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Abstract: This study highlights the synthesis of a new thermal insulating geopolymer based on the
alkaline activation of fly ashes. A porous geopolymer material can be prepared without the addition
of a foaming agent, using high ratio solution/ashes (activating solutions used are water, sodium
or potassium hydroxide). In order to increase the porosity of the material and to make it more
ecological, rice husks are incorporated into the formulation. The geopolymer materials were prepared
at room temperature and dried at moderate temperature (105 ◦C) by a simple procedure. The
microstructural characteristics of these new porous geopolymers were assessed by optical microscopy,
X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Infrared
spectroscopy (FTIR) was used to confirm the geopolymerisation. The effect of the ratio solution/ashes
and the percentage of the rice husk addition on thermal and mechanical analysis was evaluated. An
insulating material for a solution/ashes ratio of 0.9 and a rice husk content of 15% having a λ value
of 0.087 W/(m·K), a porosity of 61.4% and an Rc value of 0.1 MPa was successfully prepared.

Keywords: industrial fly ash; rice husk; geopolymerisation; thermal insulation; compressive strength

1. Introduction

For the last century, Portland cement-based concrete has been the most widely used
product in construction worldwide due to its availability and low cost. Nevertheless,
the manufacture of these hydraulic binders consumes excessive amounts of energy be-
cause of the high temperatures needed for clinkerisation. In addition, this production is
complemented by significant emissions of greenhouse gases [1].

To reduce CO2 emission, cementitious materials resulting from alkaline activation of
alumino-silicate precursors were developed, and they became an alternative to Portland
cement materials [2]. These materials, known as geopolymers, were first invented by
French Professor Joseph Davidovits in 1978 [3], and they are part of the alumino-silicate
family [4]. Geopolymers defined as inorganic polymers exhibit good thermal stability,
excellent chemical inertness and interesting mechanical properties [5]. They are known
to have an amorphous or semi-crystalline structure, characterized by a sequence of a
tetrahedral of silicates (SiO44−) and aluminates (AlO45−) [6]. They are composed from
aluminosilicate precursors such as fly ash, blast furnace slag and metakaolin (usually
developed from waste materials), activated by alkaline solutions such as hydroxides or
alkali silicates [7].

Another issue in the building industry is the consumption of energy during building
lifetime, either for heating or for cooling [8]. Therefore, the use of thermal insulating
materials is undoubtedly important and comprises inorganic materials such as lightweight
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concrete, glass-wool and stone-wool and organic foams such as expanded polystyrene or
polyurethane [9].

As an example of lightweight concrete, Colangelo et al. successfully synthesized
samples from cement, fly ash and lime using the double step cold bonding pelletization
method. The light concrete obtained has a density and a compressive strength which varies
from 1000 to 1600 kg/m3 and 1.3 to 6.2 MPa, respectively [10].

The organic foams are highly flammable and can be replaced by nonflammable inor-
ganic thermal insulators [11]. Other bio-sourced materials based on an inorganic matrix
but with bio-based fillers have been developed. Thus, Chabannes et al. synthesized a
lightweight insulating material using rice husk and hemp as filler in a cement matrix [12].
As well, agro-waste such as groundout shell, oyster shell, cork and tobacco showed a better
workability when used in the construction industry [13].

Among these different bio resources, the use of rice husk seems to be advantageous.
Rice husk is the hard protective coating of the rice grain. It contains 25% to 35% of cellulose,
18% to 21% of hemicelluloses, 26% to 31% of lignin, and 15% to 25% of silica [12]. For a
density of 0.149 g/cm3, their thermal conductivity is equal to 0.049 W/(m·K), making them
resources with high insulation performance. Thus, rice husk is considered as an interesting
thermal insulation material, especially in the building sector [14]. Due to their composition
rich in lignin and amorphous silica, Zhao et al. validated the thermal stability and flame
retardancy of rice husk in an eco-composite material [15].

High porosity and low density geopolymers may find applications as thermal insulat-
ing materials in buildings [16]. Recently, in 2020, Lach et al. used microspheres, sand and
fly ash as raw materials with NaOH in order to produce foam geopolymers. Hydrogen per-
oxide was used as the foaming agent. The analysis of the samples obtained shows thermal
conductivity values between 0.07 and 0.08 W/m·K, as well as a density of 363–375 kg/m3

with a compressive strength of 520–683 kPa [17].
Other studies are reported on the use of geopolymers as insulating materials. F. Škvára

