
Citation: Medeiros, J.; Xu, S.;

Pickering, G.J.; Kemp, B.S. Influence

of Caffeic and Caftaric Acid, Fructose,

and Storage Temperature on Furan

Derivatives in Base Wine. Molecules

2022, 27, 7891. https://doi.org/

10.3390/molecules27227891

Academic Editor: Encarna

Gómez-Plaza

Received: 25 October 2022

Accepted: 12 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Influence of Caffeic and Caftaric Acid, Fructose, and Storage
Temperature on Furan Derivatives in Base Wine
Jacob Medeiros 1, Shufen Xu 2, Gary J. Pickering 1,2,3,4 and Belinda S. Kemp 1,2,*

1 Department of Biological Sciences, Faculty of Mathematics and Science, Brock University,
St. Catharines, ON L2S 3A1, Canada

2 Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University,
St. Catharines, ON L2S 3A1, Canada

3 National Wine and Grape Industry Center, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
4 Sustainability Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
* Correspondence: Belinda Kemp bkemp@brocku.ca

Abstract: The aim of this study was to determine the influence of caffeic and caftaric acid, fructose,
and storage temperature on the formation of furan-derived compounds during storage of base wines.
Base wines produced from Chardonnay grapes were stored at 15 and 30 ◦C for 90 days with additions
of fructose, caffeic acid, and caftaric acid independently or in combinations. Wines were analyzed
following 90 days of storage for: total hydroxycinnamic acids, degree of browning, caffeic acid and
caftaric acid concentrations, and nine furan-derived compounds. Caffeic and caftaric acid additions
increased homofuraneol concentration by 31% and 39%, respectively, at 15 ◦C (p < 0.05). Only the
addition of caffeic acid increased furfural by 15% at 15 ◦C (p < 0.05). Results demonstrate that some
furan derivatives over 90 days at 15 ◦C increased slightly with 5 mg/L additions of caffeic and caftaric
acid. This is the first time the influence of hydroxycinnamic acids on furan-derived compounds has
been reported during short-term aging of base wine at cellar temperature.
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1. Introduction

The first stage of sparkling wine production is the primary alcoholic fermentation
to produce a base wine from whole bunch pressed, fractionated grape juice [1]. It is in
the second stage of the traditional method of winemaking that the base wine gives rise to
sparkling wine [2]. Reserve wines (base wines aged after primary fermentation) are stored
under specific conditions and used by Champagne producers to produce non-vintage or
multi-vintage sparkling wines [3]. This typically involves blending several base wines
from different vintages, varieties, and/or regions to produce the final wine. These reserve
wines can be stored for extended periods—one to thirty-five years, and in some cases even
longer [3].

During the ageing and storage of “reserve wines”, with or without contact with
yeast lees (contact time can differ by winery), in a temperature-controlled environment
(12–15 ◦C), changes in aroma and flavour that distinguish the mature base wine from
a more youthful wine occurs [2,3]. Amongst these changes, are a change of flavour to
a distinctive empyreumatic character, reminiscent of toasted bread, roasted nuts, and
caramel-like aromas [4–6]. Le Menn et al. [6] reported compounds responsible for these
distinctive characters in reserve base wines. For instance, 5-methylfurfural, responsible for
caramel and nutty characteristics in wine, is a well-known product of the Maillard reaction
(MR) [5,6].

MR is a non-enzymatic set of chemical reactions categorized by the initial reaction
of a reducing sugar with an amino acid, protein and/or peptide, generating a cascade
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of thousands of compounds [6–8]. Research has shown that despite the limiting condi-
tions for the MR to occur in wine [9], products of MR have been found in aged sparkling
wines [6,10–13]. Specifically, a group of compounds known as furans (O-heterocyclic
5-membered aromatic ringed compounds) have been highlighted in sparkling wine age-
ing [6]. Torrens et al. [14] analyzed Cava wines that had aged for 24 months, using Gas
Chromatographic-Olfactometry (GC-O) and reported that furans including furfural, 2-
methyl-3-furanthiol, 5-methylfurfural, 2-furanmethanethiol, and 2-acetylfuran contribute
“fruity/caramel”, “toasty”, “fruity/caramel”, “dried fruit”, and “balsamic” aromas respec-
tively. All furan-derived compounds identified by Torrens et al. [14] were detected more
frequently and with greater intensity in an aged Cava wine compared to a younger base
wine. This indicates that their presence is associated with the wine maturation process.

In wine, factors that affect the formation of MR products include temperature, time,
pH, wine chemical composition, and sulfur dioxide (SO2) levels, but little is known about
the role of specific amino acids, metal ions, sugars, and phenolic compounds such as
hydroxycinnamic acids (HCAs), especially in base wines [9]. HCAs are characterized
by an aromatic ring with a three-carbon side chain (C6–C3) and are the most abundant
phenolic compounds in still white wines, specifically caffeic acid and its tartaric acid
ester, caftaric acid [15,16]. In sparkling wines, caffeic acid concentrations were found to
range between 0.2–2.0 mg/L, while caftaric acid was found within a greater range of
2.2–31 mg/L [17–20]. Concerning their relationship to the Maillard reaction associated
compounds; Zhang et al. [21] studied caffeic acid and fructose in a phosphate-buffer model
solution at pH 5.5 that was heated to 90 ◦C. The authors reported that the presence of
5 µ mol/mL of caffeic acid increased the generation of the MR-associated compounds,
specifically 5-hydroxymethylfurfural (HMF) and furfural, compared to heating the fructose
solution alone. However, the study used model wines at a higher pH level than in wine
and at a higher temperature than that used in winemaking.

