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Abstract: Molecular molybdenum complexes with sulfur donor ligands are generally studied as
soluble model compounds for molybdenum enzymes essential for life. The dioxidomolybdenum(VI)
complex with tetradentate aminobisphenolate ligand undergoes a reaction with thionation reagent
P2S5 or its organic derivative, Lawesson’s reagent, to yield stable Mo(IV) aminobisphenolate com-
plexes, where pristine oxido ligands have been replaced by bidentate sulfur donors tetrasulfide,
S4

2− or (4-methoxyphenyl)phosphonotrithioate residue derived from Lawesson’s reagent. This is in
contrast to the behaviour of analogous dioxidotungsten(VI) complex, which, under similar conditions,
yields W(VI) S2 systems. The overall cis,trans,cis geometry of the parent dioxidomolybdenum(VI)
aminobisphenolate is retained, namely, the neutral nitrogen donors are in cis positions, phenolate
oxygens are trans to each other and sulfur donors are cis. Although formally Mo(IV), thus d2 system,
the studied complexes have diamagnetic singlet electron configurations as a result of the axially
compressed octahedral structures.

Keywords: molybdenum; sulfur donor; Lawesson’s reagent; transition metal complexes

1. Introduction

Molybdenum sulfides are useful catalysts in a number of important reactions used
to activate small molecules, e.g., hydrogen evolution reaction, CO2 reduction and N2 fix-
ation [1]. Moreover, molybdenum–sulfur bonds are found in all molybdenum enzymes;
therefore, molecular molybdenum sulfide complexes are investigated as soluble model
compounds for the active sites of such catalysts as well as for metal enzymes [2–5]. In prin-
ciple, diverse metal–organic sulfide complexes can be synthesized by the reaction of simple
metal sulfides and ligand precursors, but in practice, they are mostly made of easily avail-
able oxido complexes by simple thionation reactions, i.e., oxido-to-sulfido substitutions.
Typically, the thionations are run using H2S [6–10], B2S3 [11–14], (R3Si)2S/R3SiSH [15–18],
P2S5 [12], or Lawesson’s reagent (2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-
2,4-disulfide) [9,19]. We have earlier used the reaction of dioxidotungsten(VI) complexes
with P2S5 and its soluble derivative, Lawesson’s reagent, to prepare stable disulfidotung-
sten(VI) complexes supported with tetradentate aminobisphenolates [20]. As equivalent
Mo and W dioxido compounds have, in many cases, very similar molecular and crystals
structures and rather similar chemical properties, we might expect parallel reactivity in
the thionation reactions as well. However, under identical reaction conditions, the dioxido-
molybdenum(VI) aminobisphenolates did not yield the anticipated disulfido derivatives;
instead, the reactions led to the reduction of the metals’ centres as the isolated products were
identified as Mo(IV) complexes. In this article, we report the reactivity of dioxidomolybde-
num(VI) aminobisphenolate with thionation reagents and structural characterization of
two Mo(IV) species with sulfur donor chelate ligands.
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2. Results and Discussion

The oxido-to-sulfido substitution of dioxidomolybdenum(VI) aminobisphenolates
was studied, allowing complex 1 to react with either P2S5 or Lawesson’s reagent in 1,2-
dichloroethane at reflux temperature following the substitution procedure used previously
to synthesize corresponding disulfidotungsten(VI) compounds. As a result, the reactions
yielded dark mixtures of several strongly coloured, poorly stable compounds (seen by
thin-layer chromatography), which could not be isolated or further characterized. However,
1 reacted with P2S5 at room temperature in a toluene solution to form a dark solution,
which allowed the isolation of green 2 in ca. 15% yield (Scheme 1). The reaction was
repeated using Lawesson‘s reagent under identical conditions, which again yielded 2 and
brownish-red 3 along with several unstable compounds. The isolated yields of major
products in the reaction with Lawesson‘s reagent depended on the reaction time—after a
20 h reaction, 3 was isolated in ca. 40% yield together with 5% of 2, whereas 2 was found in
ca. 35% yield with only a minor amount of 3 after one-week reaction.
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The molecular structures of 2 and 3 were studied by NMR spectroscopy and X-ray
diffraction studies. The NMR spectra of 2 show the anticipated chemical shifts for the
tetradentate aminobisphenolate ligand. For example, in the 1H NMR spectrum, the benzylic
methylene protons are visible as two two-proton doublets at 5.66 and 4.30 ppm, respectively,
accompanied by a two-proton singlet at 4.56 ppm for the methylene protons in the picoline
arm. The XRD data shows that the product is virtually a Cs symmetric neutral molecule,
where two oxides have been substituted by one S4

