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Abstract: Macrofungus Ganoderma luteomarginatum is one of the main species of Ganoderma fungi
distributed in Hainan province of China, the fruiting bodies of which have been widely used in folk as
a healthy food to prevent tumors. To explore the potential cytotoxic constituents from G. luteomargina-
tum, the phytochemical investigation on the ethyl acetate soluble fraction of 95% ethanolic extract
from the fruiting bodies of this fungus led to the isolation of twenty-six lanostane triterpenoids (1–26),
including three undescribed ones (1–3), together with eight ergostane steroids (27–34). The structures
of three new lanostane triterpenoids were elucidated as lanosta-7,9(11)-dien-3β-acetyloxy-24,25-diol
(1), lanosta-7,9(11)-dien-3-oxo-24,26-diol-25-methoxy (2), and lanosta-8,20(22)-dien-3,11,23-trioxo
-7β,15β-diol-26-oic acid methyl ester (3) by the analysis of 1D, 2D NMR, and HRESIMS spectroscopic
data. All isolates were assayed for their cytotoxic activities using three human cancer cell lines
(K562, BEL-7402, and SGC-7901) and seven lanostane triterpenoids (1, 2, 7, 13, 18, 22, and 24), and
one ergostane steroid (34) showed definite cytotoxicity with IC50 values that ranged from 6.64 to
47.63 µg/mL. Among these cytotoxic lanostane triterpenoids, compounds 2 and 13 showed general
cytotoxicity against three human cancer cell lines, while compounds 1 and 18 exhibited signifi-
cant selective cytotoxicity against K562 cells with IC50 values of 8.59 and 8.82 µg/mL, respectively.
Furthermore, the preliminary structure–cytotoxicity relationships was proposed.

Keywords: Ganoderma luteomarginatum; lanostane triterpenoids; ergostane steroids; cytotoxic activity

1. Introduction

The genus Ganoderma, belonging to the family Ganodermataceae and known as
“Lingzhi” in Chinese, has been widely used as traditional Chinese medicine and func-
tional foods for health in China and Southeast Asia for thousands of years [1]. There are
more than 100 species in this family growing on cut or rotten trees in China, and 78 wild
ones were found in Hainan Province [2]. As the major genus in this family, Ganoderma is a
prolific producer of novel natural products responsible for its health benefits, mainly con-
taining polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic
action [3]. Two main species, G. lucidum and G. sinensis, are recorded in Pharmacopoeia of
the People’s Republic of China and used as an addition to conventional therapy in a clinical
treatment of chronic bronchitis, bronchial asthma, leukopenia, coronary heart disease,
arrhythmia, and acute infectious hepatitis. Recent research on chemical constituents of Gan-
oderma species showed that lanostane-type triterpenoids are the main characteristic natural
products [4], and more than 400 lanostanoids have been isolated from the fungi of Gano-
derma. These small molecule compounds have attracted considerable attention due to their
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extensive biological and pharmacological activities [5,6], including cytotoxic [7–9], hep-
atoprotective [10,11], anti-inflammatory [12–14], antidiabetic [15,16], neuroprotective [17],
antiviral [18], antiaging [19], and antioxidant [20–22] effects. The genus Ganoderma is used
as a healthy food and has been traditionally used for the prevention of numerous diseases
or various pathological conditions, including complementary cancer therapy, especially a
broad-spectrum application for the treatment of cancer.

Cancer has been considered as a huge threat to human health, and most governments
are committed to diminishing this threat. The prevention and treatment of cancer becomes a
key health goal. Finding antitumor drugs with high efficiency and low toxicity has become
the urgent task, and countless researchers are dedicated to discovering bioactive ingredients
from nature resources. Ganoderma is a promising anticancer immunotherapy agent owing
to its low toxicology and efficacy as a combination therapy through the regulation of the
immune system [23]. Polysaccharides and triterpenes from Ganoderma have been known to
possess chemopreventive and antitumor activity. Many studies indicate that lanostane-type
triterpenoids act as an inhibitor on different cancer cell lines, including the lung, liver,
colon, pancreas, breast, skin, and prostate [6]. Among the reported active lanostanoids,
the ganoderic acids are the main types of triterpene that play key roles in the biological
activity. Lanostane-type triterpenoids can cause cell cycle arrest by the downregulation
of cyclin D1 in the G1 phase of cell growth and inhibition of PKC activity in the G2
growth phase. Moreover, lanostane-type triterpenoids also prevent tumor metastasis by
modulating MMPs and IL-8 and inhibit the excretion of inflammatory cytokines [24].

