibitory activity as
compound 7 is less active than compound 8. Methylation of the carboxylic function of the
monoaromatic divaricatinic acid 11 resulted in a complete loss of activity. Nevertheless,
most of the tested compounds were found with some activity, such as compounds 1, 2, 3, 5,
6, 7, and 13, which displayed mild to moderate enzyme inhibition (p < 0.001). These results
are to be pooled with the growing number of reports on the antidiabetic potential of lichen
extracts or molecules [34–36]. The combination of activities with different mechanisms
of action is of particular interest to develop potent antihyperglycemic effects. Lowering
glucose absorption and limiting oxidative damages due to hyperglycemia, as expected
from the lichen extract, could be promising. The challenge is to use standardized extracts
that were previously checked to be safe for acute and chronic intake.

4. Materials and Methods
4.1. General

The NMR spectra were recorded on a Bruker FT-400 MHz NMR spectrometer and
samples were dissolved in deuterated acetone-d6. Mass data were acquired on aXevoTM

G2 XS-ESI-QTof mass spectrometer (Waters Corp., Manchester, UK). For thin layer chro-
matography (TLC) analysis, precoated Merck plates (silica gel 60 F254) were utilized. Silica
gel (100–200 mesh) (Qing-dao Marine Chemical, Inc., Qingdao, China) was chosen for
column chromatographic separation. Semi-preparative chromatography was performed
on a Gilson HPLC (Middleton, WI, USA) instrument equipped with a 321 binary pump,
GX-281 liquid handler, and UV-155 detector with X Select HSS T3 (250 mm × 100 mm,
5 µm) (Waters Corp., Drinagh, Ireland) as a stationary phase using a Trilution LC v2.1 plat-
form. Formic acid (OptimaTM Mass spec grade) (Thermo Fisher Scientific, Geel, Belgium),
HPLC-grade acetonitrile, LiChrosolv (Merck, Darmstadt, Germany), and ultra-pure water
(Millipore System, Randolph, MA, USA) were used.

4.2. Instrumental UPLC Conditions

The instrumental conditions were set-up as per our recent report (Reddy et al., 2019)
with slight modifications. Chromatographic separation was performed on an Acquity H
Class UPLC system (Waters, Milford, MA, USA) with a conditioned auto sampler using
an ACQUITY UPLC CSH Phenyl-Hexyl column (100 mm × 2.1 mm id., 1.7 µm particle
size) (Waters, Milford, MA, USA). Column temperature was maintained at 40 ◦C. High-
resolution masses of secondary metabolites were measured after UPLC separation. A
mobile phase consisting of water with 0.1% formic acid in water (solvent A) and acetonitrile
with 0.1% formic acid (solvent B) was pumped at a flow rate of 0.4 mL/min. The gradient
elution program was as follows: 0 min, 5% B; 3.00 min, 20% B; 5.00min, 35% B; 7.50 min,
50% B; 10.00 min, 70% B; 12.50 min, 95% B; 17.00 min 95% B; and 21.00 min 5% B. The
equilibration time was 4.0 min and the injection volume was 2 µL. The LC-QTof-MSE

mode was applied to analyze the samples in both TIC as well as the MS/MS mode, where
the collision energy was ramped at 15–45 eV. Eluted compounds were detected from
m/z 50 to 1200 using a Xevo G2-XS Q-Tof mass spectrometer (Waters, Manchester, UK),
which was connected to Electro-spray ionization (ESI) interface with a negative ion mode
using the following instrument settings: capillary voltage, 2.0 KV; sample cone, 40 V;
source temperature, 120 ◦C; desolvation temperature 350 ◦C; cone gas flow rate 50 L/h;
desolvation gas (N2) flow rate 850 L/h, argon as CID gas for MS/MS experiments. All
analyses were performed using lock spray, which ensured accuracy and reproducibility.
Leucine–Enkephalin (5 ng/mL) was used as a lock mass, generating a reference ion in
the negative mode at m/z 554.2615, and was introduced by a lock spray at 10 µL/min
for accurate mass acquisition. Data acquisition was achieved using MassLynx ver. 4.1.
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Acquiring data in this manner provided information on intact precursor ions as well as
fragment ions.