2− dianion to form a new Mo (IV) complex
(Figure 1). The overall cis,trans,cis geometry of the parent complex 1 has been retained, i.e.,
the neutral nitrogen donors are in cis positions, phenolate oxygens are trans to each other
and sulfur donors are cis (see Figure 1). Compared to 1, the metal–donor distances to the
aminobisphenolate ligand are somewhat shorter in 2, whereas the O1-Mo-O2 and N8-Mo-
N37 bite angles are slightly larger (see Table 1). The Mo-S distances and S-Mo-S angle are
closely similar to the corresponding bonding parameters found previously for the dianionic
tetrasulfido ligand in known Mo(IV) complexes [3,4,9,21,22]. In the same way, the 1H and
13C NMR spectra of 3 show chemical shifts for the coordinated aminobisphenolate ligand,
while the number of the chemical shifts indicates a C1 symmetric structure. The spectra
also show the presence of 4-methoxyphenyl group originated from Lawesson’s reagent.
Correspondingly, the XRD studies show that the complex 3 is a neutral species, wherein
one tetradentate aminobisphenolate and one bidentate, dianionic (4-methoxyphenyl) phos-
phonotrithioate surround the Mo(IV) ion (see Figure 2). The overall geometry around
the metal centre is cis,trans,cis and the phenolate groups are in trans positions, i.e., the
aminobisphenolate ligand is symmetrically coordinated. Therefore, the asymmetry seen in
the NMR spectra rises from the phosphonotrithioate ligand. The metal–donor distances to
the aminobisphenolate ligand are considerably shorter than in 2 (Table 1). The bite angles
O1-Mo-O2 and N8-Mo-N37 are slightly larger and the S-Mo-S angle is clearly smaller than
in 2, obviously due to the rigidity of the phosphonotrithioate ligand. Complexes 2 and 3 are
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formally Mo(IV) complexes with d2 electron configurations, and are therefore expected to
show paramagnetic properties caused by the two odd electrons. However, both compounds
are diamagnetic, as evidenced by the well-resolved NMR spectra. Principally, the d2 metal
centres may have either paramagnetic triplet or diamagnetic singlet electron configurations,
depending on the coordination geometry. According to the visual inspection of the single
crystal structures and further calculation of the continuous shape measures (CShM’s, see
Table S2 Supplementary Materials) [23], 2 and 3 are octahedral complexes with axially
compressed structures with four long bonds in xy-planes (Mo-N8, Mo-N37, Mo-S1 and Mo-
S2/S4) and two shorter ones (Mo-O1 and Mo-O2) along z axes. This compression causes the
splitting of the dxy, dxz and dyz orbital set, the first lower in energy compared to the other
ones, which results singlet ground state system with both electrons on the dxy orbital. The
diamagnetic ground states of 2 and 3 were also confirmed by DFT calculations using the
respective crystal structures of the complexes as the basis of coordinates for computational
analyses. The singlet-triplet gap of 2 is 103 kJ/mol, whereas in 3 the triplet lies 35 kJ/mol
above the singlet ground state, which affirms the singlet ground states of the complexes
evident from the experimental data. For 3, the lowest triplet state at the PBE0/def2-TZVP
level shows Mo(IV) with d2 electron configuration, whereas for the lowest triplet state of 2,
the Mulliken spin densities (see ESI) in fact suggest a d1 Mo centre with the other unpaired
electron localized at the S4-fragment while the d2 triplet state could not be established even
with an attempt of using fragment-based initial assignment of partial charges and spins
separately for ligands and metal.
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Table 1. Selected bond lengths (Å) and angles (◦) for studied complexes.

