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Abstract: A theoretical-computational procedure based on the quasi-Gaussian entropy (QGE) theory
and molecular dynamics (MD) simulations is proposed for the calculation of thermodynamic proper-
ties for molecular and supra-molecular species in the gas phase. The peculiarity of the methodology
reported in this study is its ability to construct an analytical model of all the most relevant thermody-
namic properties, even within a wide temperature range, based on a practically automatic sampling
of the entire conformational repertoire of highly flexible systems, thereby bypassing the need for an
explicit search for all possible conformers/rotamers deemed relevant. In this respect, the reliability of
the presented method mainly depends on the quality of the force field used in the MD simulations
and on the ability to discriminate in a physically coherent way between semi-classical and quantum
degrees of freedom. The method was tested on six model systems (n-butane, n-butane, n-octanol,
octadecane, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide ionic pairs), which, being experimentally characterized and already
addressed by other theoretical-computational methods, were considered as particularly suitable to
allow us to evaluate the method’s accuracy and efficiency, bringing out advantages and possible
drawbacks. The results demonstrate that such a physically coherent yet relatively simple method can
represent a further valid computational tool that is alternative and complementary to other extremely
efficient computational methods, as it is particularly suited for addressing the thermodynamics of
gaseous systems with a high conformational complexity over a large range of temperature.

Keywords: ionic liquids; thermodynamics; molecular dynamics

1. Introduction

The accurate theoretical-computational modeling of thermodynamic properties such
as the standard Gibbs free energy, enthalpy, heat capacity, and entropy for molecular or
supramolecular species in the gas phase is a longstanding problem [1], which has received,
in the last years, a great deal of attention [2–5], not only because of great fundamental
interest, but also for its practical importance for better understanding and, sometimes,
predicting the physical and chemical stability of compounds in a wide temperature and
pressure range. The reliability of the modeling of these properties, addressed in the context
of statistical mechanics, relies on two basic ingredients: (i) a good molecular Hamilto-
nian capable of describing in great detail the molecular or supramolecular system under
investigation and, when necessary, (ii) the possibility of exhaustively sampling the asso-
ciated configurational space. The first condition is nowadays achieved by a wide variety
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of theoretical-computational strategies at affordable computational costs, which also use
quantum-chemical calculations. [6–10] The only limitation for an accurate outcome of
these approaches for rigid gaseous species, which is their systematic use of the harmonic
approximation [11], is now easily circumvented through several strategies proposed in the
last years [12–16]. On the other hand, when flexible molecules or molecular clusters are
concerned, the scenario becomes much more complicated and computationally problematic
because of the large, in some cases prohibitively large, associated configurational space,
which must be properly sampled. In this respect, different methods have been proposed
and successfully applied, ranging from those including the torsional anharmonicity by
means of the approximation of uncoupling the torsional energies, which are particularly
suitable for low-sized molecular systems [17–21], to methods inspired by the ‘minima min-
ing’ approach, which are potentially capable of dealing with large-scale systems [22–24].
In this context, the methods recently presented by Grimme and coworkers [5] or by Suarez
and coworkers [25] are particularly efficient, as they allow the calculation of absolute en-
tropies, heat capacities and reaction free energies, even in flexible molecular species. These
latter methods are based, inter alia, on semi-classical molecular dynamics (MD) simula-
tions, which, in the presence of an accurate empirical force field for the system of interest,
can provide proper configurational space sampling, relevantly reducing the difficulty of
arbitrarily searching for the different energy minima (i.e., the accessible conformations).
Inspired by these latter approaches and as a part of the continuing interest of one of us [26]
in the study of the thermodynamics of gaseous molecular species, we herein propose a
theoretical-computational strategy, which, from a technical point of view, starts from MD
semi-classical simulations and, in this perspective, can be considered as a further example
of the ensemble of methodologies just described [5,25]. However, the present approach
shows two specific peculiarities. From a practical point of view, our method allows us to
automatically treat any molecular species with a large—even very large—conformational
associated repertoire, i.e., bypassing any type of identification, extraction and ex post analy-
sis (by means of, e.g., quantum chemical calculations) of the different conformers/rotamers
sampled along a semi-classical simulation. Moreover, from a more genuine theoretical
point of view, our method is based on the quasi-gaussian entropy (QGE) theory [27–30],
in whose context the basic statistical mechanical relations are completely redefined in
terms of distributions of the fluctuations of macroscopic properties, instead of the partition
function. More specifically, in QGE and, in general, in statistical mechanics, it is possible
to define a proper reference state such that the free energy difference between the actual
condition and the reference state can be expressed in terms of the moment-generating
function of the distribution of a specific macroscopic fluctuation. The modeling of such
a moment-generating function allows one to describe the thermodynamics of the system
of interest, avoiding the explicit calculation of the partition function. Therefore, in our
theoretical-computational approach, we do not need to exhaustively search for all the local
minima, which is typically the difficulty of the methods present in the literature, often
making their application very difficult in complex molecular systems and/or in wide tem-
perature ranges. Moreover, the use of MD simulation data coupled to the QGE theoretical
approach allows us to include in our evaluation of the system thermodynamics all the
anharmonic effects due to the conformational sampling outside the quasi-harmonic basins
(especially relevant at high temperatures for complex molecular systems). The present
study is organized as follows. In the first part, we report, in some detail, the theoretical
framework underlying the proposed method; in the second part, the computational and
technical details are outlined. In order to test the quality of the presented approach, in
the final part of the study, we address six test cases that are experimentally character-
ized and already addressed by other computational methods, making them particularly
suited for comparisons capable of bringing out advantages and possible drawbacks. In
particular, we focused our attention on (i) n-butane (C4H10), which has been extensively
investigated from an experimental [31,32] and computational [33] point of view; (ii) two
supramolecular systems of great interest to one of us [34,35], namely, the ion pairs 1-butyl-
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3-methylimidazolium hexafluorophosphate (BmimPF6) and 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (BmimNTf2), as reported in the Figure 1, which are
particularly difficult to computationally address because of their relatively wide configu-
rational accessible space [18,36,37]; (iii) n-butanol (C4H10O), which has been extensively
investigated with computational tools [20,38] different from the one presented in this study
and also experimentally characterized [39]; (iv) octadecane (C18H38), a particularly chal-
lenging flexible system successfully addressed in a recent theoretical study by Grimme and
coworkers [5]; and (v) n-octane (C8H18), an experimentally [40,41] and computationally [5]
well-studied hydrocarbon with a relatively high internal flexibility.

Figure 1. Pictorial view of the structures BmimNTf2 and BmimPF6.