et al. prepared an extremely porous geopolymer material by using fly ash as a precursor
activated by NaOH and sodium water glass, using a gas-forming ingredient. This geopoly-
mer foam has a thermal conductivity value of 0.1 W/(m·K) for a density of 540 kg/m3. The
high porosity is obtained due to the H2 gas generation resulting from the aluminium (Al)
reaction in the alkaline medium [18]. Z. Zhang and al. described a similar preparation to
obtain a geopolymer foam concrete. They mixed fly ash and granulated blast furnace slag
with NaOH and a sodium silicate solution. A diluted aqueous surface-active concentrate
was added to act as a foaming agent and then dried at 100 and 800 ◦C. Reached mortars
displayed a thermal conductivity of 0.15 W/(m/K) for a density of 585 Kg/m3 [19]. R. Arel-
lano Aguilar et al., studied geopolymer lightweight concretes based on metakaolin and
fly ash activated by a sodium silicate solution. With the addition of aluminium powder,
they obtained 1.65 to 0.47 W/(m·K) in thermal conductivity values for densities ranging
from 1800 to 600 kg/m3 [20]. Kamseu et al. likewise prepared metakaolin-based geopoly-
mer foams with Al powder as a foaming agent, and the resulting foam had low thermal
conductivity at 0.15–0.4 W/(m·K) [21].

In order to reduce the environmental impact of the geopolymerisation process, Say-
onara Maria de Moraes Pinheiro et al. used ashes from olive pomace as an activating reagent
as a replacement to the hydroxides solutions [2]. Alkaline solutions can be prepared due to
the composition of olive pomace ashes.

This work highlights the preparation of inorganic-based thermal insulation using
geopolymers containing fly ashes obtained from the incineration of plastic waste and
olive pomace mixtures and rice husk. In this work, olive pomace ashes are present in
precursors but contribute to the activation. To improve the insulating properties of the
geopolymer materials, different formulations were prepared at room temperature and dried
at a moderate temperature (105 ◦C), by a simple procedure by increasing the amount of the
liquid activation phase (e.g., water, sodium or potassium hydroxide) and rice husk addition
in the mixture. The objective was to increase the rate of porosity and to decrease the
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density of the materials. Porous thermal insulating materials were successfully prepared
based on the principle of geopolymerisation, composed of a mixture of industrial fly ashes
and agricultural rice husks waste with or without the addition of a minimum quantity of
basic solution due to the alkaline character of the ashes without addition of any foaming
agent. This study offers the possibility of recovering waste in the field of thermal insulation
for buildings.

2. Results and Discussion
2.1. Particle Size Distribution

In order to verify the homogeneity of the ashes particles, particle size analysis was
carried out. The particle size distribution of ashes shown in Figure 1 indicates that 10%
of the particles have a diameter lower than 8 µm, while 10% of particles have a diameter
higher than 47 µm. The median diameter is around 17 µm. Only one peak is observed.
Then, the distribution is quite homogeneous, and most particles have a size in the range
10–50 µm.

Figure 1. Particle size distribution of raw fly ashes.

2.2. X-ray Fluorescence Spectrometry Analysis

The chemical composition of the raw material used (fly ash) and of some geopolymer
samples is shown in Table 1. The geopolymer samples studied are those having the same
solution/ashes ratio (0.8) but with different compositions.

The loss-on-ignition (LOI) of the samples presented in the table is the weight loss
through heating at 950 ◦C and is about 23.81% for fly ash, 34.70% for A0.8, 24.98% for
BNa0.8 and 27.74% for BNa0.8 RH5%. Many oxides are listed in Table 1. Different reactions
can take place, explaining the presence of these oxides, such as:

The calcination of inorganic carbonates, e.g., CaCO3 → CaO + CO2;
The desorption of physically or chemically bound water (hydroxides), e.g., dehydra-

tion of Ca(OH)2, etc.
The XRF results revealed that the fly ash is mainly composed of CaO, SiO2, Al2O3 and

Na2O. As the ashes used come from the incineration of a mixture containing 56.8% of waste
and plastic fibres, this may explain the presence of a high Cl content, which can be derived
from polyvinyl chloride (PVC) plastics. An important point must be highlighted related to
the high calcium compounds content which seems to fasten the geopolymerisation setting
time and perform better compressive strength [22]. In addition, the most important point
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is that native fly ashes already contain sodium elements (Na2O = 9.44%), which will give
a basic medium after water addition. Consequently, no supplemental basic activation
solution is needed to activate the geopolymerisation, which makes this fly ash original.
Moreover, based on these results, it seems that the ashes have a SiO2/Al2O3 ratio of 2,
making them suitable for use in geopolymers [23]. SiO2/Fe2O3 is almost constant for all
formulations with a value of 4, which is acceptable, but the mechanical properties are
believed to be deteriorated when this ratio decreased [24].

Table 1. Chemical composition of samples.

Fly Ash A0.8 BNa0.8 BNa0.8 RH5%

*LOI 23.81 34.70 24.98 27.74

SiO2 8.79 7.24 6.81 7.30

Al2O3 4.63 3.80 3.60 3.53

Fe2O3 1.94 1.63 1.57 1.54

CaO 36.52 30.19 28.24 27.47

MgO 1.50 1.25 1.18 1.15

SO3 3.26 2.54 2.55 2.34

K2O 0.46 0.07 0.001 0.001

Na2O 9.44 9.26 16.26 14.59

TiO2 1.11 0.90 0.90 0.88

P2O5 0.96 0.81 0.77 0.76

Mn2O3 0.04 0.03 0.03 0.03

SrO 0.06 0.05 0.05 0.05

BaO 0.11 0.10 0.11 0.11

Cl 7.15 7.06 12.59 12.26

F 0.08 0.08 0.08 0.08

TOTAL (%) 99.86 99.70 99.72 99.83
*LOI: Loss-on-ignition.

