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Abstract: The growing human population, together with the inefficient use of natural resources,
has been dramatically increasing the production of food waste, which poses serious economic,
environmental, and social problems. Being so, it is necessary to increase the efficiency of food
consumption so as to reduce its waste and to convert the remaining residues into societal benefits.
Since this biowaste is rich in polyphenols and vitamins, it could become the feedstock for the
production of important value-added compounds for the pharmaceutical (e.g., food supplements)
and cosmetic (e.g., creams and shampoos) industries. In this work, partition studies of one polyphenol
(epicatechin) and two B-complex vitamins (cyanocobalamin and nicotinic acid) were performed in
biodegradable Aqueous Two-Phase Systems (ATPS) based on ethyl lactate and on organic salts
(disodium tartrate, tripotassium citrate, and trisodium citrate) at 298.15 K and 0.1 MPa. The largest
partition coefficient (K) and extraction efficiency (E) were obtained for vitamin B12 (K = 78.56,
E = 97.5%) for the longest tie line (TLL = 77.66%) in the ATPS {ethyl lactate (1) + tripotassium citrate
(2) + water (3)}. All the extractions were obtained with low biomolecule mass losses in quantification
(<5%) and after a thorough study of pH influence in the UV–Vis absorbance spectra.

Keywords: ATPS; ethyl lactate; polyphenols; vitamins

1. Introduction

The steady growth of the human population, together with the inefficient use of
natural resources, has been contributing to an increased production of food waste, which
poses serious economic and social problems [1,2]. Furthermore, environmental issues such
as farm-level water losses, land degradation, and greenhouse gas emissions from food
distribution and decomposition are also linked to this global problem [2]. Being so, it is
necessary to increase the efficiency of food consumption and to convert the remainder of
this waste into societal benefits.

Successful attempts of using food waste as feedstock and contributing to a more
circular economy are common in the literature, including its application in the produc-
tion of fertiliser [3,4] and of insects for human food and animal feed [4]. Moreover, a
particular type of sustainable biorefinery, the food waste biorefinery, has been gaining
preponderance as a source of added-value compounds [5] and as a processual precursor
of waste incineration and fertiliser production. This way, important biomolecules such
as enzymes, peptides, fatty acids (e.g., from fish processing wastes [5]), glucose, collagen,
keratin (e.g., from meat processing wastes [5]), vitamins, and polyphenols (e.g., from fruit
peals and pomaces [6,7]) are recovered and applied in the pharmaceutical and cosmetic
industries and even reintroduced in the food sector [7,8].

Aqueous Two-Phase Systems (ATPS) or Aqueous Biphasic Systems (ABS) have emerged
as a powerful tool for the recovery of biomolecules, for the analysis of cellular surfaces, and
for the fractionation of cell populations [9]. Generally, ATPS are composed by a ternary
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mixture of water + polymers, water + polymer + salt, or water + organic solvent + salt. The
presence of a salting-out agent (e.g., salt or polymer) induces phase splitting and yields
two liquid phases, known as top (lower density) and bottom (higher density) phases, with
one of them being significantly richer in salting-out agent than the other. The distinct
phase compositions create differences in properties such as hydrophobicity, polarity, and
viscosity, which will rule solute migration (partition) between the phases. Since both their
liquid phases are mostly composed by water, ATPS are gentle and biocompatible media for
biomaterials and are characterised by low interfacial tensions when compared, for example,
with conventional water/organic solvent systems [9,10].

Polyethylene glycol (PEG) is the most applied polymer for its nontoxicity, relative
low-cost, and ease of synthesis [11], but product recovery is extremely hard and requires
the handling of less eco-friendly solvents. PEG has been applied in the extraction of, for
example, amino acids [12,13], active pharmaceutical ingredients (API) [14], flavonoids [15],
and proteins [16].

Ethyl lactate is an environmentally benign bio-based green solvent with large solvating
power. It is a hydrophilic, amphiphilic, bio-renewable, non-flammable, and biodegradable
chemical with growing application as sustainable media for organic synthesis [17,18].
Further, it is also being used as a food additive, paint stripper, flavour chemical, and in
perfumery [19,20]. Recently, ethyl lactate has been applied to extract biomolecules such as
vitamins [21,22], pigments [22,23], antioxidants [24–26], amino acids [27], proteins [28], and
antibiotics [29], replacing more hazardous solvents such as alcohols and dichloromethane.

Concerning salts, inorganic salts such as sulphates [30,31] and phosphates [30,32] have
been extensively used in ATPS, but these may cause environmental distress at an industrial
scale of operation [11]. Therefore, organic salts such as tartrates [12,30] and citrates [13,30]
have been preferred due to their non-toxicity and biodegradability.

Recently, some novel ATPS have been developed to enforce the recyclability of their
constituents and the selectivity for certain species, such as ATPS based on light-triggered
switchable ionic liquids [33], on choline amino acid ionic liquids [34], and on surfactants
and polyalcohols [35].

In this work, three biomolecules were studied, including one polyphenol (epicatechin)
and two B-complex vitamins (cyanocobalamin and nicotinic acid).

Epicatechin (E) belongs to a particular category of polyphenols, the flavonoids, which
are products of the secondary metabolism of plants [36]. Epicatechin is commonly found
in a wide variety of foods, such as fruits (e.g., apples, grapes, cherries, and apricots),
vegetables, legumes, cocoa derivatives, wine, and some teas [37,38]. This catechin has been
shown to reduce hypertension, to improve the endothelial function [39], and is thought to
enhance cognition [40].

Cyanocobalamin or vitamin B12 is a corrinoid which can be found in red meat, milk,
eggs, potatoes, and mushrooms [41]. It is essential for the normal functioning of the human
body, especially to what concerns methylation and the mitochondrial metabolism, so its
severe deficiency has been found to cause haematological (e.g., megaloblastic anaemia) and
neurological (e.g., demyelination of the peripheral and central neurons) issues [42].

Nicotinic acid (NA) is one of the forms of vitamin B3. It is a water-soluble vitamin and
has been extensively used as a lipid-modifying drug due to its antidyslipidemic properties
(counteracts the imbalance of lipids in blood) [43]. Significant quantities of nicotinic acid
have been found in legumes and fruits, with chestnuts, figs, melons, peaches, and cherries
being some of the most relevant [44]. Figure 1 summarizes the natural sources of the
studied biomolecules in this work.