Ganoderma luteomarginatum, used as folk medicinal Ganoderma species, is a rare species
mainly distributed in Hainan Province in China [25], where a pharmacodynamic molecular
basis has been brought into focus in recent years [26,27]. In our ongoing endeavor to explore
bioactive natural products, several species of Ganoderma have been studied, and a series of
active compounds have been found [7,15,28–31]. The fruiting bodies of G. luteomarginatum
have been widely used as a healthy food to prevent tumors. To explore the potential cyto-
toxic constituents from G. luteomarginatum, we performed a phytochemical investigation
on this fungus, which resulted in the isolation of twenty-six lanostane triterpenoids (1–26)
(Figure 1), including three undescribed ones: lanosta-7,9(11)-dien-3β-acetyloxy-24,25-diol
(1), lanosta-7,9(11)-dien-3-oxo-24,26-diol-25- methoxy (2), and lanosta-8,20(22)-dien-3,11,23
-trioxo-7β,15β-diol- 26-oic acid methyl ester (3), together with eight ergostane steroids
(27–34) (Figure 1). All these isolates were evaluated for their cytotoxic activity against
three human cancer cell lines. Herein, we reported the isolation, structural elucidation, and
cytotoxicity of the compounds isolated from the fruiting bodies of G. luteomarginatum.
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Figure 1. The structures of compounds 1–34.

2. Results and Discussion
2.1. Structural Elucidation of Compounds

Compound 1 was obtained as white amorphous powder, and its molecular formula
was determined to be C32H52O4 on the basis of HRESIMS ion at m/z [M + Na]+ 523.3754
(calcd. 523.3763 for C32H52NaO4

+), indicating seven degrees of unsaturation. The IR spec-
trum revealed the presence of hydroxyl groups (3475 cm−1), double bonds (1641 cm−1), and
ester carbonyl (1696 cm−1). The 1H NMR spectral data (Table 1) of 1 revealed the signals for
nine methyls (δH 0.58; 0.89; 0.90; 0.93, d, J = 6.3 Hz; 0.97; 1.02; 1.18; 1.23; 2.07), one proton
related to oxygenated carbon (δH 4.53, dd, J = 11.4, 4.6 Hz), and two olefinic protons (δH
5.47, t, J = 4.5 Hz; 5.34, d, J = 5.9 Hz). The 13C NMR and DEPT (Table 1) spectra presented
32 carbon signals for nine methyls; eight methylenes; seven methines (two oxygenated
and two olefinic); and eight non-protonated carbons (two olefinic, one oxygenated, and
one ester carbonyl at δC 171.2). The above-mentioned NMR data were closely similar to
those of lanosta-7,9(11)-dien-3b-acetyloxy-24,25,26-trihydroxy [29], suggesting that 1 had a
lanostane skeleton and structurally similar to this compound. The only difference between
them was that the methylol group (δC 67.8) at C-26 in lanosta-7,9(11)-dien-3b-acetyloxy-
24,25,26-trihydroxy was replaced by one methyl (δC 25.7) in 1, which was confirmed
by HMBC correlations (Figure 2) from H3-27 (δH 1.18) to C-26, C-24 (δC 79.7) and C-25
(δC 73.4). The attachment of acetate group to C-3 was proposed by the key HMBC correla-
tion of H-3 (δH 4.53) with acetal carbonyl (δC 171.2). The other obvious HMBC correlations
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(Figure 2) of 1 from H3-28 (δH 0.90) and H3-29 (δH 0.97) to C-3, C-4 (δC 37.9), and C-5
(δC 49.3); from H3-18 (δH 0.55) to C-12 (δC 37.7), C-14 (δC 50.4), and C-17 (δC 51.1); from
H3-19 (δH 1.02) to C-1 (δC 35.5), C-5, and C-9 (δC 145.7); and from H3-30 (δH 0.89) to C-8
(δC 142.8), C-13 (δC 43.8) and C-15 (δC 28.0) further assigned its planar structure of lanos-
tanoid. The relative configuration of the tetracyclic core structure of 1 was determined to be
the same as that of lanosta-7,9(11)-dien-3b-acetyloxy- 24,25,26-trihydroxy by comparison
of their NMR and ROESY spectroscopic data (Figure 1), revealing ROESY correlations of
H-18 with H-19 and H-20 (δH 1.39). The key ROESY correlation of H-3 (δH 4.53) with H3-28
(δH 0.90) and H-5 (δH 1.18) suggested the assignment of their same orientation. Based
on comprehensive analysis of 1D, 2D NMR, and HRESIMS spectrums (see Supplemen-
tary Materials), the structure of compound 1 was elucidated to be lanosta-7,9(11)-dien-3β
-acetyloxy-24,25-diol.