2.3. XRD Analysis

XRD analyses were carried out on the raw ashes and on a selection of some ground
geopolymers, with a fixed ratio of 0.5 (solution/ashes). The spectra presented in Figure 2
show some differences before and after geopolymerisation. Raw industrial fly ashes show
portlandite “Ca(OH)2”, calcite “CaCO3”, kyanite “Al2SiO5” and sylvite (KCl) as main
crystalline products. Broad peaks considered as an amorphous character for hematite
“Fe2O3”, sillimanite “Al2SiO5” and Quartz “SiO2” are also observed. Portlandite, calcite,
sylvite and quartz originate from the presence of olive pomace ashes in the raw mixture [2].
With water activation, quartz and sillimanite are no longer detected. The same behaviour
is observed in the presence of NaOH and KOH, accompanied by the disappearance of
the amorphous phase of the hematite. It seems that in all the geopolymers, regardless of
the activation solution, the crystalline diffraction peaks intensity are much higher than
the raw ashes. This could be indicative of ash restructuration by a dissolution effect of
the amorphous phases due to the alkaline character from the olive pomace ashes and the
additional use of alkaline solutions with no new crystalline phases formation.
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Figure 2. XRD patterns of different samples. P: Portlandite Ca(OH)2; Q: quartz SiO2, Si: sillimanite
Al2SiO5; K: kyanite Al2SiO5; C: calcite CaCO3; S: sylvite KCl; H: hematite Fe2O3.

2.4. FTIR Analysis

Figure 3 shows the normalized FTIR spectra of four selected samples: crude fly
ashes, A0.5, A0.9, BK0.5 and BNa0.5, in order to investigate the effect of water content
increasing and the presence of KOH and NaOH alkaline solutions. In general, the spectra
of geopolymers prepared using water, KOH or NaOH differ from that of crude fly ashes,
evidencing some chemical modifications. A significant peak at 3630 cm−1 is attributed to O–
H hydroxide bonds from hydroxides and more precisely to O–H bond in Ca(OH)2 in crude
fly ash [25]. This observation is in agreement with the XRD results. However, this bond is
not clearly observed for the geopolymer samples, indicating a partial dehydroxylation of the
hydroxides. For geopolymers only, the large and weak peaks around 3420 and 1631 cm−1,
respectively, are assigned to the O–H stretching and the hydroxyl group present in the
water molecule [26]. In addition, the weak band observed for the geopolymers at 1795 cm−1

could be associated with carbonate C=O bonds. Bands around 1415 and 871 cm−1 are also
related to carbonate bonds and at 712 cm−1 to Ca–O bonds, which are more intense in the
geopolymers [25]. This is an indicator of the formation of carbonate in large quantities in
the geopolymers due to chemical modifications. Crude fly ash seems to exhibit peaks at 510
and 993 cm−1 that correspond to the Al–O bonds [27]. In addition, as observed by XRD, the
peaks around 1193 and 1105 cm−1 can be attributed to aluminosilicates such as sillimanite
Al2SiO5 and quartz SiO2, respectively, which are present in the crude fly ashes [28]. These
bands disappeared after geopolymerisation. They are replaced by a broad and intense
band between 1200 and 958 cm−1, apparently linked to the Si-O-Si and Al-O-Si stretching
band [29]. Note that the intensity of this band increased progressively with increased water
content and in the additional presence of soda following the order: A0.5 < A0.9 < BK0.5
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< BNa0.5. The weak band at 600 cm−1 is also linked to Si-O-Al stretching vibration [29].
These observations in the geopolymers spectra prove the success of the geopolymerisation.

Figure 3. Normalized FTIR spectra of crude fly ashes and geopolymers (A0.5, A0.9 and BNa0.5).

2.5. TG/DTG Results

Figure 4 represents the TG/DTG curves of raw ashes, rice husk and some selected
geopolymer samples. The decomposition is quite complex, with several phenomena that
could overlap. Several mass losses are registered in the 25–700 ◦C range. The thermal
decomposition of raw ashes shows that the first broad peak between 25–130 ◦C and the peak
maximum value of 100 ◦C coupled with a mass loss of 1.5% is attributed to physisorbed
water loss of the main hydrated products [2,30]. Around 280 ◦C, a mass loss of 1.2% can
be assigned to the presence of some lignocellulosic organic impurities, resulting from the
incomplete degradation of olive pomace during their combustion with the other plastic
wastes that remain mixed with the ash particles [31]. An intense peak is observed at 405 ◦C,
which corresponds to the water mass loss of 3% for portlandite (Ca(OH)2) [32], which was
detected by XRD and IR analysis. The peak around 660 ◦C is assigned to the decomposition
of calcite (CaCO3) as observed by XRD analysis [33], with a mass loss of 4% due to the
release of CO2 and calcium oxide formation [34]. The mass loss observed after 780 ◦C can
be attributed to the decomposition of the remnants of coal in the fly ash [35].