The aim of this work was to delve into the extraction of one polyphenol (epicatechin)
and two vitamins (cyanocobalamin and nicotinic acid) so as to set the ground for future
valorisation of food wastes (e.g., vegetable peals and fruit pomaces) to value-added phar-
maceutical (e.g., food supplements) and cosmetic (e.g., creams and shampoos) products.
Different biodegradable and ethyl-lactate-based ATPS with organic salts were applied at
298.15 K and 0.1 MPa in the partition of these biomolecules for the first time, in an effort
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to find effective extraction media which could promote a more sustainable production of
therapeutics and cosmetics and a more circular economy.
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Figure 1. Possible feedstocks for the extraction of epicatechin [37,38], cyanocobalamin (vitamin
B12) [41], and nicotinic acid [44].

2. Materials and Methods
2.1. Chemicals

Table 1 presents the chemicals used in this work, together with their respective com-
mercial suppliers, purities, Chemical Abstracts Service (CAS) number, and abbreviation.
All the chemicals were used without any further purification step.

Table 1. Chemicals used in this work, with respective chemical formula, suppliers, purities, CAS
number, and abbreviation.

Chemical Supplier Purity a/m% b CAS Abbreviation

Acetic acid
(CH3COOH) Merck >99.8 64-19-7 -

Cyanocobalamin or
vitamin B12

(C63H88CoN14O14P)
Sigma-Aldrich >98 68-19-9 B12

(-)-epicatechin
(C15H14O6)

Tokyo Chemical
Industry >97 490-46-0 E

Ethanol
(CH3CH2OH) Sigma-Aldrich >99 64-17-5 -

(-)-ethyl L-lactate
(C5H10O3) Sigma-Aldrich >98 97-64-3 EL

Nicotinic acid
(C6H5NO2) Sigma-Aldrich >99.5 59-67-6 NA

Purified water
(H2O) VWR chemicals - 7732-18-5 W

Sodium hydroxide
(NaOH) Merck >99 1310-73-2 -

Potassium citrate
monohydrate

(C6H5K3O7·H2O)
Sigma-Aldrich >99 6100-05-6 K3Citrate

Sodium citrate
tribasic dihydrate

(C6H5Na3O7·2H2O)
Sigma-Aldrich >99 6132-04-3 Na3Citrate

Sodium tartrate
dihydrate

(C4H4Na2O6·2H2O)
VWR chemicals >99.9 6106-24-7 Na2Tartrate

a Provided by the supplier; b m% refers to mass percentage.
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2.2. Apparatus and Experimental Procedure

In this work, an ADAM AAA 250L balance with measurement uncertainty of ±10−4 g
was used to assess mass (m), and a Thermo Scientific Varioskan Flash spectrophotometer
with measurement uncertainty of ±10−4 was used to determine UV–Vis absorbance (A).
Further, temperature (T) was kept at 298.15 ± 0.01 K with a Julabo F12 thermostatic bath
coupled with a Julabo ED controller, and density (ρ) was assessed using an Anton Paar
DSA-5000M densimeter with measurement uncertainties of ±3 × 10−5 g·cm−3 in density
and ±0.01 K in temperature. Lastly, pH was evaluated using a VWR pH1100L with
measurement uncertainties of ±0.001 in pH and ±0.1 K in temperature.

2.2.1. Influence of System’s pH in the UV–Vis Absorbance Spectra

To assess the influence of the phases’ pH in the UV–Vis absorbance spectra of the
biomolecules, aqueous stock solutions with different pH values and with concentrations of
about (1.54, 3.12, and 2.50) × 10−4 g·mL−1 were prepared for epicatechin, cyanocobalamin,
and nicotinic acid, respectively. In the determinations, the maximum concentrations were
defined by the solubility in water of the species and by the useful absorbance range of
the spectrophotometer. The pH values of the solutions were adjusted by adding droplets
of 0.5 M sodium hydroxide (NaOH) or 0.5 M acetic acid (CH3COOH) aqueous solutions.
Afterwards, 200 µL samples of each solution were added to a Greiner bio-one polystyrene
flat bottom plate, and an absorbance scanning was performed from 200 to 600 nm using
the Thermo Scientific Varioskan Flash UV–Vis spectrophotometer, after having stabilised
the samples at 298.15 K.

Moreover, to evaluate the stability of the UV–Vis absorbance spectra at different pH
values, the solutions were left to settle for 3 days at 298.15 K without any especial protection
from daylight, after which a new absorbance screening was conducted with the UV–Vis
spectrophotometer following the same procedure. These two spectra were then compared
to evaluate the stability of the UV–Vis spectra at the different pH values.

2.2.2. UV–Vis Absorbance Calibration Curves

To determine adequate UV–Vis absorbance calibration curves, 2 mL aqueous mixtures
with different concentrations of biomolecule (epicatechin, cyanocobalamin, or nicotinic
acid) were prepared in vials by diluting fresh stock solutions at a pH value of ~7.5, which
was considered close to the characteristic pH of all the different ATPS used. After being
capped and sealed with parafilm, the vials were vigorously stirred in a VWR VV3 vortex for
about 2 min and in an IKA RO 10 P magnetic stirrer for 20 min. Afterwards, 200 µL samples
of each vial were taken to the Thermo Scientific Varioskan Flash UV–Vis spectrophotometer,
and an absorbance scanning, from 200 to 600 nm, was performed following the previously
explained procedure. Then, the UV–Vis calibration curves were determined by plotting the
biomolecules’ concentrations with the absorbances at a chosen wavelength and fitting the
data to a first-degree equation after having subtracted the absorbance of blanks. The chosen
wavelengths were 278, 363, and 264 nm for epicatechin, cyanocobalamin, and nicotinic
acid, respectively. The absorbance of eventual pH adjusters (NaOH or CH3COOH) was
considered negligible.