Table 1. 1H (500 MHz) and 13C NMR (125 MHz) Data of Compounds 1–3 (in CDCl3).

No.
1 2 3

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 35.5 1.97 m
1.50 m 36.7 2.36 m

1.77 m 35.6 2.45 m
2.06 m

2 24.4 1.71 m 35.0 2.80 dt (14.7,5.7)
2.38 ddd (14.7, 4.5, 3.1) 34.4 2.85 m

2.36 m
3 81.0 4.53 dd (4.6, 11.4) 217.1 216.8
4 37.9 47.6 46.9
5 49.3 1.18 m 50.8 1.56 dd (3.7, 11.9) 49.3 1.67 dd (13.5, 2.2)

6 22.9 2.08 m 23.8 2.02 m
2.23 m 36.5 2.11 m

1.84 m
7 120.1 5.47 t (4.5) 120.0 5.52 d (6.8) 69.5 4.80 dd (7.1, 9.4)
8 142.8 143.0 157.0
9 145.7 144.6 143.3

10 37.3 37.3 38.3
11 116.6 5.34 d (5.9) 117.4 5.40 d (6.2) 199.4

12 37.7 2.23 d (17.6)
2.02 m 37.9 2.28 m

2.08 m 51.7 2.75 d (14.6)
2.37 d (14.6)

13 43.8 43.9 48.5
14 50.4 50.4 57.1
15 28.0 1.29 m 28.0 1.27 m 77.8 4.33 d (6.7)

16 31.6 1.60 m
1.36 m 31.6 1.67 m

1.40 m 35.3 2.35 m
1.42 m

17 51.1 1.58 m 51.1 1.61 m 54.5 2.76 m
18 15.8 0.55 s 15.9 0.61 s 19.6 1.10 s
19 23.3 1.02 s 22.2 1.21 s 19.7 1.36 s
20 36.7 1.39 m 36.7 1.44 m 156.8
21 18.7 0.93 d (6.3) 18.7 0.94 d (6.5) 21.3 2.16 s
22 33.6 1.76 m 33.8 1.86 m 124.7 6.16 s
23 28.8 1.56 m 28.4 1.63 m 198.4

24 79.7 3.31 dd (10.2, 2.1) 76.8 3.59 d (9.4) 47.8 2.94 m
2.57 m

25 73.4 78.5 35.0 2.96 m

26 25.7 1.23 s 64.4 3.75 d (12.0)
3.65 d (12.0) 176.7

27 22.9 1.18 s 16.0 1.05 s 17.3 1.20 d (6.8)
28 28.2 0.90 s 25.4 1.10 s 27.0 1.13 s
29 17.1 0.97 s 22.6 1.14 s 21.0 1.12 s
30 25.7 0.89 s 25.6 0.89 s 26.0 1.24 s

OAc 171.2
21.5 2.07 s

OMe 49.5 3.34 s 52.0 3.69 s
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Figure 2. Key HMBC (H→C) and ROESY (↔) correlations of 1–3.