2. Theory
2.1. The Gamma State Model

Let us consider a homogeneous macroscopic (ideal) gas-state system, made of flexible
molecules or molecular complexes (i.e., they possess semi-classical internal degrees of
freedom) that we always consider chemically stable (in the following, we define such
molecules or molecular complexes as system molecules). The ideal gas condition (no interac-
tions among the molecules) allows us to obtain the system thermodynamics considering a
single molecule, either in the canonical ensemble within a fixed volume corresponding to
the system molecular volume or in the isobaric–isothermal ensemble with a fixed pressure
identical to the system equilibrium pressure. In the isobaric–isothermal (N,p,T) ensemble,
the Gibbs free energy of such a single molecule system (i.e., the chemical potential µ) is
given by

µ(p, T) = −kBT ln ∆(p, T) (1)

where kB is the Boltzmann constant and T is the absolute temperature. The isobaric–
isothermal partition function ∆(p, T) can be expressed as [30]

∆(p, T) = ∑
V

Q(V, T)e−βpV (2)

Q(V, T) ∼= ΘQvb(T)
∫

V
e−β[Ue(q)+K(q,π)]dΓ (3)

Qvb(T) = ∑
l

e−βEvb,l (4)

where p is the equilibrium pressure, 1/β = kBT. The summation in Equation (2) is
over all the possible volumes V of the system (the difference between two consecutive
volumes is virtually a differential). Qvb(T) is the molecular quantum vibrational partition
function defined by the vibrational energies Evb,l , and the subscript V of the integral
sign means that integration is performed within the volume V. Moreover, Ue(q) is the
electronic ground state energy (the electronic excited states are disregarded, as they are
virtually inaccessible except at extremely high temperatures), K(q, π) is the classical kinetic
energy, Θ is a constant providing the quantum correction for the permutations of identical
particles (possibly including the degeneration factor of the electronic ground state) and
dΓ = dqdπ/hn expresses the number of semi-classical quantum states within the phase
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space differential, with h being Planck’s constant, n being the number of the q-generalized
semi-classical coordinates and π the corresponding conjugated momenta. Therefore,
from Equations (1)–(3), we can write

βµ(p, T) ∼= − ln Qvb(T)− ln ∑
V

Θ
∫

V
e−β[Ue(q)+K(q,π)+pV]dΓ (5)

In order to obtain the thermodynamics as a function of the temperature (i.e., along an
isobar), we can use Equation (5) to express βµ as a function of the temperature variation
T0 → T (i.e., corresponding to ∆β = β− β0)

βµ(p, T)− β0µ(p, T0) ∼= − ln
Qvb(T)
Qvb(T0)

− ln
∑V
∫

V e−β[Ue(q)+K(q,π)+pV]dΓ

∑V
∫

V e−β0[Ue(q)+K(q,π)+pV]dΓ

= − ln
Qvb(T)
Qvb(T0)

− ln
∑V
∫

V e−β0[Ue(q)+K(q,π)+pV] e−∆β[Ue(q)+K(q,π)+pV]dΓ

∑V
∫

V e−β0[Ue(q)+K(q,π)+pV]dΓ

= − ln
Qvb(T)
Qvb(T0)

− ln〈e−∆β[Ue(q)+K(q,π)+pV]〉β0 (6)

where 〈e−∆β[Ue(q)+K(q,π)+pV]〉β0 is the moment-generating function of the single phase
space position enthalpy (i.e., Ue(q) + K(q, π) + pV) and the β0 subscript of the angle
brackets means averaging within the β0 ensemble. From Equation (6), defining the excess
Gibbs free energy as

µ′ = −kBT ln ∑
V

Θ
∫

V
e−β[Ue(q)+K(q,π)+pV]dΓ ∼= µ + kBT ln Qvb (7)

we readily obtain

βµ′(p, T)− β0µ′(p, T0) = − ln
∑V
∫

V e−β[Ue(q)+K(q,π)+pV]dΓ

∑V
∫

V e−β0[Ue(q)+K(q,π)+pV]dΓ

= − ln〈e−∆β[Ue(q)+K(q,π)+pV]〉β0 (8)

clearly showing that the excess free energy change can be expressed by the moment-
generating function (MGF) of the distribution of the single phase space position enthalpy,
necessarily diverging for β→ 0 (see Equation (8)). In fluid state systems, a typically accurate
and physically fully acceptable distribution is the Gamma distribution [27,28,42], providing
for the molecular excess free energy, entropy, enthalpy and (isobaric) heat capacity of the
diverging Gamma state expressions [29,30,43]

µ′(p, T) = h′0 − T0c′p0 + T(c′p0 − s′0) + Tc′p0 ln
T0

T

= µ′0 + (T − T0)(c′p0 − s′0) + Tc′p0 ln
T0

T
(9)

s′(p, T) = s′0 + c′p0 ln
T
T0

(10)

h′(p, T) = h′0 + c′p0(T − T0) (11)

c′p(p, T) = c′p0 (12)

with

µ′0 = µ′(p, T0) (13)

s′0 = s′(p, T0) (14)

h′0 = h′(p, T0) (15)

c′p,0 = c′p(p, T0) (16)
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Equations (9)–(12) provide the excess thermodynamics along an isobar (i.e., as a
function of the temperature at a fixed pressure), according to the diverging Gamma state
model; once at a given arbitrary reference temperature T0, the corresponding excess entropy,
enthalpy and heat capacity (i.e., s′0, h′0 and c′p0) are known. It is worth noting that the
linear temperature dependence obtained for the excess enthalpy (i.e., due to the constant
excess heat capacity along the isobar) can be used as the diagnostic criterion for validating
the diverging Gamma state as a proper model for the isobar thermodynamics. Once
an explicit expression of the molecular vibrational partition function Qvb is available
from Equations (7) and (9), we can readily obtain the complete molecular Gibbs free energy
(i.e., the chemical potential) along the isobar

µ(p, T) ∼= µ′(p, T)− kBT ln Qvb(T)

∼= µ′0 + (T − T0)(c′p0 − s′0) + Tc′p0 ln
T0

T
+ ∑

j

hνj

2

+ kBT ∑
j

ln(1− e−βhνj) (17)

and thus, via its temperature derivatives, the corresponding molecular full enthalpy, en-
tropy and (isobaric) heat capacity

h(p, T) ∼= h′0 + c′p0(T − T0) + ∑
j

hνj

2
+ ∑

j

hνj e−βhνj

1− e−βhνj
(18)

s(p, T) ∼= s′0 + c′p0 ln(T/T0) +
1
T ∑

j

hνj e−βhνj

1− e−βhνj

− kB ∑
j

ln(1− e−βhνj) (19)

cp(p, T) ∼= c′p0 +
1

kBT2 ∑
j

[ hνj

eβhνj/2 − e−βhνj/2

]2
(20)

where we used the harmonic approximation to express the vibrational partition function,

i.e., Qvb
∼= Πj

e−βhνj/2

1−e−βhνj
, with νj being the quantum mode frequencies, which we always

assume to be temperature independent. It is worth noting that the equations shown can be
valid for temperatures where the q coordinates are well described as semi-classical degrees
of freedom and, thus, Equations (18)–(20) cannot be used at low temperature conditions
where pure quantum mechanical behavior is expected. We therefore consider only the
T ≥ T0 temperature range, with T0 being the lowest temperature still reasonably allowing
us to treat the q = {qrt, qin} coordinates (the roto-translational coordinates qrt and the
conformational coordinates qin) as semi-classical degrees of freedom.