4.3. Lichen Sample Collection and Identification

The lichen, Ramalina conduplicans, was collected from tree bark in Bichpuri Range,
Bijrani Zone of Corbett National Park, alt. N 29◦26′40” E79◦04′06 (1283 m) in the month of
May 2019. The morphological features of lichen thallus and ascomata were observed under
Magnüs MS 24/13, and spot tests for color reaction were carried out by 10% aqueous solu-
tion of potassium hydroxide (K), Steiner’s stable p-phenylene diamine solution (PD), and
calcium hypochlorite solution (C). For the anatomical investigation of fruiting bodies, a light
microscope from ZEISS Axiostar was used. The lichen substances were identified with thin
layer chromatography in solvent system ‘A’ following White and James’s methods (1985).
The standard literature [37] was referred to for identification of lichen samples. The voucher
specimens (Satish Mohabe & A. Madhusudhana Reddy 7658YVUH) of species were de-
posited at the Herbarium, Department of Botany, Yogi Vemana University, Kadapa, Andhra
Pradesh. The corresponding data are shown in Figures S1–S3, Supporting Materials.

4.4. Extraction and Isolation

The sorted-out lichen Ramalina conduplicans (300 g) was shade-dried, powdered, and
extracted with acetone (6L) at room temperature for 48h. The result was that acetone
extract was evaporated to dryness under reduced pressure, thereby affording a syrupy
residue (20 g). This crude extract was subjected to gradient column chromatography (SiO2,
60–120 mesh) and eluted with a hexane/EtOAc mixture of increasing polarity with 10%
intervals that yielded 8 fractions. These eight fractions were reconstituted in acetonitrile
and subjected to UPLC Q-ToF MSE. Based on the TIC profile, we selected fractions 3–6 for
purification (mass profile shown in supporting information, discussion in results section).
All these fractions were subjected to semi-preparative HPLC (X Select HSST3 OBD Prep
Column,5 µm, 10 mm × 250 mm), 0.1 % formic acid with water (solvent A) and acetonitrile
(solvent B) as mobile phase at flow rate 4 mL/min, detected at 254 nm. Semi-preparative
HPLC were conducted by gradient elution programs to obtain compounds as follows:
Fraction 3 (quantity 70 mg, loop volume 250 µL was eluted by 0 min, 5% B; 5 min, 5% B;
10.00 min, 35% B; 16.00 min, 60% B; 25 min, 95% B; 30 min, 95% B; 5% B; 30.50 min, 5% B;
35.00 min. to yield 3 (homosekikaic acid, 7 mg), 7 (divaricatic acid, 4 mg), 11 (divaricatinic
acid, 3 mg), 12 (olivetolic acid, 5 mg), and 14 (atranol, 2 mg). Fraction 4 (quantity 50 mg,
loop volume 250 µL was eluted by 0 min, 30% B; 5 min, 30% B; 10.00 min, 50% B; 23.00 min,
95% B; 27.00 min, 95% B; 27.50 min, 30% B; 30% B; 30.00 min at flow rate 4 mL/min,
detected at 254 nm to yield 10 (methyldivaricatinate, 3 mg), 8 (decarboxydivaricatic acid,
5 mg), 9 (decarboxystenosporic acid, 2 mg), and 4 (hyperhomosekikaic acid, 1mg). Fraction
5 (quantity 25 mg, loop volume 250 µL was eluted by 0 min, 5% B; 8.50 min, 30% B;
15.00 min, 50% B; 22.00 min, 95% B; 28.00 min, 95% B; 29.0 min, 5% B; 5% B; 35.00 min at
flow rate 4 mL/min, detected at 254 nm) to yield 13 (divarinolmonomethylether, 3 mg) and
compound 5 (2 mg). Fraction 6 (quantity 40 mg, loop volume 250 µL was eluted by 0 min,
10% B; 8.50 min, 40% B; 18.00 min, 55% B; 25.00 min, 75% B; 32.00 min, 95% B; 36.0 min, 95%
B; 10% B; 37.00 min, 10% B; 42.00 min at flow rate 4 mL/min, detected at 254 nm) to yield 1
(sekikaic acid, 5 mg), 2 (4-O-methylnorhomosekikaic acid, 7 mg) and 2,4-di-O-methyldivaric
acid 6 (2 mg). Physicochemical data are shown in the Supporting Materials.