Artificially accelerating the ageing of wines, such as in the aforementioned study by
Zhang et al. [21], is mainly conducted by heating the wines to hasten the rate of chemical
reactions [22,23]. This allows for determination of changes in age-related aroma compounds
in a more timely fashion [19,23,24]. However, this approach has its limitations, as some
compounds associated with MR, such as 5-hydroxymethylfurfural (HMF), are formed
more rapidly at higher temperatures compared to typical cellar temperature (12–16 ◦C) [25].
Reineccius [26] identified that the formation of MR associated products (and their respective
aromas) would not be identical for different storage times and temperature settings [9].
This highlights the need for research on the formation of MR-associated products (e.g.,
furan-derived compounds) in wine in representative wine-like temperature conditions.
Additionally, the degree to which HCAs, fructose, and storage temperature contribute to
the formation of MR-associated products in base wines requires investigation due to the
lack of knowledge concerning this part of wine ageing.

The aim of this study was to determine the effect caffeic and caftaric acid, fructose,
and temperature have in base wine on the synthesis of nine furan-derived compounds
previously identified in sparkling wines.

2. Results
2.1. Caffeic and Caftaric Acids

An interaction between treatment and temperature on caffeic acid concentration was
revealed (F (DF 15) = 4351, p < 0.0001). Between temperature conditions, samples that did
not have caffeic acid added, and were kept at 15 ◦C had lower concentrations of caffeic acid
after 90-days compared to the 30 ◦C samples, although their initial concentrations were
the same (0.23 mg/L, p < 0.05). The caffeic acid addition treatments (CAFE and F + CAFE)
stored at 15 ◦C retained a higher concentration of the acid compared to those kept at 30 ◦C
(0.6 mg/L, p < 0.05). This relative decrease in caffeic acid concentration in the 30 ◦C samples
(10–15%) was only observed in treatments where caffeic acid was added independent of
caftaric acid (Figure 1).
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Figure 1. Percent difference in caffeic and caftaric acid concentrations between 30 ◦C and 15 ◦C
temperature conditions after 90-days of storage. Percentage difference calculated as follows:
|A − B|/[(A + B)/2] × 100%, where A is the compound concentration determined for the 30 ◦C
sample, and B is the concentration determined for the 15 ◦C sample. +X% is interpreted as a relatively
greater concentration determined at 30 ◦C compared to 15 ◦C, while −X% is interpreted as a relatively
lower concentration. Treatment codes: CNTL (no addition), FRU (6 g/L fructose), CAFE (5 mg/L
caffeic acid), CAFT (5 mg/L caftaric acid), FRU + CAFE (6 g/L fructose + 5 mg/L caffeic acid),
FRU + CAFT (6 g/L fructose + 5 mg/L caftaric acid), CAFE + CAFT (5 mg/L caffeic acid + 5 mg/L
caftaric acid), and FRU + CAFE + CAFT (6 g/L fructose + 5 mg/L caffeic acid + 5 mg/L caftaric acid).

Caftaric acid concentrations were impacted by treatment and storage temperature
(K (DF 15) = 56.5, p < 0.001). Concentrations of caftaric acid in those treatments without
5 mg/L caftaric acid addition (CNTL, FRU, CAFE, and F + CAFE) were found to be at 20.8,
21.3, 20.7, and 20.3 mg/L respectively. Those treated with caftaric acid (CAFT, F + CAFT,
CAFE + CAFT, and F + CAFE + CAFT) are reported at 25.9, 26.1, 27.5, and 27.8 mg/L
respectively (Table 1). Between 0 and 90 days, a trend of increasing caftaric acid was found;
the overall average concentration of caftaric acid in unmodified samples increased from
20.9 mg/L to 26.3 mg/L (Table 1). This trend was observed for caftaric acid-addition
samples as well, with an initial average of 27.0 mg/L compared to the 90-day sample
average of 33.4 mg/L. Results for total hydroxycinnamic acids (HCAs) and the estimated
degree of browning can be found in Supplementary Materials.

Between temperature conditions, caftaric acid concentration increased to a greater
extent at the 15 ◦C condition compared to the 30 ◦C condition, with all 15 ◦C treatments
exhibiting a higher caftaric acid content except for F + CAFE + CAFT, which was the same
concentration of 33–34 mg/L (p < 0.05).
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Table 1. Caffeic and caftaric acid concentrations determined via Liquid Chromatography-UV Diode
Array Detection (LC-UV/DAD) after treatment additions to base wines at the start (Day 0) and end
(Day 90) of the temperature-controlled storage period.