2.2. Parameterization Strategy

The Gamma state model described in the previous subsection requires knowledge of
the quantum vibrational frequencies and the reference temperature excess enthalpy, entropy
and heat capacity. While it is simple to evaluate its accuracy and obtain c′p0 by means of a
linear fitting of the excess enthalpy change as provided by experiments or MD simulations
over a large temperature range, the estimate of the quantum vibrational frequencies νj, as
well as of the reference temperature excess enthalpy and entropy (h′0, s′0), requires a more
complex procedure. In order to evaluate such parameters necessary to construct the isobaric
equation of state, we identify a proper reference conformation (i.e., a free energy basin in
conformational space) by means of an MD simulation at T0 (hereafter. MDre f ), where the
qin coordinates can be treated as harmonic degrees of freedom. From the mass-weighted
Hessian at the minimum energy structure of such a basin, we can obtain the frequencies of
the quantum vibrational modes (we always assume that the quantum vibrational partition
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function is independent of the conformational coordinates). We can use the MDre f trajectory
to obtain the excess free energy, enthalpy and entropy differences (∆µ′0, ∆h′0, ∆s′0) between
the chosen conformation (the reference conformation) and the whole conformational space
via

∆µ′0 = µ′0,re f − µ′0
∼= µre f (T0)− µ(T0) ∼= −kBT0 ln(Pre f ) (21)

∆h′0 = h′0,re f − h′0 ∼= hre f (T0)− h(T0) ∼= 〈Upot〉re f ,0 − 〈Upot〉0 (22)

∆s′0 = s′0,re f − s′0 ∼= sre f (T0)− s(T0) = (∆h′0 − ∆µ′0)/T0

∼=
〈Upot〉re f ,0 − 〈Upot〉0

T0
+ kB ln(Pre f ) (23)

where the subscript re f indicates that the property is obtained within the reference con-
formation, Pre f is the probability of the reference conformation as provided by the MDre f
trajectory, Upot is the potential energy due to the atomistic force field used in the MD
simulations and 〈Upot〉re f ,0, 〈Upot〉0 are the corresponding average potential energies at
T0 within the reference conformation and over the whole conformational space, respec-
tively. The ideal gas canonical partition function of the single molecule within the reference
conformation at T0, i.e., Qre f (T0), can be written as

Qre f (T0) ∼= Qvb(T0) Qrt,re f (T0) Qin,re f (T0) (24)

Qrt,re f (T0) ∼=
(2πMkBT0

h2

)3/2 kBT0

e−1 p
8π2

(1 + γ)

√
I1 I2 I3

(2πkBT0

h2

)3/2
(25)

Qin,re f (T0) ∼= e−β0Ue,re f Πnin
j=1

e−β0hνj,cl /2

1− e−β0hνj,cl
(26)

where Qrt,re f (T0), Qin,re f (T0) are the roto-translational and semi-classical vibrational par-
tition functions of the reference conformation, M is the molecular mass, 1 + γ provides
the quantum correction for the permutations of identical nuclei due to molecular rotations,
I1, I2, I3 are the moments of inertia as obtained at the reference conformation minimum
energy structure and Ue,re f and νj,cl are the corresponding electronic ground state energy
and semi-classical mode frequencies (i.e., they are obtained at the reference conformation
minimum energy structure). Moreover, nin is the total number of semi-classical modes
and the reference conformation corresponds to the configurational subspace defined by
considering for each semi-classical mode an interval of ±kσj,cl around the minimum energy
position, with σj,cl =

√
kBT/(2πνj,cl) and k > 0 the largest integer number still providing

the harmonic behavior within the reference conformation (i.e., a subspace allowing us to
properly use Equation (26); see the next section for the criterion employed for choosing
k in each system). Note that the factorization in Equation (24) follows from the (approxi-
mately) block diagonal molecular mass tensor uncoupling the roto-translational and internal
momenta; in Equation (25). we disregard any degeneration or quasi-degeneration of the
electronic ground state (e.g., due to nuclear spin states) and in Equation (26) we use the
more general quantum harmonic expression for the semi-classical vibrational partition
function instead of its classical limit, as T0 is the boundary of the temperature range for
treating qin as semi-classical degrees of freedom. From the last equations, we can obtain
the molecular excess chemical potential, enthalpy and entropy at T0 (µ′0, h′0, s′0) via (see
Equations (21)–(23)):
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µ′0 = µ′0,re f − ∆µ′0
∼= −kBT0 ln

[
Qrt,re f (T0) Qin,re f (T0)

]
+ kBT0 + kBT0 ln(Pre f ) (27)

h′0 = h′0,re f − ∆h′0 ∼= Ue,re f + ∑
j

hνj,cl

2
+ ∑

j

hνj,cl e−β0hνj,cl

1− e−β0hνj,cl

+ 4kBT0 −
(
〈Upot〉re f ,0 − 〈Upot〉0

)
(28)

s′0 =
h′0 − µ′0

T0
∼=
Ue,re f

T0
+

1
T0

∑
j

hνj,cl

2
+

1
T0

∑
j

hνj,cl e−β0hνj,cl

1− e−β0hνj,cl
+ 3kB

− 1
T0

(
〈Upot〉re f ,0 − 〈Upot〉0

)
+ kB ln

[Qrt,re f (T0) Qin,re f (T0)

Pre f

]
(29)

providing, via Equations (17)–(20), the complete molecular thermodynamics along the isobar.
Note that in the results section, we will express the system enthalpy, entropy and chemical
potential as the difference from the corresponding reference conformation property at
T = 0, hre f (0), sre f (0) and µre f (0) = hre f (0), given by

hre f (0) = h′re f (0) + ∑
j

hνj

2
(30)

h′re f (0) = Ue,re f + ∑
j

hνj,cl

2
(31)

sre f (0) = 0 (32)

with νj the quantum mode frequencies.
Finally, it is worth remarking that we assume that within the whole temperature range

considered, no mixing of quantum and semi-classical coordinates occurs, meaning that
within each harmonic basin, the semi-classical modes obtained by the mass-weighted Hes-
sian are always defined within the same configurational subspace, even if they can change
from one basin to another. We actually estimate the number nin of the semi-classical internal
coordinates (corresponding within the harmonic basin to the low-frequency modes), exclud-
ing from the total number of the internal coordinates all the stretching and bending degrees
of freedom that we assume to be involved in the quantum modes (the high-frequency
modes of the harmonic basin). Therefore, we identify the semi-classical vibrational modes
within the reference conformation by the nin lowest-frequency modes (neglecting the roto-
translational ones), assigning to the quantum modes all the other higher-frequency ones;
i.e., we assume the dihedral angles and, if present, the libration coordinates as the internal
semi-classical degrees of freedom.