2.2.3. Liquid–Liquid Extraction of Biomolecules

Vials with mixtures of 10 mL were prepared corresponding to the known tie lines
(isothermal lines which connect two corresponding phases) of the ATPS {ethyl lactate (1)
+ disodium tartrate (2) + water (3)} [24], {ethyl lactate (1) + trisodium citrate (2) + water
(3)} [25], and {ethyl lactate (1) + tripotassium citrate (2) + water (3)} [25], which were
determined in previous works of the research group. These mixtures were prepared by
pipetting and weighing the pure compounds (water and ethyl lactate) and the aqueous
solutions of the organic salts: disodium tartrate (30.00 m%), trisodium citrate (25.59 m%),
and tripotassium citrate (32.75 m%). In the preparation of the mixtures, 1 mL of the reported
water content in [24,25] was replaced by 1 mL of stock solution of the biomolecule being
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studied (epicatechin, cyanocobalamin, or nicotinic acid). After being stirred in a vortex
for 2 min, the samples were left under stirring for 6 h in the Julabo F12 thermostatic bath
at 298.15 K. Then, the vials were left settling overnight (~12 h) at the same temperature.
Afterwards, the top and bottom phases were carefully removed using pipettes and weighed
in the ADAM AAA 250L balance. Moreover, the UV–Vis absorbances, the pH values, and
the densities of the two phases of each tie line were assessed, by this order, with the Thermo
Scientific Varioskan Flash spectrophotometer, VWR pH 1100 L pH meter, and Anton Paar
DSA-5000M densimeter, respectively. The densimeter was cleaned between measurements
with water and ethanol.

3. Results and Discussion

Due to the lability of vitamins and antioxidant species (such as polyphenols), their
chemical formula/conformation can be changed by the pH of the liquid phase, causing the
appearance of new chemical compounds. The differently charged species that a biomolecule
may present, also known as stages [21], generally show different affinities to the ATPS
phases, so properly identifying the stages which are present in a solution is essential to
study biomolecule-oriented extractive processes.

Since the decimal logarithms of the dissociation constants (pKa) of epicatechin (8.72,
9.49, 11.23, and 13.40 [45]), cyanocobalamin (3.28 [46]), and nicotinic acid (2.00 and 4.82 [47])
are available in literature, the ratios between two successive biomolecule stages, i.e., be-
tween a biomolecule of a certain charge and its closest reduced state, can be determined as
a function of pH using Equation (1) [21]:[

Sq0−(i−1)
]

[
Sq0−i

] = 10pHphase−pKi
a (1)

where q0 is the charge of the antioxidant at pH = 0, i is the number of the dissociation
constant (pKi

a) being considered, pHphase is the pH of the phase under study, and
[
Sq0−(i−1)

]
and

[
Sq0−i

]
are the molar concentrations of the biomolecule stages with electrical charges of

q0 − (i− 1) e and q0 − i e, respectively. e stands for the elementary charge (1.602 · 10−19 C).
Then, the mean electrical charge of the antioxidant (q) can be calculated using a

weighted arithmetic mean:

q =
imax

∑
i=1

[
xSq0−(i−1) × (q0 − (i− 1))

]
(2)

where xSq0−(i−1) is the fraction (relative abundance) of the biomolecule stage with an electri-
cal charge equal to q0 − (i− 1) e.

In Figure 2, the calculated mean electrical charges (q) at different pH values for the
studied biomolecules (epicatechin, cyanocobalamin, and nicotinic acid) can be seen.

In this work, the partition studies of epicatechin, cyanocobalamin, and nicotinic acid
were performed in the ATPS shown in Table 2. According to the available literature [24,25],
the phase separation of these ATPS causes pH values from 6 to 8. As observed in Figure 2,
in this range, the mean electrical charges (q) of these biomolecules correspond almost
entirely to an integer value, so only one species (stage) is present, which allows better
characterisation of the final extract. In Tables S1–S3 in the Supplementary Materials, the
fractions of each biomolecule stage (xS) for the data shown in Figure 2 can be observed.
There, it can be noticed that, for example, at pH = 7.5, the molar fractions of the most
common stages of epicatechin (E), cyanocobalamin (B12), and nicotinic acid (NA) are,
respectively, xE0 = 0.94, xB12−1 = 1.00, and xNA−2 = 1.00.
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Figure 2. Calculated mean electrical charge (q) for epicatechin, cyanocobalamin (vitamin B12), and
nicotinic acid, expressed in terms of the elementary charge (e), i.e., 1.602 × 10−19 C.

Table 2. Extracted biomolecules using the Aqueous Two-Phase Systems (ATPS) {ethyl lactate (1) +
organic salt (2) + water (3)}.

Biomolecule
Organic Salts

Na2Tartrate Na3Citrate K3Citrate

Epicatechin × ×
Cyanocobalamin × ×

Nicotinic acid × ×

3.1. Influence of pH in the UV–Vis Absorbance Spectra

As previously stated, the relative abundance of each biomolecule stage is heavily
influenced by pH, since its variation leads to changes in the chemical structure and/or
chemical conformation. Being so, the UV–Vis absorbance spectrum may also be altered,
for which studying the influence of pH will be crucial for accurately determining the
calibration curves. Therefore, absorbance measurements were performed from 200 to
600 nm in aqueous solutions with different pH values and with concentrations of about
(1.54, 3.12, and 2.50) × 10−4 g·mL−1 for epicatechin (Figure 3), cyanocobalamin (Figure S1),
and nicotinic acid (Figure S2), respectively. These absorbance spectra were normalised,
having in consideration the amount of pH adjusters (0.5 M NaOH and 0.5 M CH3COOH)
added using Equation (3), so as to ease interpretation.

A′ = A ·
CpH=7.5

CpH=k
(3)

Here, A is the experimental UV–Vis absorbance for a given wavelength (λ), A′ is the
normalised absorbance, CpH=7.5 is the reference concentration (pH = 7.5), and CpH=k is
the concentration of the stock solution of biomolecule at a given pH k.
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Figure 3. Influence of pH in the UV–Vis absorbance spectra of epicatechin (3.12 × 10−4 g·mL−1) at
298.15 K and 0.1 MPa.

As Figure 3 shows for epicatechin, larger pH values imply larger UV–Vis absorbances
and a progressively higher wavelength for the local maximum verified at 278 nm (and
pH = 7.5). For cyanocobalamin (Figure S1) and nicotinic acid (Figure S2), the found spec-
tra were almost independent of pH, hinting remarkably similar absorbance for all their
biomolecule stages, which generally ensures more precise quantification of their concentra-
tions using UV–Vis absorbance calibration curves.