Compound 2 had the molecular formula C31H50O4, as determined by the HRES-
IMS ion peak at 509.3597 (calcd. 509.3607 for C31H50NaO4

+). The 13C NMR and DEPT
(Table 1) spectra showed 31 carbon signals for eight methyls (one methoxy at δC 49.5);
nine methylenes (one oxygenated at δC 64.4); six methines (one oxygenated at δC 76.8
and two olefinic); and eight non-protonated carbons (two olefinic, one oxygenated, and
one ketone carbonyl at (δC 217.1). The NMR spectra of 2 resembled those of (24S,25R)-25
- methoxylanosta-7,9(11)-dien-3β,24,26-triol [32], except for the presence of a ketone car-
bonyl of C-3 (δC 217.1) in 2 replacing the hydroxylated methine in (24S,25R)-25
- methoxylanosta-7,9(11)-dien-3β,24,26-triol, which was corroborated by the HMBC cor-
relations (Figure 2) from H3-28 (δH 1.10), H3-29 (δH 1.14), and H2-2 (δH 2.38/2.80) to C-3
(δC 217.1). The attachment of methoxy to C-25 was assigned by the key HMBC correlation
of the protons signal at δH 3.34 with C-25 (δC 78.5). The other clear HMBC correlations
(Figure 2) of 1 from H3-28 (δH 1.10), H3-29 (δH 1.14), and H3-19 (δH 1.21) to C-5 (δC 50.8)
and from H3-18 (δH 0.61) and H3-30 (δH 0.89) to C-13 (δC 43.9) and C-14 (δC 50.4) fur-
ther confirmed its planar structure of lanostanoid. The relative configuration of 2 was
established as same as that of (24S, 25R)-25-methoxylanosta-7,9(11)-dien-3β,24,26-triol
by the ROESY spectrum (Figure 2), revealing key ROESY correlations of H-30 with H-17
(δH 1.61) and of H-18 with H-19 and H-20 (δH 1.44), as well as their similar NMR data.
On the basis of the above evidence, the structure of 2 was defined as lanosta-7,9(11)-dien-
3-oxo-24,26-diol-25-methoxy.

The HRESIMS ion peak 529.3160 [M+H]+) of compound 3 gave the molecular formula
C31H44O7, indicating ten degrees of unsaturation. The 13C NMR and DEPT (Table 1) spectra
showed 31 carbon signals for eight methyls (one methoxy at δC 52.0), six methylenes, six
methines (two oxygenated, and one olefinic at δC 124.7) and eleven non-protonated carbons
(three olefinic; three ketones at δC 216.8, 199.4, and 198.4; and one ester carbonyl δC 176.7).
A detailed analysis of the 1D NMR data of 3 suggested that compound 3 possessed the
same planar structure as methyl ganoderenate A [33] with a lanostane skeleton. The whole
connectivity of compound 3 was also further demonstrated by 2D NMR data, including
HMBC spectrum (Figure 2), exhibiting HMBC correlations from H3-28 (δH 1.13), H3-29
(δH 1.12), and H3-19 (δH 1.36) to C-5 (δC 49.3) and from H3-18 (δH 1.10) and H3-30
(δH 1.24) to C-13 (δC 48.5) and C-14 (δC 57.1). The relative configuration of the tetra-
cyclic core structure of 1 was determined to be the same as methyl ganoderenate A, except
for chiral C-15 by analysis of its ROESY spectrum (Figure 2). The key ROESY correlations of
H-7 (δH 4.80) with H3-30 (δH 1.24) and H-5 (δH 1.67) proposed the β-orientation of hydroxy
at C-7. The β-orientation of hydroxy at C-15 was assigned by the key ROESY correlation of
H3-30 (δH 1.24) with H-15 (δH 4.33). Moreover, the key ROESY correlation of H-22 (δH 6.16)
with H-17 (δH 2.76) indicated that the geometry of double bond ∆20(22) in 3 was E instead
of Z in methyl ganoderenate A. Therefore, the structure of compound 3 was established as
lanosta-8,20(22)-dien-3,11,23-trioxo-7β,15β- diol- 26-oic acid methyl ester.