1 [24] 2 3

Mo-O1 1.951 (3) 1.9370 (15) 1.901 (6)
Mo-O2 1.951 (4) 1.9152 (15) 1.883 (6)
Mo-N8 2.372 (3) 2.3388 (19) 2.290 (7)

Mo-N38 2.345 (4) 2.309 (2) 2.237 (6)
Mo-S1 2.2254 (6) 2.378 (2)

Mo-S2/S4 2.2223 (6) 2.373 (2)
O1-Mo-O2 156.5 (1) 158.01 (7) 161.5 (3)

N8-Mo-N38 68.9 (1) 73.89 (7) 75.9 (3)
S1-Mo-S2/S4 95.62 (2) 80.71 (7)

N8-Mo-S1 167.29 (5) 175.0 (3)
N37-Mo-S2/S4 94.05 (5) 101.76 (19)

Based on our investigation, it is evident that the reaction of Mo(VI) species 1 with thion-
ation reagents leads to the formation new Mo(IV) compounds. Similar reactivity leading to
the formation of Mo(IV) tetrasulfide complexes (Me3tacn)MoO(S4) and (But

3tach)MoO(S4)
is seen in the reactions of Mo(VI) compounds (Me3tacn)MoO3 with S8 and (But

3tach)MoO3
with B2S3 (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclonane, But

3tach = 1,3,5-tri-tert-butyl-
1,3,5-triazacyclohexane) [3,9]. Although the formation mechanism of the reduced products
2 and 3 is not clear, we may suppose that the initial step is the oxido-to-sulfido substitution
to form MoS2(L), similarly to the reactions of analogous W(VI) complexes. The unstable
disulfido reduces then to eliminate elemental sulfur yielding a reactive Mo(IV) intermediate
MoS(L). This intermediate reacts further with Lawesson’s reagent or other sulfur-containing
species in the reaction mixture to form distinct isolatable products 2 and 3. Both 2 and 3
are stable in the solid state as well as in inert solvents under open atmosphere. Although 3
decomposes in a prolonged reaction while 2 is formed, isolated and purified 3 is stable and
can be stored in a toluene solution for a week without any noticeable formation of 2. In
general, the formation of these Mo(IV) complexes demonstrates the relative inclination of
Mo(VI) toward reduction which is in stark contrast to the behaviour of W(VI), although
these to M(VI) species often reflect each other’s reactivity.

In conclusion, the oxido-to-sulfido substitution of a dioxidomolybdenum(VI) amino-
bisphenolate 1 was studied using different thionation reagents. The reaction with P2S5
leads to the formation of Mo(IV) aminobisphenolate complex 2 with a bidentate sulfur
chelate, i.e., tetrasulfide, S4

2−. The parallel reaction with Lawesson’s reagent, the organic
derivative of P2S5, yields also complex 2 together with complex 3 as the initial major
product, of which the latter has a (4-methoxyphenyl)phosphonotrithioate residue derived
from Lawesson’s reagent coordinated to the Mo(IV) centre. Both compounds 2 and 3 have
an overall geometry of cis,trans,cis, that is, the neutral nitrogen donors are in cis positions,
phenolate oxygen atoms are trans to each other and sulfur donors are cis in the axially
compressed octahedral structures. Both 2 and 3 are stable in the solid state as well as in inert
solvents under ambient atmosphere. The studied complexes are formally Mo(IV) with d2

metal centres. However, they are diamagnetic due to the singlet electron configurations as a
result of the axially compressed octahedral structures. Similar thionation reactions of com-
parable dioxidotungsten(VI) aminobisphenolates are known to yield disulfidotungsten(VI)
complexes, so these results demonstrate the higher inclination.