Molecules 2022, 27, 531 7 of 19

Figure 4. (a) TG (%) from 25 to 900 ◦C, (b) TG (%) from 25 to 200 ◦C and (c) DTG (%/min) curves of
raw fly ash and geopolymer samples.

For the geopolymer samples A0.5, A0.9, BNa0.5, BK0.5 and BNa0.9RH15 and for pure
rice husk, the first peak observed for pure ashes shifted to lower values around 61–78 ◦C and
corresponded to the evaporation of physisorbed water with 1.5–2.5% weight loss [30]. The
peak around 311–316 ◦C which is observed for A0.5, A0.9, BNa0.5 and BK0.5 is indicative
of some residual impurities as observed by the native ashes. However, the broad peak
at 272 ◦C for BNa0.9RH15 can be assigned to the decomposition of the lignocellulosic
structure of rice husk in combination with the other residual impurities. This observation is
in agreement with the TGA results of pure RH, showing mass loss of holocellulose around
334 ◦C, while lignin, which is more thermally stable, decomposed at a temperature around
528 ◦C [36,37]. Peaks at 405 ◦C which are attributed to the dehydroxylation of Ca(OH)2 [38]
are barely visible for A0.5, A0.9 and BNa0.5 and are of much lower intensity for BK0.5
and BNa0.9RH15 in comparison to native fly ashes. This highlights that Ca(OH)2 was
altered during geopolymerisation by reacting with carbon dioxide and that it dehydrated
into CaCO3. This hypothesis, which is observed clearly in Figure 4c, supports the increase
in mass loss related to CaCO3 decomposition around 705 ◦C [34]. Therefore, we can
assume that the swelling of the geopolymer samples was due to chemical water releasing of
portlandite, which reacted after adding water or hydroxide solutions. For the five studied
geopolymer samples, we suggest that the weight loss between 300 and 600 ◦C can also be
also attributed to the dehydroxylation of the chemically bound silicon–hydroxyl group
with loss of water: (2Si–OH→ Si–O–Si + H2O) [35]. Thus, the absence of the hydroxides
after mixing the ash with an activation solution can be justified by the polymerization
reaction and water release (e.g., AI(OH)Z + OH→ HZAlOZ

− + H2O [39] or SiOH4 + OH−

→ (OH)3SiO− + H2O) [40]. Hence, during geopolymerisation, the following reaction can
occur: aluminosilicate + alkaline activator → geopolymer monomer, then, geopolymer
monomer→ geopolymer + Na+ + nH2O [41]. These released water molecules can evaporate,
forming holes. The evaporation of water that was observed as a bubble formation during
sample preparation can be due to the heat of the exothermic reaction in an alkaline medium,
and it becomes more and more exothermic when the water is replaced by NaOH. One
of the components of the ashes may also be released after adding water or a hydroxide
solution, which causes the swelling.
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2.6. Porosity and Density

In order to present insulating properties, a material must have a high porosity rate
and a low density. The addition of alkaline solution allows enhancing of the swelling as
discussed in the following.

Figure 5 shows the density and porosity rate for formulations prepared using the same
solution/ash ratio of 0.5 where different activating solutions were used. Comparing A0.5
to BK0.5 (same solution/ash ratio of 0.5 but different activating solutions), the activation
by KOH increases porosity by 45% and decreases density by 28% compared to activation
in water. Conversely, activation by NaOH leads to a 246% increase in the porosity rate,
with a 31% decrease in density compared to activation in water. Thus, activation by NaOH
appears to be more efficient for activating and forming porous materials than activation
by KOH and by water. This observation is in accordance with the results of FTIR where
geopolymerisation seems to be more efficient. Thus, even if water alone may give an
alkaline character to the mixture, the porosity provided by NaOH remains much greater.
Moreover, calcite (CaCO3) observed by XRD analysis could react in the presence of NaOH
by forming calcium hydrates based on the given reaction (2NaOH + CaCO3 → Ca(OH)2
+ Na2CO3 [42]), as in cement hydration. Thus, higher calcium hydrate content could be
found in the presence of NaOH, which could explain the highest porous structure obtained
after dehydroxylation.

Figure 5. Density and porosity of samples.

The results show that increasing the water/ash ratio from 0.4 to 1 leads to a significant
increase in porosity from 12.4% to 56.7%. As a result, a large reduction in density from
1.148 to 0.589 g/cm3 is observed. Note that with a ratio of water/ashes equal to 1, the
material seems to exhibit a fragile behaviour.