3. Computational Details

The core of the computational part of the work is the production of reliable semi-
classical simulations of the isolated species along an isobaric path. Note that, obviously,
the isobaric condition is automatically fulfilled when a single molecular species is simulated
resembling the ideal gas state. For this purpose, we utilized Gromacs software [44,45] ver-
sion 5.1.2. The solutes, i.e., n-butane (hereafter termed as A), BmimNTf2 (hereafter termed
as B), BmimPF6 (hereafter termed as C), n-butanol (hereafter termed as D), octadecane (here-
after termed as E) and n-octane (hereafter termed as F) were put at the center of an empty
box of 125 nm3 volume. The temperature was kept constant using the Parrinello thermo-
stat [46], the bond lengths were constrained using Lincs algorithm [47] and the electrostatics
were taken into account using a cut-off of 0.8 nm and 1.1 nm for short-range and long-range
electrostatics. All the simulations, carried out with a timestep of 2.0 fs from 250 K to 600 K,
were extended up to 40 ns. The MDre f simulation carried out at T0 = 200 K was protracted,
for all the five systems, by up to 100 ns to reduce the error possibly associated with the
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evaluation of the Pre f and, hence, the excess free energy, enthalpy and entropy differences
(Equations (21)–(23)) as described below. Once extracted from the MDre f simulation (see
next section), the reference structure, typically close to an accessible energy minimum,
was further minimized , obtaining the reference conformation minimum energy structure
according to the force field utilized for the simulation. Corresponding to this structure, the
mass-weighted Hessian was then calculated, providing the associated harmonic frequencies
excluding the rototranslations. The nin eigenvectors of the Hessian matrix corresponding
to the νj,cl frequencies (i.e., the semi-classical modes determined as described in the Theory
section and in the first part of the Results section) were then utilized to calculate Pre f . This
was simply accomplished by considering the MDre f simulation frames with projections on
each of the nin semi-classical mass-weighted Hessian eigenvectors within ±kσj,cl around
the minimum energy structure, with σ2

j,cl = kBT0/(2πνj,cl)
2 being the variance of the jth

semi-classical mode coordinate. For each system studied, we determined k by comparing
〈Upot〉re f ,0 −Upot,re f with N

2 kBT0, where Upot,re f is the MD force field potential energy of the
reference minimum (typically, but not necessarily, the global potential energy minimum)
and N is the total number of internal degrees of freedom of the simulated system (typically
including the dihedral and the bending degrees of freedom). For each studied system, we
chose the largest k such that, within the noise, 〈Upot〉re f ,0 −Upot,re f

∼= N
2 kBT0, thus ensuring

the best statistical sampling and the accuracy of the harmonic approximation for the refer-
ence conformation at T0. We actually considered the largest k values providing deviations
between 〈Upot〉re f ,0 −Upot,re f and N

2 kBT0 within either two (95 percent confidence) or three
(99.9 percent confidence) standard errors of 〈Upot〉re f ,0 (note that, once fulfilled, the criterion
k ≥ 3 guarantees that Equation (26) is a proper approximation). Note that we identified the
reference conformation as the most sampled within the two-dimensional essential subspace
as provided by the essential dynamics analysis of the MDre f trajectory, as described in
detail elsewhere [48]. Such a choice should typically ensure that at low temperature (i.e.,
T0 = 200 K), the reference minimum identified corresponds to the global minimum of the
system. The interested reader can refer to Scheme 1 herein reported for the steps described
in the next section.

Scheme 1. Scheme I.

Obviously, the reliability of the present method in the form presented in this study,
i.e., making use of a purely computational approach without any support from experimen-
tal data [30], entirely relies on the possible use of well-calibrated force fields capable of
reasonably describing the system under investigation in the temperature range of interest
(see above). For this reason, for all the six investigated systems, we utilized well-assessed
force fields deposited in the Automatic Topology Builder REVISION 2021-05-20 [49,50].
Finally, on the same reference conformation minimum energy structure, we carried out
quantum chemical calculations for obtaining the associated harmonic frequencies and
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moments of inertia necessary for properly evaluating the quantum vibrational, rototransla-
tional and semi-classical vibrational canonical partition functions for the single molecule.
These calculations were performed in the framework of the density functional theory using
the wB97XD functional [51] in conjunction with the 6− 31 + G* basis set. The same level
of theory was also adopted for further testing the quality of the selected force fields on a
number of minimum energy configurations for the systems of interest. The Gaussian16-
revision C.1 [52] program was employed for all the quantum chemical calculations. All
the Cartesian coordinates of the optimized reference conformation geometries and the
associated harmonic frequencies are reported in the Supplementary Materials. A Fortran90
code to interface with the MD trajectory (xtc format), is available from the corresponding
authors upon request.

4. Results and Discussion

After producing the MD simulations (both MDre f and the simulations at the dif-
ferent temperatures (i.e., Steps 1 and 2 in the Scheme 1), we evaluated the number of
semi-classical modes corresponding to the νj,cl frequencies (the nin lowest frequency
modes excluding the rototranslational ones) and assessed the accuracy of the diverging
Gamma state. This was accomplished by a quadratic fitting of the simulation values of
〈Upot,bending〉 and a linear fitting for 〈Upot〉 − 〈Upot,bending〉, both as a function of temperature;
〈Upot,bending〉 ∼= Upot,bending(0) +

nb
2 kBT + U

′′
pot,bending(0)T

2/2 is the MD average potential
energy associated to the nb bending degrees of freedom (involved in the quantum modes)
that we assume provide a quasi-harmonic contribution to the MD average potential energy
with Upot,bending(0) and U

′′
pot,bending(0) the values of 〈Upot,bending〉 and ∂2Upot,bending/∂T2 at

T = 0. 〈Upot〉 is the MD average total potential energy and, thus, 〈Upot〉 − 〈Upot,bending〉 is
the MD average potential energy due only to the semi-classical degrees of freedom (in our
simulations, all the stretching degrees of freedom were constrained). Note that, due to the
high force constants, used to model the bending potential within the MD simulations, we
can consider the simulated (classical) bending degrees of freedom as essentially uncoupled
from the other degrees of freedom; thus, these latter coordinates are characterized by
statistics that are virtually independent of the bending coordinates (i.e., identical to the
statistics obtained constraining all the bending degrees of freedom).