3.2. UV–Vis Absorbance Calibration Curves

To enable an adequate quantification of the biomolecules after phase separation, UV–
Vis calibration curves were determined at the wavelengths of 278, 363, and 264 nm for
epicatechin, cyanocobalamin, and nicotinic acid, respectively. The UV–Vis absorbance
spectra of the studied biomolecules can be seen in Figure 4. The calibration curves were
conducted at a pH value close to the ones available in the literature for the studied ATPS
(pH ≈ 7.5) and can be observed in Figure 5. In the determinations, the absorbance of
water (and plate) was subtracted, and the calibration curves were determined at the
wavelengths that corresponded to the local or global maxima in which the other ATPS
species (ethyl lactate and organic salts) and pH adjusters (NaOH and CH3COOH) did not
significantly interfere.

Furthermore, since partition determinations take around 18 h (6 h of stirring and 12 h
of settling), it is essential for the UV–Vis absorbance spectra to remain constant so as to
be able to apply the found calibration curves (Figure 5). Being so, the prepared aqueous
solutions of the studied biomolecules were left settling for three days without any especial
protection from daylight, and their absorbance spectra were measured and compared to the
initial ones. As Figures S3–S5 in the Supplementary Materials show, the chosen absorbance
maxima were not affected by 3 days of settling, so their usage after ~18 h was validated.
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Figure 4. UV–Vis absorbance spectra at pH = 7.5, from 200 to 600 nm, for epicatechin, cyanocobalamin
(vitamin B12), and nicotinic acid at (1.54, 3.12, and 2.50)× 10−4 g·mL−1, respectively, with T = 298.15 K
and P = 0.1 MPa.
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Figure 5. UV-Vis absorbance calibration curves at pH = 7.5 for epicatechin (278 nm), vitamin B12
(363 nm), and nicotinic acid (264 nm), with T = 298.15 K and P = 0.1 MPa. The first-degree fittings

follow equations: A = 8091.2×CE

(
g·mL−1

)
+ 0.0027 with a determination coefficient (R2) of 0.9998,

A = 10024× CB12

(
g·mL−1

)
+ 0.0123 with R2 = 0.9998, and A = 10630× CNA

(
g·mL−1

)
+ 0.1000

with R2 = 0.9993, respectively.
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3.3. Partitioning of Biomolecules

The applied ATPS were studied in previous works of the research group [24,25], so
their liquid–liquid equilibria (LLE) were not determined in this work, and the partitioning
of biomolecules was conducted at 298.15 K and 0.1 MPa in the previously reported tie-lines,
which can be observed in Table 3.

Table 3. Determined tie-lines for the ATPS {ethyl lactate (1) + organic salt (2) + water (3)} used in this
work at 298.15 K and 0.1 MPa a,b [24,25].

Tie Line
Feed

Phase
Separation

w1/m% w2/m% w1/m% w2/m% pH

{ethyl lactate (1) + disodium tartrate (2) + water (3)} [25]
1 28.0 12.5 Top 51.4 3.7 6.18

Bottom 15.5 17.0 6.10
2 30.0 13.0 Top 57.5 2.7 6.13

Bottom 11.6 19.8 6.17
3 32.5 13.3 Top 63.1 2.0 6.13

Bottom 9.0 22.3 6.18
4 35.5 13.8 Top 68.9 1.5 6.15

Bottom 7.0 24.8 6.18
5 38.0 14.0 Top 72.4 1.3 6.11

Bottom 6.0 26.2 6.17
{ethyl lactate (1) + trisodium citrate (2) + water (3)} [24]

1 30.0 11.0 Top 51.7 3.0 7.00
Bottom 16.0 15.7 6.98

2 32.0 11.4 Top 57.5 2.0 6.98
Bottom 12.3 18.5 6.96

3 34.3 11.7 Top 61.5 1.4 6.98
Bottom 9.8 20.7 6.97

4 36.5 12.1 Top 65.0 1.0 7.00
Bottom 7.9 23.0 7.00

5 38.5 12.3 Top 67.7 0.7 6.98
Bottom 6.8 24.7 6.97

6 40.6 12.6 Top 70.1 0.5 6.98
Bottom 5.5 26.6 7.00

{ethyl lactate (1) + tripotassium citrate (2) + water (3)} [24]
1 35.5 12.6 Top 57.9 3.9 7.21

Bottom 15.0 20.3 7.39
2 37.5 13.0 Top 61.7 3.4 7.22

Bottom 11.5 23.2 7.41
3 39.2 13.5 Top 67.4 2.1 7.19

Bottom 9.1 25.8 7.37
4 41.1 13.9 Top 70.4 1.6 7.23

Bottom 7.5 28.2 7.41
5 43.0 14.3 Top 73.6 1.1 7.12

Bottom 6.0 31.0 7.39
6 44.6 14.8 Top 75.8 0.9 7.22

Bottom 5.2 33.1 7.43
a wi stands for the mass percentage (m%) of species i.; b standard uncertainties (u) are: u(T) = 0.2 K, u(P) = 10 kPa,
u(wi) = 10−1, and u(pH) = 10−2 [24,25].

So as to quantify the partition of the studied biomolecules, after phase equilibrium
was reached, the liquid phases were separated and mass (m), absorbance (A), pH, and
density (ρ) were measured. Then, the mass losses (Lm) were calculated, in percentage,
using Equation (4). The results are shown in Table 4.

Lm/% =
m2 −m1

m1
× 100 (4)
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Here, m1 is the total mass (feed), and m2 is the sum of masses of the two phases
separated after equilibrium was reached.

Table 4. Experimental mass (m), UV-Vis absorbance (A) at chosen wavelength (λ), density (ρ), pH,
and mass loss (Lm) for the top and bottom phases in the extraction of epicatechin, cyanocobalamin,
and nicotinic acid using the ATPS {ethyl lactate (1) + Na2Tartrate or Na3Citrate or K3Citrate (2) +
water (3)} at 298.15 K and 0.1 MPa a.