The gradual swelling of the prepared samples can be observed in Figure 6 with the
gradual addition of water (increase in the water/ash ratio). This swelling is predictably
related to the release of moisture, which results from the dehydroxylation of hydroxides as
confirmed by the TGA and FTIR results.
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Figure 6. Progressive swelling of the samples with an increase in the water/ash ratio (0.4, 0.6 and 0.8).

The alkaline activation (NaOH) was chosen to prepare new materials for a ratio of 0.8
and 0.9 (cohesive materials) while integrating rice husk. The aim is to increase the porosity
rate and reduce the density of materials as much as possible.

The results presented in Figure 5 show a remarkable increase in porosity from 35.3%
(BNa0.8) to 52.8% (BNa0.8 RH5%) after adding only 5% of RH. In addition, the variation
from BNa0.8 RH5% to BNa0.8 RH10% (addition of 10% of RH) causes a further increase in
porosity from 52.8% to 59.2%, accompanied by a decrease in density from 0.485 g/cm3 to
0.444 g/cm3. This behaviour is linked to the porous nature (intrinsic porosity) of the rice
husk [43].

In addition, the convex layer (outer surface) of the rice husk is made up of 20%
amorphous silica [43], which may be dissolved in a basic medium while creating additional
porosity [44] and participating in the geopolymer network formation.

Preparation of a new formulation by increasing the solution/ash ratio from 0.8 to 0.9
with the addition of 15% RH resulted in greater swelling (Figure 7). This made it possible
to gain more and more porosity, which reached 61.4%. However, this was not the case for
BNa0.9 RH20%, where the addition of 20% RH led to a small decrease in porosity from
61.4% to 58.9%, while increasing the density from 0.385 to 0.427 g/cm3. The optimal rice
husk addition is around 15% and beyond this limit (≥20%), the interconnected porous
network is disturbed, and the swelling of the materials is interrupted. In addition, it is
possible that the contact between the aluminosilicate precursors is also disturbed for a
rice husk content exceeding 15%, thus forming a heterogeneous material. The optimal
formulation obtained is therefore BNa0.9 BR15%, leading to the highest porosity rate and
the lowest density.

Figure 7. Visual swelling of samples BNa0.8 RH10% and BNa0.9 RH15%.

2.7. Microstructure-Microscopic Observation

Observations by the stereo microscope of the cross section of the broken samples, in
Figure 8, show great heterogeneity in the size and distribution of the pores.
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Figure 8. Cross-section micrographs of some selected geopolymers (A0.5, A0.8, A0.9, A1, BK0.5,
BNa0.5, BNa0.8, BNa0.8 RH5%-designation and composition are presented in Table 2).

It appears, from these pictures, that when the quantity of water increases from A0.5 to
A1 and after the addition of 5% of RH to BNa0.8, the porosity increases either in terms of size
and/or number of pores. Note that, in any formulation, the pores have irregular shapes.

Conversely, for the same solution/ash ratio, BNa0.5 has a higher porosity rate than
A0.5 and BK0.5, (which is in agreement with the porosity results presented in Figure 5). This
behaviour is related to the polycondensation reactions and to the reactivity of the phases
which become more and more important, as the medium is alkaline (pH = 14 measured
by a paper pH). Moreover, it has already been stated that NaOH has a greater dissolution
effect than KOH [9].

The origin of this swelling, which was also shown previously by Figures 6 and 7, can
be justified based on two hypotheses:

(1) Geopolymerisation reaction induced by the dehydration of the hydroxides (struc-
tural water release due to an exothermic reaction) and alumino-silicate precursors
dissolution after water or sodium hydroxide addition as observed by the TGA and
FTIR results.

(2) As the quantity of the activation solution increases (solution/ash ratio), the quantity
of water molecules released increases accordingly. Thus, the swelling is enhanced,
and the porosity increases.

2.8. Thermal Conductivity

The goal of our work is to obtain a material with a minimum value of thermal conduc-
tivity. To be qualified as an insulator, a material must admit a thermal conductivity value
(λ) of less than 0.1 W/(m·K). The variation in thermal conductivity and porosity of samples
is shown in Figure 9.
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Figure 9. Thermal conductivity and porosity of different geopolymers.

By increasing the water/ash ratio from A0.4 to A1, the thermal conductivity gradually
decreases from 0.321 to 0.106 W/(m·K), and in parallel, the porosity increases from 12.4% to
56.7%, respectively. The same trend is noticed for samples containing RH. As the percentage
of RH increases from 5% to 15%, λ gradually decreases due to the increase in the porosity
rate. For BNa0.9 RH15%, a value of λ = 0.087 W/(m·K) was obtained with a porosity of
61.4%, which is significant compared to the material synthesized by Gong et al., which has
λ = 0.416 W/(m·K) for a porosity of 72.67% [45]. The increase in the porosity rate explains
the presence of air inside the material, which will decrease its heat conductivity, making it
more and more insulating [46].

In contrast, an addition of 20% of RH for a solution/ash ratio of 0.9 leads to a slight
decrease in porosity and an increase of λ to 0.11 W/(m·K). Thus, the addition of rice husk
at more than 15% leads to reduced insulating properties of the material due to the increase
in density, as already explained in the previous part.