The results shown in Figures 2 and 3 clearly indicate that both 〈Upot,bending〉 and
〈Upot〉 − 〈Upot,bending〉 are remarkably linear in temperature, thus demonstrating the ex-
pected quasi-harmonic behavior of the bending coordinates and the accuracy of the diverg-
ing Gamma model for the semi-classical degrees of freedom. From the obtained nb and the
slope of the linear fitting we then evaluated the number nin of the semi-classical modes,
as well as the excess heat capacity c′p0. Note that the fitting parameter U

′′
pot,bending(0), in all

cases almost negligible, is due to the slight anharmonicity of the (classical) bending degrees
of freedom employed in the MD simulations, according to the MD force field used (in our
statistical mechanical model, the bending and stretching contributions are always included
via the harmonic quantum mode partition function Qvb). It is also worth remarking that
due to the data noise, the value of nb as obtained by the fitting of 〈Upot,bending〉may be not
fully accurate, especially when dealing with systems involving a large number of bending
degrees of freedom. Therefore, it is important when possible to check and correct the
estimated number of semi-classical internal coordinates by comparing it with its direct eval-
uation, provided by summing the dihedral angles with, if present, the internal librational
degrees of freedom.
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Figure 2. Plot of 〈Upot,bending〉 (squares) and 〈Upot〉 − 〈Upot,bending〉 (circles) as a function of the
temperature, provided by the MD simulations of n-butane (A), BmimNTf2 (B) and BmimPF6 (C),
as well as their quadratic and linear fittings (dashed and solid lines, respectively).
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Figure 3. Plot of 〈Upot,bending〉 (squares) and 〈Upot〉 − 〈Upot,bending〉 (circles) as a function of the
temperature, provided by the MD simulations of n-butanol (D), octadecane (E) and n-octane (F), as
well as their quadratic and linear fittings (dashed and solid lines, respectively).

Subsequently, as described in Methodology section and also in Scheme 1, we evaluated
the reference conformation probability at T0 Pre f and, hence, the excess free energy, enthalpy
and entropy differences (∆µ′0, ∆h′0, ∆s′0) between the chosen conformation (the reference
conformation) and the whole conformational space. Finally, with the use of the reference
minimum energy structure re-optimized at the DFT level (the corresponding coordinates
are reported in the SI), we obtained the ideal gas canonical partition function of the reference
conformation at T0 and, thus, the required excess enthalpy and entropy at T0 (h′0, s′0) by
means of Equations (27)–(29).

The obtained excess properties (h′0, s′0, c′p0), collected in Table 1, were finally utilized
to obtain the complete thermodynamics (i.e., the isobaric equation of state) by means of
Equations (17)–(20), the results of which are reported in Figures 4–6.
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Table 1. Excess molecular free energy, enthalpy and entropy differences as obtained from MDre f
at T0 = 200 K using the largest k value compatible, within either 95 percent (left numbers) or the
99.9 percent (right numbers) confidence, with the harmonic assumption for the reference conforma-
tion (see Computational Details section), with the corresponding standard-state molecular excess
enthalpy (with respect to h′re f (0)) and entropy at T0, as obtained from Equations (27)–(29), and the
molecular excess heat capacity, as provided by the MD simulations at the different temperatures (nin

indicates the number of semi-classical internal degrees of freedom). A = n-butane, B = BmimNTf2,
C = BmimPF6, D = n-butanol, E = octadecane and F = n-octane. Note that for E and F, a single
value of k is reported, corresponding to 95 percent confidence; for any larger k, we could not find
conditions within 99.9 percent confidence (i.e., deviations between the MD mean potential energy
and the expected harmonic value are too large).

nin k ∆µ′0 ∆h′0 ∆s′0 h′0− h′re f (0) s′0 c′p0
kJ/mol kJ/mol J/(mol K) kJ/mol J/(mol K) J/(mol K)

A 3 7 5.4 −0.65 −30.3 9.9 302.1 64.5
20 4.1 −0.51 −23.1 9.7 295.4 64.5

B 23 7 10.1 −0.9 −55.1 33.4 669.7 257.8
8 9.1 −0.53 −48.0 33.0 662.7 257.8

C 18 6 13.4 −1.2 −73.1 26.2 591.1 200.2
8 10.9 −2.3 −66.1 27.3 584.1 200.2

D 4 4 8.2 −1.0 −46.5 11.0 334.3 70.7
8 6.0 −1.1 −35.0 11.1 322.8 70.7

E 17 4 12.6 −6.2 −93.7 33.8 654.7 233.1
F 7 7 7.1 −0.4 −37.4 14.7 393.7 104.8

0

30

60

90

h
 (

k
J 

m
o
l-1

)

280

350

420

490

s 
(J

 m
o
l-1

 K
-1

)

0

90

180

270

360

h
 (

k
J 

m
o
l-1

)

750

1000

1250

1500

s 
(J

 m
o
l-1

 K
-1

)

200 300 400 500 600 700 800
T (K)

0

80

160

240

h
 (

k
J 

m
o
l-1

)

200 300 400 500 600 700 800

600

800

1000

1200

s 
(J

 m
o
l-1

 K
-1

)

A

B

C

Figure 4. Standard-state molecular full enthalpy (with respect to hre f (0)) and entropy as a function of
the temperature for n-butane (A), BmimNTf2 (B) and BmimPF6 (C), as provided by our equation of
state (solid line). The available experimental data found in the literature are reported with filled red
circles: for (A) from references [31,32]; for (B) from references [34,36,53]; for (C) from references [35,54].
Values calculated with different theoretical-computational procedures are reported with squares: for
(A) from reference [17]; for (B) from reference [36]; for (C) from reference [37].
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Figure 5. Standard-state molecular full enthalpy (with respect to hre f (0)) and entropy as a function
of the temperature for n-butanol (D), octadecane (E) and n-octane (F), as provided by our equation
of state (solid line). The available experimental data found in the literature are reported with filled
red circles: for (D) from reference [39]; for (E) from reference [5]; for (F) from references [40,41].
Values calculated with different theoretical-computational procedures are reported with squares and
blue circles: for (D) from reference [38] (squares) and from reference [20] (blue circle); for (F) from
reference [55] (squares) and from reference [5] (blue circle).
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Figure 6. Comparison of the molecular isobaric heat capacity for n-butane (A), BmimNTf2 (B),
BmimPF6 (C), n-butanol (D), octadecane (E) and n-octane (F), as provided by our equation of
state (solid line). Experimental values are reported with filled red or black circles: for (A) from
reference [31,32]; for (D) from reference [39]; for (F) from reference [40,41]. Values calculated with
different theoretical-computational procedures are reported with squares: for (B) from reference [36];
for (C) from reference [37]; for (D) from reference [38].