4.5. In Vitro Antihyperglycemic and Antioxidant Assay
4.5.1. DPPH Radical Scavenging Activity

A DPPH radical scavenging assay was carried out as previously reported [38]. Scav-
enging of 2,2-diphenyl-1-picryhydrazyl (DPPH) radicals by the acetone extract (AE) (50 µg
of 2 mg/mL solution dissolved in DMSO) and compounds (1–14) (50 µg of 2 mg/mL solu-
tion dissolved in DMSO) was measured in 100 mM Tris-HCl buffer (pH 7.4) by recording
the absorbance at 517 nm spectrophotometrically. Ascorbic acid (50 µg of 2 mg/mL solution
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dissolved in DMSO) served as the standard. The results were expressed as %-scavenging
and calculated by using the following formula: (Ac−At)/100 × Ac, where Ac was the ab-
sorbance of control and At was the absorbance of the test sample. Different concentrations
of compounds were evaluated to obtain 50% scavenging activity (SC50). The SC50 was
calculated based on the equation obtained from regression analysis.

4.5.2. ABTS Radical Scavenging Activity

Scavenging of the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical
cation (ABTS•+) was performed as per the earlier method [39]. Acetone extract (AE)
(20 µg of 2 mg/mL solution dissolved in DMSO) and compounds (1–14) (20 µg of 2 mg/mL
solution dissolved in DMSO) were incubated with ABTS•+ solution in 6.8 mM phosphate
buffer (pH 8.0) as described earlier. The discoloration of the ABTS•+ solution was de-
termined by measuring the absorbance at 734 nm spectrophotometrically. Ascorbic acid
(20 µg of 2 mg/mL solution dissolved in DMSO) served as the standard. The activity was
expressed as %-scavenging and calculated as follows: (Ac − At)/(100 × Ac), where Ac
was the absorbance of control and At was the absorbance of the test sample. The SC50 of
compounds was calculated as per the above formula.

4.5.3. Free Radical Induced DNA Damage

The protective effect of acetone extract (AE) and compounds (1–14) on oxidative DNA
damage was evaluated as per the previous method [40]. A total of 2 µL calf-thymus DNA
mixed with 5 µL of 39 mM Tris buffer (pH 7.4) and 5 µL (10 µg) acetone extract and
compounds (1–14) (10 µg of 2 mg/mL solution dissolved in DMSO) mixture was incubated
at room temperature for 20 min. The reaction was initiated by adding 5 µL FeCl3 (500 µM)
and 10 µL H2O2 (0.8 M) and incubated for 10 min at 37 ◦C. The reaction was stopped by
adding 3 µL DNA loading dye. Finally, the mixture was subjected to 0.8% agarose gel
electrophoresis in TAE (40 mM Tris, 20 mM acetic acid and 0.5 M EDTA) buffer (pH 7.2).
A total of 3 µL of Ethidium bromide was added to agarose solution to stain DNA bands.
The image was viewed under transilluminating UV light and photographed (Bio-Rad,
ChemiDocTM XRS, Hercules, CA, USA with Image LabTM software (ver. 6.0.1, build34,
standard edition, 2017). The band intensity of the DNA was measured by using ImageJ
software (ver. 1.4.3.67, Broken Symmetry Software, Scottsdale, AZ, USA).