From these characterizations, it appears that BNa0.9 RH15% is a suitable formulation,
for which a promising new insulating material has been obtained for applications in the
building sector.

2.9. Compressive Strength Test Results

The variation of the compressive strength compared to the density of the samples was
studied either as a function of the solution/solid ratio or according to the percentage of
addition of rice husks (Figure 10).

For a low water/ash ratio of 0.4, the compressive strength is 2.63 MPa. It gradually
decreases to reach a value of 1.1 MPa for A0.8 (Figure 10). Sample A0.9 reaches a value of
0.8 MPa while remaining cohesive. However, sample A1, having a strength of 0.7 MPa, is
friable and breaks quickly. This result shows that the water/ash ratio of 0.9 is a limited
value beyond which the geopolymer material loses its mechanical properties.

In Figure 10, the formulation BNa0.8 without rice husk has an Rc value equal to
0.2 MPa, the addition of 5% and 10% of rice husks leads to a decrease in Rc to reach
0.1 MPa. By increasing the percentage of rice husks to 20%, the compressive strength
remains constant, unlike the porosity which decreases slightly.
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Figure 10. Compressive strength of the different geopolymers.

Formulations BK0.5 and BNa0.5 were prepared with a fixed solution/solid ratio. Using
KOH leads to an Rc value equal to 1.75 MPa (Figure 11). Rc increases by replacing KOH by
NaOH to reach 2.16 MPa. Thus, the compressive strength depends on:

(1) The solution/solid ratio: The addition of water makes it possible to have a certain
flexibility in the work, but the mixture becomes heterogeneous, the dissolution of
Si and Al remains insufficient and the speed of the polymerization turns out to be
low, leading to a decrease in Rc [5]. A value of Rc = 17.57 MPa was obtained by
Moraes Pinheiro et al. after 7 days, with a ratio solution/ash ratio of 0.4 [2], while
the adequate formulation in our work has a ratio of 0.9, thus a much higher quantity
of solution.

(2) The porosity rate: The increase in the solution/solid ratio and the percentage of RH,
causes an increase in the porosity, and subsequently, the material will be less compact
and will lose its mechanical properties. Thus, the porosity and Rc vary oppositely.
Note that the addition of the rice husk increased the porosity without any impact on
the value of Rc.

(3) The nature of the activation solution: the addition of NaOH leads to higher expansion
and lower density but higher Rc compared to the use of water and KOH. In addition,
this may be explained based on Longhi et al., where authors show that the use of
a sodium hydroxide solution causes a significant dissolution of the precursor and
subsequently the formation of a larger quantity of gel than that obtained during the
activation by KOH, therefore a higher Rc value [47].

Skavara et al. obtained a value of Rc = 0.4 MPa for their geopolymer insulating
material, but this value increased to 1.7 MPa after sintering at 1000 ◦C [18]. Michal Lach
et al. [16] have obtained values of Rc 1.9 MPa–3.14 MPa because they used sodium silicate
as an activation solution; thus, the Si/Al ratio increased. However, it should be noted
that the maximum compressive resistance must be greater than 0.02 MPa for thermal
insulation according to European construction specifications (DIN 4108-10). The various
formulations of this study, more precisely, the insulating geopolymer BNa0.9 RH15%,
exceed this threshold value. The thermal conductivity and compressive strength are directly
related to density and porosity. Thus, by modifying the porosity (either by the addition of
RH, or by increasing the solution content), the mechanical and thermal properties of the
material can be monitored.

Normally, in a building, thermal insulation is integrated into the double walls to
ensure insulating performance. Thus, it will not be placed under mechanical pressure.
Even if the mechanical resistance value is slightly low, this would not be detrimental to
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its use. However, a more important factor is the ability to easily cut these geopolymers
without deterioration. As shown in Figure 10, their handling and cutting is quite easy: the
sample does not deteriorate by cutting it with a circular saw. This proves that this type
of material can be easily handled without any limitation. However, an important point
must be highlighted in future studies based on the biosafety of the used fly ashes and their
geopolymers since they were used at relatively high concentrations. Rozhina et al. recently
highlighted an in vitro toxicity comparative study of the micrometre-sized fly ash impact
on human cells. Despite that the authors concluded that particle size appeared to be an
important determinant of their toxicity, the in vivo study must be performed for better
conclusions [48].

Figure 11. The ease of cutting the prepared insulating geopolymers with a circular saw.

3. Materials and Methods
3.1. Materials

Fly ashes used as a precursor in all mixtures with a density of 2.31 g/cm3 were
obtained after the combustion of a mixture of 36.4% olive pomace waste, 6.8% of baby
diapers waste and 56.8% of plastics waste in a thermal power station for the production of
energy and electricity at the Sanita industry in Halât, Lebanon. Dry fly ash mixture was
poured over a series of sieves with decreasing porosity (2.36 and 1.18 mm, and 850, 600,
300, 150 and ≤150 µm) placed on an electromagnetic sieve shaker (Matest, Viale Mantegna,
Italy). Strong vibrations for 5 min were applied to ensure optimal separation of the particles.
Only the finest fraction (size diameter < 150 µm) was used in this study.