In the case of n-butane (Figure 4A), our equation of state accurately reproduces the
experimental enthalpy (with respect to hre f (0)) at 300 K (18.3 kJ/mol experimental versus
17.9 kJ/mol calculated). The (standard-state) absolute entropy (302 mol−1 K−1 experimen-
tal [31] versus 326 J mol−1 K−1 calculated) at 272.7 K appears to be slightly overestimated,
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whereas the experimental isobaric heat capacity is accurately reproduced by our model in a
wide temperature range (see Figure 6). Such results indicate that the n-butane MD force-
field utilized (i.e., the dihedral potential) could provide an incorrect sampling at T0 of the
conformational space, overestimating the probability outside the reference conformation
and resulting in a fixed and systematic entropy shift of about 24 J mol−1 K−1. Our results
concerning the ion-pairs (Systems B and C) are in very good agreement with those provided
by other computational methods reported in the literature [36,37]. In fact, we basically
observed (see Figure 4) a superposition of our equation of state with the others, except for
the entropy of BmimPF6, which is slightly larger in our equation of state (about 5 percent
larger), possibly due to the anharmonic effects of the conformational space sampling that
we explicitly include by means of the MD simulation data. The calculations reported
by Kabo and coworkers [37], which are based on a mechanical sampling of each local
minima described within the quasi-harmonic approximation, are likely to underestimate
the configurational entropy due to the relative motions of the two partners of the ion-pair.
For BmimNTf2 (Figure 4B), our calculations reproduce the experimental absolute entropy
at 470 K almost exactly [34,36,53]. In the case of BmimPF6 (Figure 4C), the available experi-
mental values for the entropy (reported in Figure 4 as filled circles [35,54]) appear to be less
accurately reproduced by our calculations (relative deviations of ≈5–6 percent), similar
to the results reported by Kabo and coworkers (see Figure 4). Interestingly the evaluated
isobaric heat capacity is in good agreement with that calculated with different methods (see
Figure 6B,C). It is important to note that the experimental values were derived by adding
the measured standard evaporation entropy to the absolute entropy of the corresponding
liquid phase, which was itself evaluated by integrating the experimental cp/T from 0 K
(the so-called Third Law method). The evaporation entropy is typically obtained from
the y-axis intercept of the extrapolated Clausius–Clapeyron fitting line in a ln p vs 1/T
graph. The thus-obtained value is assigned to the mean temperature of the experiments.
Note that, besides the uncertainty in the evaporation entropy, the determined gas entropy
values suffer from possible inaccuracies in the entropy of the liquid phase. For example,
discrepancies exceeding 10 percent were reported in the literature for the experimental heat
capacities of liquid BMImPF6 [56]. Moreover, if the experimental entropy of the liquid is
available at temperatures lower than those explored in evaporation experiments, as can
be the case, an extrapolation to the mean temperature of the evaporation measurements
must be performed. It should also be noted that the co-occurrence of thermal decomposi-
tion processes during evaporation was reported for a number of ionic liquids, including
BmimPF6 [35], which can seriously affect the measured mass loss and vapor pressures.
From Figures 5 and 6D–F, it is evident that our results for n-butanol (D), octadecane (E)
and n-octane (F) are accurate in reproducing the available experimental data (an are also
in agreement with the results from other theoretical-computational methods), confirming
the reliability of the proposed theoretical-computational approach and suggesting a higher
accuracy for the typical MD force field, even at low temperatures, as the system complexity
increases (i.e., a larger number of internal semi-classical degrees of freedom).

5. Concluding Remarks

In this study, we have presented a theoretical-computational procedure for calculat-
ing the thermodynamic properties of flexible gaseous molecular systems as a function of
temperature. The obtained analytical (isobaric) equation of state, providing the explicit
temperature dependence of all the relevant thermodynamic properties, proved to rather
accurately reproduce the experimental thermodynamics of six molecular and supramolecu-
lar systems of different complexity. In particular, we tested the method on the following
systems: (i) n-butane, an extensively investigated system both experimentally and com-
putationally; (ii) the ion pairs known to mainly represent the vapor-phase in equilibrium
over the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) and 1-
butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2); (iii) n-butanol;
(iv) octadecane; and (v) n-octane. The proposed method is entirely based on the application
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on the QGE theory using, as input data, the results of MD simulations. For this reason,
its reliability strongly depends on the physical consistency of the semi-classical atomistic
simulations, in particular, the quality of the adopted force field and the lack of relevant
electronic transitions (e.g., intramolecular or intra-complex charge transfer or chemical reac-
tions) accompanying the molecular conformational changes. Moreover, the application of
the method is subject to the possibility of separating, in a non-arbitrary way, semi-classical
and quantum internal modes. The proposed method allows us to obtain the complete
thermodynamics of the molecular system of interest over a temperature range whose extent
must ensure the consistency of the force field and the MD simulations. If compared to other
methods proposed in the past for the same purpose, our approach has the advantage of
being specifically suited for complex molecular–supramolecular systems (i.e., involving
several internal semi-classical degrees of freedom), for which conformational sampling
may represent a serious computational bottleneck, not only in terms of computational cost
but also in terms of the definition of the actual conformationally relevant coordinates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227863/s1: cartesian coordinates and corresponding
harmonic frequencies for the reference geometries.

Author Contributions: A.A.—conceived the theoretical part of the work and wrote the manuscript;
A.C.—conceived the initial idea of the work and reviewed the manuscript; A.F.—conceived the
initial idea of the work and reviewed the manuscript; C.F.—conceived the initial idea of the work
and reviewed the manuscript; M.A.—wrote all the code, performed all the calculations and wrote
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: M.A. would like to acknowledge CINECA (Italy) for an ISCRA-C project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. East, A.L.L.; Radom, L. Ab initio statistical thermodynamical models for the computation of third-law entropies. J. Chem. Phys.

1997, 106, 6655. [CrossRef]
2. DeLos, F. De Tar Calculation of Entropy and Heat Capacity of Organic Compounds in the Gas Phase. Evaluation of a Consistent

Method without Adjustable Parameters. Applications to Hydrocarbons. J. Phys. Chem. A 2007, 111, 4464–4477.
3. Fabian, W.M.F. Accurate thermochemistry from quantum chemical calculations? Monatsh Chem. 2008, 139, 309–318. [CrossRef]
4. Ghahremanpour, M.M.; van Maaren, P.J.; Ditz, J.D.; Lindh, R.; van der Spoel, D. Large-scale calculations of gas phase thermo-

chemistry: Enthalpy of formation, standard entropy, and heat capacity. J. Chem. Phys. 2016, 145, 114305. [CrossRef]
5. Pracht, P.; Grimme, S. Calculation of absolute molecular entropies and heat capacities made simple. Chem. Sci. 2021, 12, 6551.

[CrossRef]
6. Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 84108. [CrossRef]
7. Martin, J.M.L.; de Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory.