Tie Line Phase m/g Lm/% A ρ/g·mL−1 pH

Epicatechin (λ = 278 nm)–Na2Tartrate
1 Top 3.6786 −0.48

0.8346 1.05790 6.880
Bottom 6.4186 0.4077 1.12550 6.862

2 Top 4.4509 −0.10
0.8870 1.04840 6.996

Bottom 5.5871 0.3671 1.13730 6.873
3 Top 4.3920 −1.95

0.9332 1.04750 7.014
Bottom 5.4675 0.3379 1.15600 6.896

4 Top 4.6811 −0.74
0.9686 1.04550 7.049

Bottom 5.3176 0.3339 1.17670 7.078
5 Top 5.1993 −1.92

0.9896 1.04210 7.083
Bottom 4.6718 0.3297 1.19110 6.986

Epicatechin (λ = 278 nm)–K3Citrate
1 Top 4.4828 −0.19 0.8568 1.05867 8.215

Bottom 5.5222 0.2778 1.14870 8.248
2 Top 4.8564 −1.41 0.8888 1.05425 8.285

Bottom 5.0553 0.2320 1.16630 8.283
3 Top 5.1306 −1.44 0.9502 1.05210 8.244

Bottom 4.8115 0.2056 1.17672 8.321
4 Top 5.2578 −0.85 0.9688 1.04671 8.266

Bottom 4.8111 0.1992 1.19459 8.485
5 Top 5.4584 −1.17 0.9984 1.04583 8.291

Bottom 4.5713 0.1882 1.21058 8.509
6 Top 5.7649 −1.65 1.0392 1.04572 8.344

Bottom 4.3962 0.1811 1.21871 8.515
Vitamin B12 (λ = 363 nm)–Na2Tartrate

1 Top 3.3444 −1.39 2.0127 1.05920 6.990
Bottom 6.6009 1.1287 1.12560 6.905

2 Top 3.8218 −1.39 2.2431 1.06760 7.010
Bottom 6.0977 0.8812 1.10820 6.958

3 Top 4.5850 −1.36 2.3748 1.05170 6.952
Bottom 5.3460 0.5605 1.12960 7.063

4 Top 5.1427 −0.49 2.3930 1.04900 6.965
Bottom 4.8684 0.3193 1.14630 7.063

5 Top 5.4989 −0.48 2.3171 1.04580 6.988
Bottom 4.5034 0.2393 1.16320 7.150

Vitamin B12 (λ = 363 nm)–K3Citrate
1 Top 4.6756 −1.29 2.3753 1.05970 8.103

Bottom 5.2595 0.5091 1.15070 8.068
2 Top 5.0931 −0.91 2.3588 1.05330 8.141

Bottom 4.8615 0.3312 1.16280 8.097
3 Top 5.1493 −0.88 2.4601 1.05020 8.188

Bottom 4.8149 0.2024 1.17200 8.108
4 Top 5.2956 −1.17 2.4048 1.04800 8.206

Bottom 4.6424 0.1611 1.19390 8.156
5 Top 5.418 −0.97 2.4107 1.04550 8.233

Bottom 4.5434 0.1183 1.20940 8.191
6 Top 5.5163 −1.15 2.3630 1.04470 8.281

Bottom 4.4272 0.0965 1.21970 8.263
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Table 4. Cont.

Tie Line Phase m/g Lm/% A ρ/g·mL−1 pH

Nicotinic acid (λ = 264 nm)–Na2Tartrate
1 Top 3.0821 −1.03 4.0890 1.05322 6.619

Bottom 6.8828 2.7974 1.12553 6.531
2 Top 3.4818 −0.64 4.3159 1.05680 6.629

Bottom 6.6076 2.5573 1.12730 6.529
3 Top 3.9679 −1.31 4.5031 1.05280 6.638

Bottom 5.9567 2.3235 1.13440 6.496
4 Top 4.5769 −1.24 4.6137 1.04670 6.568

Bottom 5.3389 2.0370 1.15830 6.539
5 Top 5.0313 −1.09 4.6525 1.04640 6.644

Bottom 4.9116 1.8679 1.17280 6.618
Nicotinic acid (λ = 264 nm)–Na3Citrate

1 Top 3.6279 −0.76 4.0313 1.05381 7.644
Bottom 6.4795 2.3153 1.12229 7.534

2 Top 4.0828 −0.21 4.3514 1.04788 7.748
Bottom 5.8773 2.0339 1.13681 7.554

3 Top 4.5328 −0.21 4.3578 1.04558 7.685
Bottom 5.4912 1.8313 1.15010 7.551

4 Top 4.7552 −0.48 4.3915 1.04354 7.735
Bottom 5.2350 1.6074 1.16720 7.603

5 Top 4.9717 −0.76 4.4329 1.04209 7.721
Bottom 4.9846 1.4982 1.18528 7.621

6 Top 5.1887 −0.42 4.1538 1.04118 7.851
Bottom 4.8186 1.3575 1.19160 8.048

a The measurement uncertainties (u) are: u(m) = 10−4 g, u(A) = 10−4, u(ρ) = 3 × 10−5 g·mL and
u(pH) = 10−3.

As seen in Table 4, UV-Vis absorbances were always higher for top phases, so all the
studied biomolecules preferentially diffused into the ethyl-lactate-rich phase. Generally,
the measured pH and density values of the phases were larger for the ATPS containing
tripotassium citrate and smaller for the ATPS based on disodium tartrate. Moreover, pH
values for the phases of each tie line in each system were alike, which implies similar
distribution of electrical charges and, consequently, similar mean electrical charge (q) in
both phases of the same tie-line composition. This way, the phases presented homogeneous
characteristics and a single calibration curve could be applied.

Since using different tie-line compositions caused different pH values in the liquid
phases (as seen in Table 4), it was necessary to understand if the distribution of biomolecule
stages was similar between phases of different tie-line composition (for the same system).
As Figure 6 shows, the ATPS {ethyl lactate (1) + disodium tartrate (2) + water (3)} ensured
similar and well-defined stages for all the biomolecules, so its tie-line compositions yielded
a homogenous biomolecule extract. The same conclusion can be drawn from {ethyl lactate
(1) + trisodium citrate (2) + water (3)} in extracting nicotinic acid and from {ethyl lactate (1)
+ tripotassium citrate (2) + water (3)} in extracting cyanocobalamin, as Figures S6 and S7
in the Supplementary Materials, respectively, show. However, as can be seen in Figure S7
in the Supplementary Materials, the different tie-line compositions of {ethyl lactate (1) +
tripotassium citrate (2) + water (3)} caused different distributions of biomolecule stages
between the tie lines for epicatechin, particularly to what concerns the neutral and mono
negatively charged species, originating more heterogeneous extracts.