Rice husks obtained from rice grinding by simple abrasion were supplied by the
company “Silo de Tourtoulen” located in the south of France (Camargue). The particle
size was 8–10 mm in length and 1–2 mm in width (Figure 12). They were used as received.
Sodium (NaOH) and potassium (KOH) hydroxides with a purity ≥97.0%, were supplied
by Sigma-Aldrich (Sigma Aldrich Chimie S.a.r.l, St. Quentin Fallavier, France). Alkaline
solutions (NaOH 2M) and (KOH 2M) were prepared 24 h before their use.
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Figure 12. Rice husk.

3.2. Geopolymer Preparation

Geopolymer preparation consisted in mixing the fly ashes with water or alkaline
solutions (Figure 13a). In some formulations, rice husk was also added in combination with
the ashes (Figure 13b). The mixing of the various constituents was carried out manually.
After homogenization, the formulations were poured into cubic 5 × 5 × 5 cm3 moulds
coated previously with a self-adhesive backing Teflon sheet (Figure 13c). Manual vibration
of the mould was applied to establish a good distribution of the mixtures. The moulds
were covered with aluminium foil and then placed in the oven overnight at 60 ◦C and then
at 105 ◦C for 2 days to achieve curing (Figure 13d). Finally, the samples were demoulded
(Figure 13e). The different stages of this preparation are illustrated in Figure 13.

Figure 13. Experimental procedure of the geopolymer preparation following the different steps (a–e).

Different formulations were prepared and divided into three series. The first series
was based on ashes activation with water by progressively increasing the solution/ashes
mass ratio “S/As” (Table 2-Part A) in order to study the effect of the amount of water on
the geopolymer. The use of water alone was based on a preliminary test which showed a
geopolymerisation achievement. Samples swelled without any blowing agent and hard-
ened. The reason might be assigned to the high natural pH of the medium (pH =14 in the
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presence of water using pH paper) due to the presence of olive pomace ashes as already
highlighted by Pinheiro et al. [2]. The second one sought to compare the effect of water with
that of alkaline solutions for the same solution/ashes ratio “S/As” (Table 2-Part B) in order
to enhance swelling. The third and last strategy aimed to incorporate rice husk at various
percentages (Table 2-Part C). In this part and based on the results obtained in parts A and B,
NaOH was used as an activating solution, which led to the best swelling. Conversely, rice
husks were added to reduce the density of the geopolymer and improve its porosity. Ashes
activated with water were symbolized by the letter “A”, ashes activated with a hydroxide
solution were symbolized by the letter “B”, followed by “Na” or “K” if the alkaline solution
was NaOH or KOH, respectively. A number was mentioned after the letters, indicating
the solution/ashes “S/As” ratio of the formulation. Samples containing rice husk were
indicated by the letters RH followed by the percentage of rice husk in the sample. The
hierarchy approach of our work has been explained in the experimental part. Note that
as fly ashes already contain Na, the use of water alone as an activation solution made it
possible to ensure an alkaline environment (pH = 14) and to achieve geopolymerisation,
without additional amounts of alkaline compounds.

Table 2. Composition of the different prepared formulations.

Samples Ratio (S/As) Water (g) Ashes (g) NaOH 2M (g) KOH 2M (g) Rice Husk (g)

Part A

A0.4 0.4 20 50
A0.6 0.6 30 50
A0.8 0.8 40 50
A0.9 0.9 45 50
A1 1 50 50

Part B

A0.5 0.5 25 50
BK0.5 0.5 50 25

BNa0.5 0.5 50 25

Part C

BNa0.8 0.8 40 32
BNa0.8 RH 5% 0.8 40 32 2
BNa0.8 RH 10% 0.8 40 32 4
BNa0.9 RH15% 0.9 40 36 6
BNa0.9 RH20% 0.9 40 36 8

3.3. Particle Size Analysis

The particle size analysis was carried out using a LA-950V2 laser diffraction particle
size analyser from Horiba Jobin-Yvon (Tochigi, Japan). Ash particle suspensions were
prepared in ultrapure water. The measurement was performed using two laser beams of
wavelength 600 and 450 mm, which diffracted when they encountered a particle. This
diffraction was detected to determine the size of the particle. The detection range was
between 0.01 and 3000 µm.

3.4. XRF Analysis

X-ray fluorescence spectrometry was performed through an F900 Series XRF analyser
(Thermo Fisher Scientific, Winsford, United Kingdom). Raw fly ashes and some chosen
geopolymer samples were ground to reach a size lower than 200 µm. Each sample with
a well-known weight underwent heating in an oven at 950 ◦C for one hour, and then the
remaining residue was weighed to calculate the LOI (loss-on-ignition). Then, 1 g of this
residue was mixed with 8 g of dilithium tetraborate and placed into a fusion machine at
950 ◦C. Fused samples were finally analysed on the XRF instrument.