The thirty-one known compounds, including twenty-one lanostane triterpenoids
(4–26) and eight ergostane steroid (27–34), were identified as lanosta-8,24E-dien-7-oxo
-3β- acetyloxy-26-ol (4) [26], lanosta-8,24E-dien-7-oxo-3β-acetyloxy-26-al (5) [26], lanosta
-7,9(11),24-trien-3β-acetyloxy-26-ol (6) [26], (24R,25S)-lanosta-7,9(11)-dien- 3β,24,26-triol
-25-methoxy (7) [16], lanosta-7,9(11)-dien-3β-acetyloxy-24,25,26-triol (8) [29], lanosta-7,9(11)
-dien-3β-acetyloxy-24,26-dihydroxy-25-methoxy (9) [29], ganodermanondiol (10) [34], lu-
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cidumol B (11) [34], 26-hydroxy-ganodermanondiol (12) [35], ganoderiol A (13) [36], gan-
oderone A (14) [37], lucidadiol (15) [38], ganodermadiol (16) [39], lanosta-7,9(11),24E
-trien-3β-acetyloxy-26,27-diol (17) [29], ganoderiol F (18) [40], lanosta-8-en-7,11-dioxo-3β
-acetyloxy-24,25,26-triol (19) [29], ganoderiol D (20) [40], lanosta-8-en-7-oxo-3β
-acetyloxy-24,25,26-trihydroxy (21) [34], lucidumol A (22) [41], lanosta-7,9(11),24E-trien
-3-oxo-26-al (23) [42], lanosta-7,9(11),24-triene-3β-ol-26-al (24) [42], lucidone H (25) [29],
lucidadone H (26) [43], ergosta-7,9(11),22E-triene-3β,5α-diol -6β-methoxy (27) [29], ergosta
-7,22E-dien-3-one (28) [44], ergosta-7,22E-dien-3β-ol (29) [45], ergosta-4,6,8(14),22E-tetraen
-3-one (30) [44], ergosterol peroxide (31) [46], ergosta-3β,5α-diol-7,22E-dien-6β-methoxy
(32) [47], ergosta-7,22E-dien-3β,5α,6β-triol (33) [48], and calvasterol B (34) [49] by compar-
ing their NMR data with those reported in the literature.

Ganoderma has been used as a healthy food and medicinal purposes for centuries
particularly in China, Japan, and Korea. A great deal of work has been carried out on
over thirty species of Ganoderma. Two types of natural products, lanostane triterpenoids
(1–26) and ergostane steroids (27–34), were discovered from the fruiting bodies of G.
luteomarginatum collected in Hainan Province, China. These two types of compounds
are widely found in genus Ganoderma [1], and lanostanoids (Ganoderma triterpenoids)
was the characteristic active metabolites in species of Ganoderma, which are a class of
compounds with various chemical structures. Here, the isolated lanostane triterpenoids
were divided into two groups according to the conjugated system at C-7, C-8, C-9, and
C-11. The first group possessed the conjugated double bond ∆7,9(11) as shown in 1, 2, 6–18,
23, and 24. The second group had (∆8)α,β-unsaturated ketone at C-7 or C-9. The C-26 in
lanostanoid structures is often oxidized to alcohols, aldehydes, and acids [5]. Among the
structures of identified lanostanoids (1–26), ganoderiol derivative was the main type. In
addition, three ganoderic aldehydes (5, 23, 24) and one ganoderic acid (3) were also found.
The β-configuration of OH-15 in new ganoderic acid (3) from G. luteomarginatum was
consistent with the previously discovered ganoderic acid derivatives from this fungus [27],
which was opposite of that shown in the corresponding compounds from other Ganoderma
species [7,12,50]. Moreover, norlanostanoids with 24 carbon atoms often occur in Ganoderma.
In present study, two hexanorlanostanoids (25 and 26) were isolated. Some lanostane
triterpenoids besides the three new ones in our study are structurally different from those
previously reported lanostanoids [26,27] from G. luteomarginatum collected in Guangxi
Province, China. This may be related to the different growth environment of this fungus
or different growth period for collection, which needs further comparative analysis in our
subsequent studies.

2.2. Cytotoxic Activities of Compounds

The cytotoxic activities of all the isolates were evaluated by MTT method toward
three human cancer cell lines (K562, BEL-7402, and SGC-7901). The results were presented
in Table 2. Of the compounds tested, seven lanostane triterpenoids (1, 2, 7, 13, 18, 22,
and 24) showed definite cytotoxicity against K562 with IC50 values range from 6.64 to
17.38 µg/mL, among which compounds 1, 13 and 18 showed the IC50 values of 8.59, 6.64,
and 8.82 µg/mL, respectively. Compounds 2 and 13 also showed moderate cytotoxicity
against two human cancer cell lines (BEL-7402 and SGC-7901). Moreover, compound 7
showed moderate cytotoxicity against human cancer cell lines BEL-7402 with IC50 value of
20.05 µg/mL. Compounds 1, 18, 22, and 24 had no obvious cytotoxicity on BEL-7402 and
SGC-7901 cell lines (IC50 > 50 µg/mL). Among these cytotoxic lanostanoids, compounds 2
and 13 showed general cytotoxicity against three human cancer cell lines, while compounds
1 and 18 exhibited significant selective cytotoxicity against K562 cell lines. One ergostane
steroid (34) showed general cytotoxicity against three human cancer cell lines.
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Table 2. Cytotoxic activities of compounds from Ganoderma luteomarginatum (IC50, µg/mL).