With the measured UV-Vis absorbances and with the determined calibration curves
(Figure 5), after subtracting the blanks, the concentrations of each biomolecule in each
ATPS were determined, and a partition coefficient (K) was determined for each tie-line
composition using Equation (5). These results can be observed in Table 5.

Ki =
Ctop

i

Cbottom
i

(5)
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Figure 6. Influence of the tie-line compositions in the fraction of the biomolecule stages of epicatechin,
cyanocobalamin, and nicotinic acid in the ATPS {ethyl lactate (1) + disodium tartrate (2) + water (3)}
at 298.15 K and 0.1 MPa. E0, E−1, E−2, E−3, and E−4 stand for the biomolecule stages of epicatechin
with electrical charges equal to 0, −1, −2, −3, and −4 e, respectively; B120 and B12−1 stand for the
biomolecule stages of cyanocobalamin with electrical charges equal to 0 and −1 e, respectively; NA0,
NA−1, and NA−2 stand for the biomolecule stages of nicotinic acid with electrical charges equal to 0,
−1, and −2 e, respectively, and e stands for the elementary charge (1.602× 10−19 C).

Table 5. Calculated concentration of biomolecule (C) for each phase, partition coefficients (K) for each
tie-line composition, and tie-line lengths (TLL) for the extraction of epicatechin, cyanocobalamin, and
nicotinic acid using the ATPS {ethyl lactate (1) + Na2Tartrate or Na3Citrate or K3Citrate (2) + water
(3)} at 298.15 K and 0.1 MPa.

Tie Line Phase C/g·mL−1 K TLL/% [24,25]

Epicatechin–Na2Tartrate
1 Top 2.75 × 10−5

2.12 38.33Bottom 1.30 × 10−5

2 Top 2.70 × 10−5
2.56 49.02Bottom 1.06 × 10−5

3 Top 3.00 × 10−5
3.71 57.82Bottom 8.09 × 10−6

4 Top 3.04 × 10−5
4.10 66.14Bottom 7.43 × 10−6

5 Top 2.87 × 10−5
5.43 70.90Bottom 5.29 × 10−6

Epicatechin–K3Citrate
1 Top 3.20 × 10−5

4.75 45.91Bottom 6.73 × 10−6

2 Top 3.21 × 10−5
6.97 54.02Bottom 4.60 × 10−6

3 Top 3.26 × 10−5
12.28 62.96Bottom 2.65 × 10−6

4 Top 3.23 × 10−5
16.09 68.28Bottom 2.01 × 10−6

5 Top 3.14 × 10−5
21.43 73.92Bottom 1.47 × 10−6

6 Top 3.04 × 10−5
24.86 77.66Bottom 1.22 × 10−6
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Table 5. Cont.

Tie Line Phase C/g·mL−1 K TLL/% [24,25]

Vitamin B12–Na2Tartrate
1 Top 6.15 × 10−4

1.87 38.33Bottom 6.11× 10−4

2 Top 7.79 × 10−4
2.74 49.02Bottom 4.38 × 10−4

3 Top 1.01 × 10−3
4.91 57.82Bottom 2.22 × 10−4

4 Top 1.14 × 10−3
10.35 66.14Bottom 9.53 × 10−5

5 Top 1.18 × 10−3
15.96 70.90Bottom 5.44 × 10−5

Vitamin B12–K3Citrate
1 Top 2.31 × 10−4

5.26 45.91Bottom 4.39 × 10−5

2 Top 2.30 × 10−4
8.80 54.02Bottom 2.61 × 10−5

3 Top 2.40 × 10−4
17.33 62.96Bottom 1.38 × 10−5

4 Top 2.34 × 10−4
24.88 68.28Bottom 9.40 × 10−6

5 Top 2.34 × 10−4
46.05 73.92Bottom 5.09 × 10−6

6 Top 2.30 × 10−4
78.56 77.66Bottom 2.92 × 10−6

Nicotinic acid–Na2Tartrate
1 Top 3.15 × 10−4

1.41 38.33Bottom 2.24 × 10−4

2 Top 3.30 × 10−4
1.66 49.02Bottom 1.99 × 10−4

3 Top 3.45 × 10−4
1.91 57.82Bottom 1.81 × 10−4

4 Top 3.52 × 10−4
2.30 66.14Bottom 1.53 × 10−4

5 Top 3.51 × 10−4
2.60 70.90Bottom 1.35 × 10−4

Nicotinic acid–Na3Citrate
1 Top 3.23 × 10−4

1.67 37.85Bottom 1.94 × 10−4

2 Top 3.47 × 10−4
2.04 48.18Bottom 1.70 × 10−4

3 Top 3.46 × 10−4
2.28 55.17Bottom 1.52 × 10−4

4 Top 3.46 × 10−4
2.62 61.17Bottom 1.32 × 10−4

5 Top 3.48 × 10−4
2.86 65.44Bottom 1.22 × 10−4

6 Top 3.67 × 10−4
3.55 69.68Bottom 1.03 × 10−4

Here, i is the tie-line number, and Ctop
i and Cbottom

i correspond to the biomolecule’s
concentration in the top and bottom phases, respectively.

As can be observed in Table 5, the extraction of vitamin B12 in the ATPS {ethyl lactate
(1) + K3Citrate (2) + water (3)} presented the largest partition coefficients, reaching K = 78.56
with TLL = 77.66%. Conversely, nicotinic acid in {ethyl lactate (1) + Na2Tartrate (2) + water
(3)} yielded the worst results, obtaining K = 2.60 for the longest tie line (TLL = 70.90%).
Moreover, all the systems achieved partition coefficients above unity, which means that the
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top phases’ concentrations of biomolecule were always larger than the ones of the bottom
phases. Therefore, ethyl lactate, which is mostly present in the top phases, was successful
in extracting the biomolecules.

Furthermore, as Figure 7 shows, all biomolecules suffered an increase in the top phase
concentration for longer tie lines, i.e., for more distinct top and bottom compositions, so
ethyl lactate presents good affinity for these species. The more positive the slope of the
lines, the more favoured solute migration for the top phase is with growing tie-line length,
so ethyl lactate presents more affinity for cyanocobalamin. Generally, a close to linear
behaviour was verified for the natural logarithm of the partition coefficients (ln(K)) with
the tie-line lengths (TLL).
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Figure 7. Relation of the tie-line length (TLL) [24,25] with the natural logarithm of the experimental
partition coefficients (K) in the ATPS {ethyl lactate (1) + Na2Tartrate or Na3Citrate or K3Citrate (2) +
water (3)} at 298.15 K and 0.1 MPa for epicatechin, vitamin B12, and nicotinic acid.