3.5. XRD Analysis

Powder analysis were performed by a D8 Focus diffractometer (Bruker, Hamburg,
Germany). Raw fly ashes and some ground geopolymer samples were analysed by an
X-ray beam of known wavelength, produced by a copper anode (λ (Kα) = 1.54060 Å), 2Ө
range 5◦–80◦, step: 0.02◦, step time: 1 s and temperature 25 ◦C. The diffractogram obtained
is expressed as a function of 2Ө.
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3.6. Thermal Analysis

Thermal stability of raw fly ashes and crushed geopolymers samples (selected formu-
lations) was performed using a TG209 F3 Tarsus thermogravimetric analyser (Netzsch, Selb,
Germany). Samples weighing about 10 mg were heated from ambient to 900 ◦C in an inert
nitrogen atmosphere (20 Ml·min−1) at a rate of 10 ◦C/min. The first derivative of the TGA
curve, known as the DTG curve, was plotted in order to measure the decomposition rate,
with temperature, measured in %/min., from the total material. The first derivative peak
temperature (Tpeak) was also analysed in order to assess the decomposition behaviour of
the samples.

3.7. Porosity Measurements

The geopolymers porosity (ε) of cubic samples (2 cm × 2 cm × 2 cm) was calculated
according to Equation (1):

ε = 1 − (ρbulk/ρactual) × 100. (1)

The bulk density (ρbulk) was determined by measuring the sample dimensions (vol-
ume v: length × width × height) and their masses (m) based on Equation (2):

ρbulk (g/cm3) = m/v. (2)

Using a density kit which was mounted on a Mettler–Toledo analytical balance, the
mass of the samples in air (mair) and in ethanol (methanol) was determined, and the actual
density (ρactual) was calculated based on Equation (3):

ρactual (g/cm3) = (mair/(mair −methanol) × ρethanol (3)

3.8. Microstructural Characterization

Microscopic observation was performed to monitor the presence of voids on 2 × 2 cm2

geopolymer samples using a “Ladybird MZ1240 Trinocular” stereomicroscope (Micros,
St.Veit/Glan, Austria). This optical microscope is equipped with a MICROS CAM 5MP CCD
camera with 100×magnification. “MICROVISIBLE” software (4.4, Micros, St.Veit/Glan,
Austria)was used for images treatment.

3.9. Fourier Transform Infrared Spectroscopy (FTIR)

Single reflection diamond ATR-FTIR analysis was carried out using a Vertex 70 (Bruker
Corporation, Ettlingen, Germany). The geopolymer grounded ashes were pressed with a
golden gate crystal. Spectra were recorded with 32 scans and a resolution of 4 cm−1. A
baseline was recorded before sample analysis, which was automatically subtracted from
the results. For comparison, baseline-correction and normalization were carried out for all
spectra [49].

3.10. Thermal Conductivity

Thermal conductivity values of the various samples were obtained using a FP2C-
device (NeoTIM, Albi, France) composed of a thermal shock probe placed between two
blocks of the material to be characterized. The test was carried out at room temperature
on 4 cubes of the same formulation. The heating probe was placed in a sandwich such
that there were 2 couple cubes on each side of the probe. Measurements were made under
the following conditions: a power source of 0.2 W, a thermal resistance of 12.5 Ω and a
duration of 100 s.

3.11. Mechanical Properties

Compression tests were carried out on sample edges with a “servo Plus” compression
press (Matest, Viale Mantegna, Italy) equipped with a 3000 kN load cell. An axial load was
applied with a constant speed of 0.05 KN/s until breaking. By dividing the maximum load
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applied to the cubes during the test by their area, the compressive strength (Rc) in MPa of
the samples was obtained.

4. Conclusions

This work aimed to develop new insulating geopolymer materials prepared at low
temperature from waste without the use of a foaming agent. Ashes from the incineration of
plastic waste, baby diapers and olive pomace were used as precursors. These ashes used as
raw materials are mainly composed of CaO, Al2O3, SiO2 and Na2O, promoting a high pH
when adding water and contributing to the activation of ashes. Several formulations of
geopolymers were synthesized with distinct water/ashes ratios. Then, in order to ensure
significant and fast activation, NaOH was added, as this hydroxide enhances porosity
to the material and decreases density. Geopolymerisation was confirmed by IR analysis,
where Si-O-Si and Si-O-Al bonds are detected. The resistance to compression and thermal
conductivity vary inversely with porosity. Moreover, the addition of rice husk improved
porosity and decreased density and heat conductivity without reducing the Rc values. As a
result, an insulating material having a λ value of 0.087 W/(m·K), a porosity of 61.4% and
an Rc value of 0.1 MPa was obtained for a solution/ash ratio of 0.9 and a rice husk content
of 15% (BNa0.9 RH15%).
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