J. Chem. Phys. 1999, 111, 1843–1856. [CrossRef]
8. Karton, A.; Daon, S.; Martin, J.M. W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from

first-principles W4 data. Chem. Phys. Lett. 2011, 510, 165–178. [CrossRef]
9. Montgomery, J.A., Jr.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VII. Use of the minimum

population localization method. J. Chem. Phys. 2000, 112, 6532–6542. [CrossRef]
10. Simmie, J.M. and Somers, K.P. Benchmarking compound methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the active

thermochemical tables: A litmus test for cost-effective molecular formation enthalpies. J. Phys. Chem. A 2015, 119, 7235–7246.
[CrossRef]

11. Katzer, G.; Sax, A.F. Identification and thermodynamic treatment of several types of large-amplitude motions. J. Comput. Chem.
2005, 26, 1438–1451. [CrossRef] [PubMed]

12. Kuhler, K.M.; Truhlar, D.G.; Isaacson, A.D. General method for removing resonance singularities in quantum mechanical
perturbation theory. J. Chem. Phys. 1995, 104, 4664–4671. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27227863/s1
https://www.mdpi.com/article/10.3390/molecules27227863/s1
http://doi.org/10.1063/1.473958
http://dx.doi.org/10.1007/s00706-007-0798-8
http://dx.doi.org/10.1063/1.4962627
http://dx.doi.org/10.1039/D1SC00621E
http://dx.doi.org/10.1063/1.2436888
http://dx.doi.org/10.1063/1.479454
http://dx.doi.org/10.1016/j.cplett.2011.05.007
http://dx.doi.org/10.1063/1.481224
http://dx.doi.org/10.1021/jp511403a
http://dx.doi.org/10.1002/jcc.20280
http://www.ncbi.nlm.nih.gov/pubmed/16082661
http://dx.doi.org/10.1063/1.471161


Molecules 2022, 27, 7863 15 of 16

13. Martin, J.M.L. and Taylor, P.R. Benchmark ab initio thermochemistry of the isomers of diimide, N2H2 , using accurate computed
structures and anharmonic force fields. Mol. Phys. 1999, 96, 681–692. [CrossRef]

14. Barone, V. Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 2005,
122, 014108. [CrossRef] [PubMed]

15. Barone, V.; Biczysko, M.; Bloino, J.; Borkowska-Panek, M.; Carnimeo, I.; Panek, P. Toward anharmonic computations of vibrational
spectra for large molecular systems. Int. J. Quantum Chem. 2012, 112, 2185–2200. [CrossRef]

16. Njegic, B.; Gordon, M.S. Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties. J. Chem.
Phys. 2006, 125, 224102. [CrossRef]

17. Li, Y.-P.; Bell, A.T.; Head-Gordon, M. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules.
J. Chem. Theory Comput. 2016, 12, 2861–2870. [CrossRef]

18. Paulechka, Y.U.; Kabo, G.J.; Emel’yanenko, V.N. Structure, Conformations, Vibrations, and Ideal-Gas Properties of 1-Alkyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide Ionic Pairs and Constituent Ions. J. Phys. Chem. B 2008, 112, 15708–15717.
[CrossRef]

19. Piccini, G.; Sauer, J. Quantum Chemical Free Energies: Structure Optimization and Vibrational Frequencies in Normal Modes.
J. Chem. Theory Comput. 2013, 9, 5038–5045. [CrossRef]

20. Zheng, J.; Yu, T.; Papajak, E.; Alecu, I.M.; Mielke, S.L.; Truhlar, D.G. Practical methods for including torsional anharmonicity in
thermochemical calculations on complex molecules: The internal-coordinate multistructural approximation. Phys. Chem. Chem.
Phys. 2011, 13, 10885–10907. [CrossRef]

21. Zheng, J.; Truhlar, D.G. Quantum Thermochemistry: Multistructural Method with Torsional Anharmonicity Based on a Coupled
Torsional Potential. J. Chem. Theory Comput. 2013, 9, 1356–1367. [CrossRef] [PubMed]

22. Chen, W.; Chang, C.-E.; Gilson, M.K. Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug
Design. Biophys. J. 2004, 87, 3035–3049. [CrossRef] [PubMed]

23. Hnizdo, V.; Tan, J.; Killian, B.J.; Gilson, M.K. Efficient Calculation of Configurational Entropy from Molecular Simulations by
Combining the Mutual-Information Expansion and Nearest-Neighbor Methods. J. Comput. Chem. 2008, 29, 1605–1614. [CrossRef]

24. King, B.M.; Silver, N.W.; Tidor, B. Efficient Calculation of Molecular Configurational Entropies Using an Information Theoretic
Approximation. J. Phys. Chem. B 2012, 116, 2891–2904. [CrossRef] [PubMed]

25. Suarez, E.; Díaz, N.; Suarez, D. Entropy Calculations of Single Molecules by Combining the Rigid-Rotor and Harmonic-Oscillator
Approximations with Conformational Entropy Estimations from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2011,
7, 2638–2653. [CrossRef]

26. Carta, V.; Ciccioli, A.; Gigli, G. The antimony-group 11 chemical bond: Dissociation energies of the diatomic molecules CuSb,
AgSb, and AuSb. J. Chem. Phys. 2014, 140, 064305. [CrossRef]

27. Amadei, A.; Apol, M.E.F.; Di Nola, A.; Berendsen, H.J.C. The quasi-Gaussian entropy theory: Free energy calculations based on
the potential energy distribution. J. Chem. Phys. 1996, 104, 1560–1574. [CrossRef]

28. Amadei, A.; Apol, M.-E.-F.; Di Nola, A.; Berendsen, H.J.C. Extensions of the quasi-Gaussian entropy theory. J. Chem. Phys. 1997,
106, 1893–1912. [CrossRef]

29. D’Abramo, M.; Del Galdo, S.; Amadei, A. Theoretical-computational modelling of the temperature dependence of the folding-
unfolding thermodynamics and kinetics: The case of a Trp-cage. Phys. Chem. Chem. Phys. 2019, 21, 23162–23168. [CrossRef]

30. Zanetti Polzi, L.; Daidone, I.; Amadei, A. A general statistical mechanical model for fluid system thermodynamics: Application to
sub- and super-critical water. J. Chem. Phys. 2022, 156, 044506. [CrossRef]

31. Aston, J.G.; Messerl, G.H. The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of n-Butane.
J. Am. Chem. Soc. 1940, 62, 1917–1923. [CrossRef]

32. Dailey, B.P.; Felsing, W.A. Heat capacities and hindered rotation in n-butane and Isobutane1. J. Am. Chem. Soc. 1943, 65, 44–46.
[CrossRef]

33. Chen, S.S.; Wilhoit, R.C.; Zwolinski, B.J. Ideal Gas Thermodynamic Properties and Isomerization of n-Butane and Isobutane.
J. Phys. Chem. Ref. Data 1975, 4, 859–869. [CrossRef]

34. Brunetti, B.; Ciccioli, A.; Gigli, G.; Lapi, A.; Misceo, N.; Tanzi, L.; Vecchio Ciprioti, S. Vaporization of the prototypical ionic liquid
BMImNTf2 under equilibrium conditions: A multitechnique study. Phys. Chem. Chem. Phys. 2014, 16, 15653–15661 [CrossRef]