3.4. Mass Balance

To ensure the validity of the reported partition coefficients of Table 5, it is of the
utmost importance to validate the analytical method by performing a mass balance on the
biomolecules under study, i.e., verifying that all the biomolecule mass is being considered.
First, the liquid volumes (V) of all the phases (top and bottom) were determined using:

Vj =
mj

ρj
(6)

where Vj is the liquid phase volume, mj is the measured mass, and ρj is the measured
density for phase j.

Then, the mass balance was checked by calculating the solute losses (Ls) using:

Ls/% =
ms2 −ms1

ms1
× 100 (7)
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where ms1 is the added mass of biomolecule (present in 1 mL of stock solution), and ms2 is
the total quantified mass of biomolecule, which was calculated using:

ms2 = Vtop
i Ctop

i + Vbottom
i Cbottom

i (8)

where Vtop
i and Vbottom

i are the calculated experimental volumes of the top and bottom
phases, respectively, and i refers to the tie-line number.

Further, the extraction efficiencies of each tie line (E) were determined with:

E/% =
mtop

ms1
× 100 (9)

where mtop is the quantified mass of biomolecule in the top phase.
Since the solute losses quantified using Equation (7) may be in the top phase, an ex-

traction efficiency interval can be found using the values determined for E as the minimum
boundary and summing the absolute value of Ls with E for the maximum limit. All these
results are presented in Table 6.

Table 6. Calculated solute losses (Ls), extraction efficiency (E) intervals, and tie-line lengths (TLL)
for the extraction of epicatechin, cyanocobalamin, and nicotinic acid in the ATPS {ethyl lactate (1) +
Na2Tartrate or Na3Citrate or K3Citrate (2) + water (3)} at 298.15 K and 0.1 MPa.

Tie line Ls/% E/% TLL/% [24,25]

Epicatechin—Na2Tartrate
1 −1.12 55.7–56.9 38.33
2 −2.37 67.2–69.6 49.02
3 −4.11 73.5–77.6 57.82
4 −1.21 79.2–80.4 66.14
5 −4.41 83.4–87.8 70.90

Epicatechin–K3Citrate
1 −1.69 79.4–81.1 45.91
2 −2.04 86.3–88.4 54.02
3 −1.83 91.9–93.7 62.96
4 −1.55 93.8–95.3 68.28
5 −1.20 95.6–96.8 73.92
6 −0.40 97.0–97.5 77.66

Vitamin B12–Na2Tartrate
1 −1.86 49.2–51.1 38.33
2 −2.48 62.5–64.9 49.02
3 −2.08 80.2–82.3 57.82
4 −1.37 91.0–92.4 66.14
5 −0.88 94.8–95.6 70.90

Vitamin B12–K3Citrate
1 −2.37 81.6–84.0 45.91
2 −1.61 89.6–91.2 54.02
3 −1.33 94.1–95.5 62.96
4 −2.39 94.7–97.1 68.28
5 −1.31 97.2–98.5 73.92
6 −1.68 97.5–99.2 77.66

Nicotinic acid–Na2Tartrate
1 −0.91 39.9–40.8 38.33
2 −2.36 47.1–49.5 49.02
3 −2.71 56.2–59.0 57.82
4 −2.93 66.6–69.5 66.14
5 −2.92 72.7–75.7 70.90
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Table 6. Cont.

Tie line Ls/% E/% TLL/% [24,25]

Nicotinic acid–Na3Citrate
1 −2.32 48.7–51.0 37.85
2 −2.38 59.2–61.6 48.18
3 −2.49 65.8–68.3 55.17
4 −4.94 69.1–74.0 61.17
5 −4.76 72.8–77.6 65.44
6 −1.60 80.1–81.7 69.68

As Table 6 shows, low solute losses were obtained for epicatechin (<5%), vitamin
B12 (<3%), and nicotinic acid (<5%). Therefore, the validity of the analytical method was
assured, confirming the reported partition coefficients (K) and extraction efficiencies (E).
Moreover, vitamin B12 presented the largest extraction efficiencies, and E increased with
growing tie-line length (TLL) for all the studied biomolecules. In Figure 8, the extraction
efficiencies (E) were plotted in the function of the tie-line lengths (TLL) to ease comparison.

Molecules 2022, 27, x FOR PEER REVIEW 17 of 20 
 

 

growing tie-line length (TLL) for all the studied biomolecules. In Figure 8, the extraction 

efficiencies (𝐸) were plotted in the function of the tie-line lengths (TLL) to ease compar-

ison. 

 

Figure 8. Relation of the tie-line length (TLL) [24,25] with the extraction efficiencies (𝐸) in the ATPS 

{ethyl lactate (1) + Na2Tartrate or Na3Citrate or K3Citrate (2) + water (3)} at 298.15 K and 0.1 MPa for 

epicatechin, cyanocobalamin, and nicotinic acid. 

As seen in Figure 8, the longest tie-lines provided the highest extraction efficiencies 

(𝐸). Therefore, solute migration to the top phases was favoured by more distinct compo-

sitions of the phases, i.e., higher concentration of ethyl lactate in the top phases and higher 

salt concentration in the bottom phases. Epicatechin and vitamin B12 reached extraction 

efficiencies close to 100%, while nicotinic acid achieved, at maximum, 81.7 %. 

By observing Figures 7 and 8, it can be concluded that the best system for the extrac-

tion of vitamin B12 (cyanocobalamin) at 298.15 K and 0.1 MPa is {ethyl lactate (1) + K3Cit-

rate (2) + water (3)}, since it yields larger partition coefficients (presents a more top phase-

centred solute distribution) and larger extraction efficiencies (top phases retain a more 

significant fraction of the added biomolecule) than {ethyl lactate (1) + Na2Tartrate (2) + 

water (3)}. Following the same logic, {ethyl lactate (1) + K3Citrate (2) + water (3)} is better 

than {ethyl lactate (1) + Na2Tartrate (2) + water (3)} at extracting epicatechin, and {ethyl 

lactate (1) + Na3Citrate (2) + water (3)} provides more reliable extractive media for nicotinic 

acid than {ethyl lactate (1) + Na2Tartrate (2) + water (3)}. These findings follow the gener-

ally observed trend that citrate-based organic salts ensure more efficient extractions of 

biomolecules than tartrate-based organic salts. 