4.5.4. Intestinal α-Glucosidase Inhibition

An intestinal α-glucosidase enzyme inhibition assay was performed as per the previ-
ous method [36]. A total of 20 µL (40 µg) of acetone extract and compounds (1–14) (40 µg
of 2 mg/mL solution dissolved in DMSO) were incubated with 50 µL of rat intestinal
α-glucosidase enzyme (89.93 mM, prepared in 0.9% NaCl) in 100 mM phosphate buffer
(pH 6.8) for 10 min. After the incubation period, 50 µL of substrate (4-nitroplenyl α-D-
glucopyranoside) solution was added. The release of p-nitrophenol from substrate was
measured by recording the absorbance at 405 nm spectrophotometrically. Acarbose (40 µg
of 2 mg/mL solution dissolved in DMSO) was taken as the standard. The activity was
expressed and calculated as follows: (Ac − At)/100 × Ac, where Ac was the absorbance of
control and At was the absorbance of the test sample.

4.5.5. Statistical Analysis

Comparisons within the groups were done by applying one-way ANOVA followed
by a post-test Tukey’s Multiple comparison test. Statistical significance was set at p < 0.05.
Data analysis was performed by using GraphPad Prism ver. 5.01 (GraphPad Software Inc.,
San Diego, CA, USA).

5. Conclusions

A novel UPLC-QToF-MS/MS-guided strategy was proposed here for the isolation and
characterization of one new depside, decarboxyhomosekikaic acid, along with 13 known
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metabolites from Ramalinaconduplicans—most of them being minor metabolites that were
reported on for the first time from this species. In the whole experimental design, UPLC-
QToF-MS/MS was selected for multiple purposes, including targeting, finding, profiling,
and isolating active constituents. Three hitherto unreferenced compounds were detected in
this lichen, with their molecular formulae being deduced from HR-QToF-MS. Although
in minute amounts, one isolate could be identified as an additional homosekikaic derivative.
The expected major compounds atranorin, usnic acid, salazinic acid, and sekikaic acid
were also obtained. However, efforts for isolating, identifying, and testing mainly targeted
alkyldepsides- and monoaromatic-related compounds.

These compounds were tested for their antioxidant and α-glucosidase inhibition po-
tential. Most of them, and the crude acetone extract (AE), have displayed antioxidant
potential by scavenging ABTS and DPPH radicals and protected DNA from oxidative dam-
age. Five compounds, and particularly hyperhomosekicaic acid, exhibited a comparable
or better α-glucosidase inhibition to that of the acarbose standard. On the basis of these
results, it is suggested that these lichen substances have a great potential to be used as
bioresources or as structural models for novel bioactive candidate compounds. Docking
experiments are necessary to document the structure–activities observed in this study along
with pharmacomodulation studies to evaluate the antidiabetic properties. Acetone extract
unexpectedly showed a comparable effect to that of the Acarbose standard, though it was
not sufficient to consider its hypoglycemic activity in the context of the traditional use
made of this edible lichen [10].

It should be kept in mind that activities obtained from the crude extract or from any of
the active metabolites cannot be claimed to support a preventive or a therapeutic activity
as no clinical assay has been carried out to validate an effect with a standardized dosage.
Unexpected side effects can occur when preparations differ from the real traditional use,
and toxicity trials have to be carried out at once.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196720/s1. Detailed Materials and Method. Table S1:
LC-QToF-MSE data of compounds from acetone extract of R. conduplicans. Physicochemical data of
isolated compounds. Figure S1: Authenticate Ramalina conduplicans. Figure S2: Shows the spot tests
for identification of Ramalina conduplicans. Figure S3: Depicts the HPTLC profiles for R. conduplicans
extract. Figure S4: UPLC-PDA chromatogram of acetone extract of R. conduplicans. Figure S5: Total
Ion Chromatogram (TIC) of fractions and pure compounds. Figure S6–S46: Spectral data (FTIR
spectra, HRESIMS, MS/MS spectra and fragmentation pattern, 1H & 13C NMR, DEPT, HSQC, DQF-
COSY and NOESY spectra) of compounds 1–14, salazinic acid, usnic acid and atronarin. Figure S47:
TIC of R.conduplicans. Figure S48: Common fragmentation of depsides. Figure S49. Invitro DNA
damage assay.
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