35. Volpe, V.; Brunetti, B.; Gigli, G.; Lapi, A.; Vecchio Ciprioti, S.; Ciccioli, A. Toward the Elucidation of the Competing Role of
Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-
methylimidazolium Hexafluorophosphate under Effusion Conditions. J. Phys. Chem. B 2017, 121, 10382–10393. [CrossRef]

36. Blokhin, A.V.; Paulechka, Y.U.; Strechan, A.A.; Kabo, G.J. Physicochemical Properties, Structure, and Conformations of 1-Butyl-
3-methylimidazolium Bis(trifluoromethanesulfonyl)imide [C4mim]NTf2 Ionic Liquid. J. Phys. Chem. B 2008, 112, 4357–4364.
[CrossRef]

37. Paulechka, Y.U.; Kabo, G.J.; Blokhin, A.V.; Vydrov, O.A. Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluo-
rophosphate in the Ideal Gas State. J. Chem. Eng. Data 2003, 48, 457–462. [CrossRef]

38. Chao, J.; Hall, K.R.; Marsh, K.N.; Wilhoit, R.C. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon
Range C1 to C4. Part 2. Ideal Gas Properties. J. Phys. Chem. Ref. Data 1986, 15, 1386–1946. [CrossRef]

39. Counsell, J.F.; Hales, J.L.; Martin, J.F. Thermodynamic properties of organic oxygen compounds. Part 16.—Butyl alcohol. Trans.
Faraday Soc. 1965, 61, 1869. [CrossRef]

http://dx.doi.org/10.1080/00268979909483004
http://dx.doi.org/10.1063/1.1824881
http://www.ncbi.nlm.nih.gov/pubmed/15638643
http://dx.doi.org/10.1002/qua.23224
http://dx.doi.org/10.1063/1.2395940
http://dx.doi.org/10.1021/acs.jctc.5b01177
http://dx.doi.org/10.1021/jp804607n
http://dx.doi.org/10.1021/ct4005504
http://dx.doi.org/10.1039/c0cp02644a
http://dx.doi.org/10.1021/ct3010722
http://www.ncbi.nlm.nih.gov/pubmed/26587598
http://dx.doi.org/10.1529/biophysj.104.049494
http://www.ncbi.nlm.nih.gov/pubmed/15339804
http://dx.doi.org/10.1002/jcc.20919
http://dx.doi.org/10.1021/jp2068123
http://www.ncbi.nlm.nih.gov/pubmed/22229789
http://dx.doi.org/10.1021/ct200216n
http://dx.doi.org/10.1063/1.4864116
http://dx.doi.org/10.1063/1.470744
http://dx.doi.org/10.1063/1.473328
http://dx.doi.org/10.1039/C9CP03303C
http://dx.doi.org/10.1063/5.0079206
http://dx.doi.org/10.1021/ja01865a005
http://dx.doi.org/10.1021/ja01241a014
http://dx.doi.org/10.1063/1.555526
http://dx.doi.org/10.1039/c4cp01673d
http://dx.doi.org/10.1021/acs.jpcb.7b08523
http://dx.doi.org/10.1021/jp710872s
http://dx.doi.org/10.1021/je025591i
http://dx.doi.org/10.1063/1.555769
http://dx.doi.org/10.1039/TF9656101869


Molecules 2022, 27, 7863 16 of 16

40. Scott, D.W. Correlation of the chemical thermodynamic properties of alkane hydrocarbons. J. Chem. Phys. 1974, 60, 3144–3165.
[CrossRef]

41. Hossenlopp, I.A. Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons. J. Chem. Thermodyn. 1981,
13, 415–421. [CrossRef]

42. Handbook of Statistical Distributions; Marcel Dekker: New York, NY, USA, 1976.
43. Amadei, A.; Apol, M.E.F.; Di Nola, A.; Berendsen, H.J.C. On the use of the quasi-Gaussian entropy theory in non-canonical

ensembles I Prediction of temperature dependence of thermodynamic properties. J. Chem. Phys. 1998, 109, 3004–3016. [CrossRef]
44. Berendsen, H.J.C.; van der Spoel, D.; van Druned, R. GROMACS: A message-passing parallel molecular dynamics implementation.

Comp. Phys. Commun. 1995, 91, 43–56. [CrossRef]
45. van der Spoel, D.; Lindahl, A.; Hess, B.; van Buuren, A.R.; Apol, E.; Meulenhoff, P.J.; Tieleman, D.P.; Sijbers, A.L.T.M.; Feenstra,

K.A.; van Drunen, R.; et al. Gromacs User Manual Version 4.5.6. 2010. Available online: https//ftp.gromacs.org (accessed on 1
October 2022).

46. Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2017, 126, 014101–014109.
[CrossRef]

47. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Frajie, J.C.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput.
Chem. 1997, 81, 1463–1472. [CrossRef]

48. Daidone, I.; Amadei, A. Essential dynamics: Foundation and applications. WIREs Comput. Mol. Sci. 2012, 2, 762–770. [CrossRef]
49. Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated force field Topology

Builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [CrossRef]
50. Stroet, M.; Caron, B.; Visscher, K.; Geerke, D.; Malde, A.K.; Mark, A.E. Automated Topology Builder version 3.0: Prediction of

solvation free enthalpies in water and hexane. J. Chem. Theory Comput. 2018, 14, 5834–5845. [CrossRef]
51. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections.

Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [CrossRef]
52. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.;

Nakatsuji, H.; et al. Gaussian 16, Revision C.01.2016; Gaussian, Inc.: Wallingford, CT, USA, 2019.
53. Rocha, M.A.A.; Lima, C.F.R.A.C.; Gomes, L.R.; Schroder, B.; Coutinho, J.A.P.; Marrucho, I.M.; J. Esperanca, J.M.S.S.; Rebelo, L.P.N.;

Shimizu, K.; Canongia Lopes, J.N.; et al. High-Accuracy Vapor Pressure Data of the Extended [CnC1im][Ntf2] Ionic Liquid Series:
Trend Changes and Structural Shifts. J. Phys. Chem. B 2011, 115, 10919–10926. [CrossRef] [PubMed]

54. Zaitsau, D.H.; Yermalayeu, A.V.; Emel’yanenko, V.N.; Butler, S.; Schubert, T.; Verevkin, S.P. Thermodynamics of Imidazolium-
Based Ionic Liquids Containing PF6 Anions. J. Phys. Chem. B 2016, 120, 7949–7957. [CrossRef] [PubMed]

55. Frenkel, M. Thermodynamics of Organic Compounds in the Gas State; TRC Data Series; Thermodynamics Research Center: College
Station, TX, USA, 1994; Volume 395.
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