3. Materials and Methods

Complex 1 was prepared as reported previously [25]. Toluene was dried over 3A
molecular sieves. Other chemicals were from commercial sources and were used as pur-
chased. The synthetic reactions were run under a nitrogen atmosphere, whereas all isola-
tions and analyses were conducted under open atmosphere. The IR spectra were measured
using a Bruker VERTEX 70 FTIR instrument in transmittance mode, and peaks are reported
in wavenumbers (cm–1) and intensities (b = broad, w = weak, m = medium, s = strong,
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vs = very strong). All NMR spectra were recorded on a Bruker Avance III 500 MHz instru-
ment (1H: 500.08 MHz, 13C: 125.75 MHz) equipped with a broad-band smart probe and were
referenced to residual CHCl3 solvent signals (1H: δ 7.26, 13C: δ 77.16). The NMR samples
were kept under vacuum prior to the measurements to remove possible solvate molecules.
The samples were dissolved in acetonitrile for mass spectrometric analysis. The mass
spectra were obtained by quadrupole–Orbitrap mass spectrometer (QExactiveTM, Thermo
Fisher Scientific GmbH, Bremen, Germany) using direct infusion, negative electrospray
ionization and full scan at m/z 150–2000 with the resolution of 140,000. The calibration was
performed by Pierce ESI Negative Ion Calibration Solution (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). The data was processed with Thermo Xcalibur Qual Browser software
(Version 3.0.63, Thermo Fisher Scientific Inc., Waltham, MA, USA). Single crystal X-ray
diffraction data were collected with Rigaku Oxford Diffraction custom system consisting of
microfocus MicroMax™-007 HF rotating anode generator producing monochromatized
Cu Kα1 radiation and HyPix-6000HE detector. Data collection and reduction were done
using the CrysAlisPro software [26], whereas crystal structures were solved and refined
using SHELXS and SHELXL programs within the Olex2 interface. DFT calculations were
conducted using Gaussian 16 software [27]. The geometries were taken from single crystal
X-ray structures and the C–H bond lengths were normalized. The relative energies of singlet
and triplet spin states were determined as single point calculations at the PBE0/def2-TZVP
(effective core potential for Mo) level using these geometries [28,29].

2: Method a: First, 0.35 g (0.50 mmol) of 1 and 0.15 g (0.68 mmol) of P2S5 were mixed in
20 mL of dry toluene. The dark mixture was stirred for 24 h, the solvent was evaporated
and the green product (60 mg, 15%) was isolated by a silica column chromatography using
CH2Cl2 as an eluent. Method b: First, 0.50 g (0.75 mmol) of 1 and 0.61 g (1.50 mmol) of
Lawesson’s reagent were mixed in 20 mL of dry toluene and the solution was kept for
week at room temperature. Afterwards, 132 mg (35%) of 2 as well as 33 mg (5%) of 3 were
isolated by column chromatography using CH2Cl2 as an eluent. The crystals of 2 for XRD
analyses were grown from acetonitrile at room temperature. IR: 3440 s, 2958 s, 2868 s,
1626 s (br), 1606 s, 1470 s, 1443 s, 1412 m, 1390 m, 1362 m, 1304 m, 1259 s, 1240 s, 1203 m,
1171 m, 1128 m, 1057 w, 1022 w, 976 w, 914 m, 850 s, 808 m, 760 s, 727 w, 648 w, 590 w, 557 s,
509 w, 474 m cm−1. UV-Vis: λ = 425 nm, ε = 7062 cm−1M−1, 1H NMR (CDCl3): 10.11 (1H,
d, J = 5.3 Hz, ArH), 7.69 (1H, t, J = 8.0 Hz, ArH), 7.38 (1H, t, J = 6.2 Hz, ArH), 7.09 (1H,
d, J = 7.8 Hz, ArH), 7.02 (2H, d, J = 2.0 Hz, ArH), 6.87 (2H, d, J = 2.1 Hz, ArH), 5.66 (2H,
d, J = 13.4 Hz, CH2), 4.56 (2H, CH2), 4.30 (2H, d, J = 13.4 Hz, CH2), 1.22 (18H, tBu), 0.56
(18H, tBu). 13C NMR (CDCl3): 158.28, 157.92, 154.54, 141.15, 138.43, 135.02, 123.09, 122.51,
122.44, 121.19, 120.57, 66.41, 61.59, 33.23, 33.15, 30.54, 28.68, 28.13. ESI(-)-MS: (MeCN):
m/z = 767.17367 [M-H]− (calcd. m/z = 767.17310).