Compounds K562 BEL-7402 SGC-7901

1 8.59 >50 >50
2 16.05 24.27 33.38
7 11.69 20.05 >50
13 6.64 13.49 15.62
18 8.82 >50 >50
22 16.95 >50 >50
24 17.38 >50 >50
34 22.81 47.63 26.06
Paclitaxel 5.62 3.26 3.41

Lanostane-type triterpenoids of Ganoderma are considered to be the major pharmaco-
logically active compounds that contribute to its antitumor efficacy. The lanostane-type
triterpenoids were extensively evaluated for cytotoxic activities against a series of tumor
cell lines [5] related to lung, liver, colon, pancreas, breast, skin, and prostate [6]. The lanos-
tanoids with structural complexity and functional group variety may be specific to different
cell lines and the structure-cytotoxicity relationships could be raised. Compounds 1, 18, 22,
and 24 exhibited selective cytotoxicity against K562 cell lines may be due to their unique
structures. From the results of isolated lanostanoids against three human cancer cell lines
(K562, BEL-7402, and SGC-7901), the conjugated double-bond ∆7,9(11) system in tetracyclic
skeleton (1, 2, 7, 13, 18, and 24) seemed to be more important than (∆8)α,β-unsaturated
ketone system for potent cytotoxic activity. Comparing the cytotoxicity between 7/9, 18/17,
and 24/5 with only difference at C-3, it suggested that acetylation may be the negative fac-
tor for cytotoxic activity. In addition, compound 13 exhibited significant cytotoxicity, while
their keto-3 analog 12 was inactive, assumed that reduction of the keto-3 group to OH-3
in lanostane triterpenoids would improve the cytotoxicity against K562, BEL-7402, and
SGC-7901 significantly. The above preliminary structure–cytotoxicity relationships provide
an approach to understanding the structural requirements of lanostane-type triterpenoids.

3. Materials and Methods
3.1. General Experimental Procedures

The NMR spectra were recorded with a Bruker AV-500 spectrometer (Bruker, Bremen,
Germany) with TMS as an internal standard. HRESIMS data were determined on a mass
spectrometer API QSTAR Pulsar (Bruker, Bremen, Germany). Optical rotations were
measured on a Rudolph Autopol III polarimeter (USA). UV spectra were obtained on
a Shimadzu UV-2550 spectrometer. IR spectra were obtained on a Nicolet 380 FT-IR
spectrometer with KBr pellets. Silica gel (60–80 and 200–300 mesh, Marine Chemical
Industry Factory, Qingdao, China), Rp-C18 (20–45 mL; Fuji Silysia Chemical Ltd., Aichi,
Japan), and Sephadex LH-20 (Merck, Germany) were used for column chromatography.
Fractions were monitored by TLC and spots were visualized by heating after spraying with
5% H2SO4 in ethanol.

3.2. Fungal Material

Fruiting bodies of G. luteomarginatum were collected in Qiongzhong County, Hainan
Province, China (June, 2012), and identified by Prof. Xing-Liang Wu of Hainan University.
A voucher specimen (No. 2012HB01) is deposited at the Institute of Tropical Bioscience and
Biotechnology, Chinese Academy of Tropical Agricultural Sciences.