4. Conclusions 

Reducing food waste and converting it to societal benefits has become a topic of great 

importance due to the exponential growth of the human population and the inefficient 

use of natural resources. Biomolecules such as polyphenols (e.g., epicatechin) and vita-

mins (e.g., cyanocobalamin and nicotinic acid) are present in some vegetables, fruits, and 

legumes, for which their presence in food waste is inevitable. These chemical species con-

ceal unique nutritive and medicinal properties, so they have been added to pharmaceuti-

cals (e.g., food supplements) and cosmetics (e.g., creams and shampoos). 

Tie-line length (TLL) / %

40 50 60 70 80

E
 /

 %

0

20

40

60

80

100

Vitamin B12 with Na2Tartrate

Vitamin B12 with K3Citrate

Nicotinic acid with Na2Tartrate

Nicotinic acid with Na3Citrate

Epicatechin with Na2Tartrate

Epicatechin with K3Citrate

Linear regressions

Figure 8. Relation of the tie-line length (TLL) [24,25] with the extraction efficiencies (E) in the ATPS
{ethyl lactate (1) + Na2Tartrate or Na3Citrate or K3Citrate (2) + water (3)} at 298.15 K and 0.1 MPa for
epicatechin, cyanocobalamin, and nicotinic acid.

As seen in Figure 8, the longest tie-lines provided the highest extraction efficiencies (E).
Therefore, solute migration to the top phases was favoured by more distinct compositions
of the phases, i.e., higher concentration of ethyl lactate in the top phases and higher salt
concentration in the bottom phases. Epicatechin and vitamin B12 reached extraction
efficiencies close to 100%, while nicotinic acid achieved, at maximum, 81.7%.

By observing Figures 7 and 8, it can be concluded that the best system for the extraction
of vitamin B12 (cyanocobalamin) at 298.15 K and 0.1 MPa is {ethyl lactate (1) + K3Citrate (2)
+ water (3)}, since it yields larger partition coefficients (presents a more top phase-centred
solute distribution) and larger extraction efficiencies (top phases retain a more significant
fraction of the added biomolecule) than {ethyl lactate (1) + Na2Tartrate (2) + water (3)}.
Following the same logic, {ethyl lactate (1) + K3Citrate (2) + water (3)} is better than {ethyl
lactate (1) + Na2Tartrate (2) + water (3)} at extracting epicatechin, and {ethyl lactate (1) +
Na3Citrate (2) + water (3)} provides more reliable extractive media for nicotinic acid than
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{ethyl lactate (1) + Na2Tartrate (2) + water (3)}. These findings follow the generally observed
trend that citrate-based organic salts ensure more efficient extractions of biomolecules than
tartrate-based organic salts.

4. Conclusions

Reducing food waste and converting it to societal benefits has become a topic of great
importance due to the exponential growth of the human population and the inefficient use
of natural resources. Biomolecules such as polyphenols (e.g., epicatechin) and vitamins
(e.g., cyanocobalamin and nicotinic acid) are present in some vegetables, fruits, and legumes,
for which their presence in food waste is inevitable. These chemical species conceal unique
nutritive and medicinal properties, so they have been added to pharmaceuticals (e.g., food
supplements) and cosmetics (e.g., creams and shampoos).

In this work, partition studies of epicatechin, vitamin B12 (cyanocobalamin), and
nicotinic acid were successfully conducted in the ATPS {ethyl lactate (1) + Na2Tartrate or
Na3Citrate or K3Citrate (2) + water (3)} at 298.15 K and 0.1 MPa for future valorisation of
food wastes such as vegetable peals and fruit pomaces. The largest partition coefficients
(K) and extraction efficiencies (E) were obtained for vitamin B12 (K = 78.56, E = 97.5%)
and for epicatechin (K = 24.86, E = 97.0%) for the longest tie line (TLL = 77.66%) in the
ATPS {ethyl lactate (1) + tripotassium citrate (2) + water (3)}. Therefore, this is the most
efficient extractive system for future valorisation of vitamin-B12-rich (e.g., potato peals)
and epicatechin-rich (e.g., apple peals) food waste.

All the applied ATPS provided partition coefficients larger than unity, for which they
were considered successful in the extraction of the studied biomolecules. The reported
extraction efficiencies (E) and partition coefficients (K) were validated by the verified low
biomolecule mass losses in quantification for vitamin B12 (<3%), epicatechin (<5%), and
nicotinic acid (<5%), which were achieved after a thorough study of the influence of pH in
the UV–Vis absorbance spectra of these biomolecules.
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//www.mdpi.com/article/10.3390/molecules27227838/s1: Figure S1: Influence of pH in the UV-Vis
absorbance spectra of vitamin B12 at 298.15 K and 0.1 MPa; Figure S2: Influence of pH in the UV-Vis
absorbance spectra of nicotinic acid at 298.15 K and 0.1 MPa; Figure S3: UV-Vis absorbance spectra of
the aqueous stock solution of epicatechin in the moment of preparation and after 3 days of settling
at 298.15 K and 0.1 MPa; Figure S4: UV-Vis absorbance spectra of the aqueous stock solution of
vitamin B12 in the moment of preparation and after 3 days of settling at 298.15 K and 0.1 MPa;
Figure S5: UV-Vis absorbance spectra of the aqueous stock solution of nicotinic acid in the moment of
preparation and after 3 days of settling at 298.15 K and 0.1 MPa; Figure S6: Influence of the tie-line
compositions in the fraction of the biomolecule stages of nicotinic acid in the ATPS {ethyl lactate
(1) + trisodium citrate (2) + water (3)} at 298.15 K and 0.1 MPa; Figure S7: Influence of the tie-line
compositions in the fraction of the biomolecule stages of epicatechin and cyanocobalamin (vitamin
B12) in the ATPS {ethyl lactate (1) + tripotassium citrate (2) + water (3)} at 298.15 K and 0.1 MPa;
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values for epicatechin; Table S2: Calculated fractions of each biomolecule stage and mean electrical
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