3: First, 3.9 g (5.8 mmol) of 1 and 2.4 g (5.9 mmol) of Lawesson’s reagent were mixed in
35 mL of dry toluene and the reaction mixture was stirred under a nitrogen atmosphere for
20 h at room temperature. Next, 3.55 g of brown precipitate was isolated and recrystallized
from hot acetonitrile to obtain 2.08 g (39%) of brownish-red crystals. The filtrate was
evaporated and 0.22 g (5%) of complex 2 was isolated by column chromatography. IR:
3440 s, 2958 s, 1622 s (br), 1605 s, 1593 s, 1570 m, 1497 s, 1475 s, 1443 s, 1414 m, 1392 m,
1362 m, 1302 w, 1288 w, 1250 s, 1203 m, 1171 m, 1126 m, 1095 m, 1055 w, 1022 m, 916 m,
868 s, 854 s, 808 w, 798 w, 762 s, 667 m, 619 m, 594 w, 575 m, 559 w, 532 w, 507 w cm−1.
UV-Vis: λ = 408 nm, ε= 4408 cm−1M−1. 1H NMR (CDCl3): 8.90 (1H, d, J = 5.1 Hz, ArH),
8.43 (2H, dd, J = 12.1 Hz, J’ = 11.7 Hz, ArH), 7.62 (1H, t, J = 7.8 Hz, ArH), 7.29 (1H, t, 7.8 Hz,
ArH), 7.09 (1H, d, J = 6.2 Hz, ArH), 7.08 (1H, d, J = 6.3 Hz, ArH), 7.04 (2H, t, J = 2.5 Hz,
ArH), 6.95 (1H, d, J = 7.9 Hz, ArH), 6.91 (2H, d, J = 6.7 Hz, ArH), 4.83 (1H, d, J = 13.1 Hz,
CH), 4.66 (1H, d, J = 12.7 Hz, CH), 4.54 (1H, d, J = 17.0 Hz, CH), 4.36 (1H, d, J = 17.2 Hz,
CH), 4.22 (1H, d, J = 13.2 Hz, CH), 4.12 (1H, d, J = 12.7 Hz, CH), 3.81 (3H, OCH3), 1.24 (18H,
tBuH), 1.05 (9H, tBuH), 0.86 (9H, tBuH) ppm. 13C NMR (CDCl3): 161.30, 161.27, 160.61,
157.19, 156.97, 154.47, 144.46, 144.30, 139.91, 136.75, 135.95, 132.33 132.20, 125.10, 124.75,
124.65, 124.53, 123.84, 123.40, 123.17, 120.55, 113.46, 113.34, 67.07, 66.65, 60.90, 55.32, 34.92,
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34.68, 34.60, 34.53, 31.45, 31.44, 29.90, 29.83 ppm. ESI(-)-MS: (MeCN): m/z = 873.22504
[M-H]− (calcd. m/z = 873.22448).
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