3.3. Isolation and Characterization of Compounds

Dried and powdered fruiting bodies of G. luteomarginatum (2.5 kg) were extracted
with EtOH-H2O (10 L, 95:5, v/v) under reflux conditions three times at a duration of 4 h.
The combined extracts were concentrated and suspended in H2O, followed by successive
partitioning with EtOAc and n-BuOH, respectively. The EtOAc extract (53.0 g) was sepa-
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rated by silica gel column chromatography (CC) under reduced pressure using a solvent
gradient of petroleum ether (PE)-EtOAc (20:1→0:1, v/v) to afford six fractions (Fr1-Fr6).
Fr2 (6.2 g) was subjected to silica gel CC under reduced pressure eluted with PE-EtOAc
(3:1) to give 3 subfractions: 2a–2c. Subfraction 2a (925 mg) was repeatedly purified by silica
gel CC eluted with PE-EtOAc (5:1) to obtain compounds 4 (7.3 mg), 5 (4.2 mg), 6 (5.2 mg),
14 (21.5 mg), 26 (28.7 mg), and 30 (16.4 mg). Subfraction 2b (816 mg) was separated by silica
gel column to yield compounds 23 (7.7 mg), 24 (6.0 mg), and 28 (68.3 mg) using an eluent
CHCl3-MeOH (15:1), and compounds 25 (2.4 mg) and 29 (81.7mg) were separated from
subfraction 2c (674 mg) using an eluent: CHCl3-MeOH (12:1). Fr3 (9.6 g) was separated
by Rp-18 CC with MeOH-H2O (30:70→0:100) to give 3 subfractions: 3a–3c. Subfraction 3a
(526 mg) was purified by silica gel CC eluted with PE-EtOAc (3:1) to obtain compounds
1 (5.5 mg), 2 (8.2 mg), 9 (8.6 mg), and 10 (9.0 mg). Subfraction 3b (603 mg) was separated
by silica gel CC eluted with PE-EtOAc (2:1) to yield compounds 3 (4.6 mg), 15 (5.5 mg), 16
(5.1 mg), 22 (10.5 mg), and 31 (27.0 mg). Subfraction 3c (839 mg) was subjected to silica
gel CC eluted with CHCl3-MeOH (10:1) to yield compounds 17 (8.6 mg), 18 (9.8 mg), 27
(3.9 mg), 32 (3.8 mg), and 34 (5.1 mg). Fr4 (8.5 g) was treated by Rp-18 CC with MeOH-H2O
(30:70→0:100) to afford subfractions 4a–4d. Subfraction 4b (406 mg) was subjected to
Sephadex LH-20 (CHCl3/MeOH, 1:1), then by silica gel CC with PE-EtOAc (2:1) to yield
compounds 7 (8.1 mg), 8 (7.6 mg), and 19 (7.4 mg). Compounds 11 (6.5 mg) and 12 (15.6 mg)
was purified from subfraction 4b (365 mg) using an eluent CHCl3-MeOH (8:1). Fr5 (9.0 g)
was separated by Rp-18 CC with MeOH-H2O (30:70→0:100) to afford subfractions 5a–5c.
Subfraction 5b (582 mg) was subjected to silica gel CC with CHCl3-EtOAc (2:1) to yield
compounds 13 (7.8 mg) and 20 (10.2 mg). Subfraction 5c (264 mg) was separated by silica
gel CC eluted with CHCl3-MeOH (6:1) to obtain 21 (8.4 mg) and 33 (25.8 mg).

Lanosta-7,9(11)-dien-3β-acetyloxy-24,25-diol (1): White amorphous powder; [α]27
D

−2.5◦ (c 0.02, MeOH); UV (MeOH) λmax (logε) 252 (3.62), 242 (5.24), 238 (4.50), 210 (1.21);
IR (KBr) νmax cm−1 3475, 2938, 1696, 1641, 1302, 1028; 1H and 13C NMR data; see Table 1;
HRESIMS m/z [M+Na]+ 523.3754 (calcd. 523.3763 for C32H52NaO4).

Lanosta-7,9(11)-dien-3-oxo-24,26-diol-25-methoxy (2): White amorphous powder;
[α]27

D +4.0◦ (c 0.02, MeOH); UV (MeOH) λmax (log ε) 242 (5.60), 238 (5.03), 212 (2.32);
IR (KBr) vmax cm−1 3424, 2952, 1724, 1644, 1386, 1020; 1H and 13C NMR data; see Table 1;
HRESIMS m/z [M+Na]+ 509.3597 (calcd. 509.3607 for C31H50NaO4).

Lanosta-8,20(22)-dien-3,11,23-trioxo-7β,15β-diol-26-oic acid methyl ester (3): White
amorphous powder; [α]27

D −1.5◦ (c 0.02, MeOH); UV (MeOH) λmax (log ε) 250 (3.54), 210
(1.37); IR (KBr) vmax cm−1 3443, 2934, 1732, 1639, 1384, 1019; 1H and 13C NMR data; see
Table 1; HRESIMS m/z 529.3160 [M+H]+ (calcd. 529.3165 for C31H45O7).

3.4. Bioassay of Cytotoxic Activity

All the compounds was assayed for their cytotoxic activity against three human tumor
cell lines: K562 (leukemic cell line), BEL7402 (hepatoma cell line), and SGC7901 (gastric
cancer cell line) using MTT methods reported previously [7]. Briefly, each tested compound
was dissolved with DMSO at concentration of 10 mM and then diluted to the required
concentrations with the medium. Cells were cultured in 96-well plates with initial density
of 5000 cells/well 12 h before treatment and exposed to different concentrations (40, 8, 1.6,
0.32, and 0.064 µM, respectively) of compounds, with paclitaxel (Sigma, Livonia, MI, USA)
as the positive control. After the culturing period, 20 µL of MTT (5 mg/mL) was added per
well and incubated for 4 h at 37 ◦C. Finally, absorbance was measured at 570 nm using a
microplate reader. Each assay was replicated three times. The effect of the compounds on
cell viability was calculated and expressed as the IC50.

4. Conclusions

Lanostane-type triterpenoids are the main characteristic natural products of the fungi
of Ganoderma, which have extensive biological and pharmacological activities, especially
possess cytotoxicity. The chemical investigation of the fruiting bodies of G. luteomarginatum
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led to the isolation of twenty-six lanostane triterpenoids (1–26), including three undescribed
ones (1–3): lanosta-7,9(11)-dien-3β-acetyloxy-24,25-diol (1), lanosta-7,9(11)-dien-3-oxo
-24,26-diol-25-methoxy (2), and lanosta-8,20(22)-dien-3,11,23-trioxo -7β,15β-diol-26-oic
acid methyl ester (3), together with eight ergostane steroids (27–34). The cytotoxicity assay
showed that seven lanostane triterpenoids (1, 2, 7, 13, 18, 22, and 24) revealed definite
cytotoxicity against K562, among which compounds 1, 13, and 18 showed the IC50 values
of 8.59, 6.64, and 8.82 µg/mL, respectively, indicating the prospect of an antitumor. Some
preliminary structure–cytotoxicity relationships of these lanostane triterpenoids showed
that the conjugated double-bond ∆7,9(11) system in tetracyclic lanostane skeleton seemed to
be more important than the (∆8)α,β-unsaturated ketone system for potential cytotoxic ac-
tivity. The present study further enriched the understanding of the structural diversity of G.
luteomarginatum, which also provides theoretical information for its subsequent anticancer
drug development.

Supplementary Materials: The following supporting information about 1D, 2D NMR, and HRES-
IMS data can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27206989/s1,
Figure S1-1: 1H NMR spectrum of compound 1. Figure S1-2: 13C NMR spectrum of compound 1.
Figure S1-3: HSQC spectrum of compound 1. Figure S1-4: 1H-1H COSY spectrum of compound 1.
Figure S1-5: HMBC spectrum of compound 1. Figure S1-6: ROESY spectrum of compound 1. Fig-
ure S1-7: HRESIMS Data of compound 1. Figure S2-1: 1H NMR spectrum of compound 2. Figure S2-2:
13C NMR spectrum of compound 2. Figure S2-3: HSQC spectrum of compound 2. Figure S2-4: 1H-1H
COSY spectrum of compound 2. Figure S2-4: 1H-1H COSY spectrum of compound 2. Figure S2-6:
ROESY spectrum of compound 2. Figure S2-7: HRESIMS Data of compound 2. Figure S3-1: 1H
NMR spectrum of compound 3. Figure S3-2: 13C NMR spectrum of compound 3. Figure S3-3 HSQC
spectrum of compound 3. Figure S3-4: 1H-1H COSY spectrum of compound 3. Figure S3-5: HMBC
spectrum of compound 3. Figure S3-6: ROESY spectrum of compound 3. Figure S3-7: HRESIMS Data
of compound 3.
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