Treatment

Caffeic Acid (mg/L) Caftaric Acid (mg/L)

Day 0 Day 90 Day 0 Day 90

15 ◦C 30 ◦C 15 ◦C 30 ◦C 15 ◦C 30 ◦C 15 ◦C 30 ◦C

CNTL 0.8 ± 0.0 efg 0.8 ± 0.0 g 0.6 ± 0.0 e 0.8 ± 0.0 d 21 ± 0 d 21 ± 0 d 28 ± 0 e 25 ± 0 f

FRU 0.8 ± 0.0 efg 0.8 ± 0.0 fg 0.5 ± 0.0 e 0.8 ± 0.0 d 21 ± 0 d 21 ± 0 d 28 ± 1 e 25 ± 0 f

CAFE 6.0 ± 0.1 bc 5.8 ± 0.2 cd 5.2 ± 0.1 b 4.7 ± 0.1 c 21 ± 0 d 21 ± 1 d 28 ± 0 e 25 ± 0 f

CAFT 0.8 ± 0.0 ef 0.8 ± 0.0 efg 0.6 ± 0.0 e 0.9 ± 0.0 d 28 ± 0 a 26 ± 0 c 35 ± 4 abc 31 ± 0 d

FRU + CAFE 6.0 ± 0.1 c 5.7 ± 0.1 d 5.3 ± 0.1 b 4.6 ± 0.0 c 21 ± 0 d 20 ± 0 d 28 ± 0 e 25 ± 0 f

FRU + CAFT 0.8 ± 0.0 e 0.8 ± 0.0 fg 0.6 ± 0.0 e 0.9 ± 0.0 d 28 ± 1 a 26 ± 0 bc 37 ± 1 a 31 ± 0 d

CAFE + CAFT 5.9 ± 0.1 cd 6.7 ± 0.1 ab 5.1 ± 0.0 b 5.7 ± 0.1 a 26 ± 0 bc 28 ± 0 ab 34 ± 0 ab 33 ± 0 cd

FRU + CAFE + CAFT 6.0 ± 0.0 c 7.0 ± 0.2 a 5.2 ± 0.1 b 5.8 ± 0.1 a 26 ± 0 bc 28 ± 1 a 34 ± 0 abc 33 ± 0 bc

Treatment codes: CNTL (no addition), FRU (6 g/L fructose), CAFE (5 mg/L caffeic acid), CAFT (5 mg/L caftaric
acid), FRU + CAFE (6 g/L fructose + 5 mg/L caffeic acid), FRU + CAFT (6 g/L fructose + 5 mg/L caftaric acid),
CAFE + CAFT (5 mg/L caffeic acid + 5 mg/L caftaric acid), and FRU + CAFE + CAFT (6 g/L fructose + 5 mg/L
caffeic acid + 5 mg/L caftaric acid). Multiple comparison of treatment means at each time point was carried out
via the Kruskal-Wallis test for non-parametric data followed by the Conover-Iman procedure. Two-way ANOVAs
were performed for parametric data followed by Tukey’s HSD test, using treatment and storage temperature as
independent variables. Different letters represent whether means differ as determined by the pairwise comparison
of sample means (n = 4). ± represents the standard deviation of sample means.

2.2. Furan-Derived Compounds

Nine furan derivatives that had previously been detected in base wines, sparkling
wines, and still wine styles, were analyzed using HS-SPME-GC-MS. Only three of the com-
pounds were present in all samples at concentrations greater than the limit of quantification
(LOQ) of the method; furfural, ethyl-2-furoate, and homofuraneol (Table 2).

2.2.1. Furfural

Significant variation in furfural concentration was revealed based on the treatment
applied for the 30 ◦C samples (F (DF 7) = 29.5, p = 0 < 0.0001) as well as the 15 ◦C samples
(F (DF 7) = 6.3, p < 0.014). An increase of approximately 80 µg/L in all samples in the 30 ◦C
condition was observed compared to those kept at 15 ◦C corresponding to a 164% increase
in furfural concentration (Figure 2). Within the 30 ◦C sample set, furfural concentration was
significantly greater in all treatment conditions compared to the control (7 µg/L, p < 0.05)
(Table 2). For the 15 ◦C samples, a less uniform change was observed; the addition of
5 mg/L of caffeic acid resulted in a 15% increase in furfural concentration compared to the
control (p < 0.05). No difference was observed for the other treatments (p > 0.05) (Table 2).
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Table 2. Furan derivatives determined by Headspace Solid Phase Micro-Extraction-Gas-Chromato-
graphy/Mass Spectrometry (HS-SPME-GC/MS) in base wines after 90 days of temperature-
controlled storage.

Treatment

Furfural
(µg/L) Ethyl-2-Furoate (µg/L) Homofuraneol (µg/L) 5-Methyl-Furfural

(µg/L)

15 ◦C 30 ◦C 15 ◦C 30 ◦C 15 ◦C 30 ◦C 30 ◦C

CNTL 9.1 ± 0.3 b 90 ± 1 b 2.7 ± 0.0 1.5 ± 0.0 d 15.1 ± 0.9 c 128 ± 1 <LOQ

FRU 9.5 ± 0.3 ab 98 ± 0 a 2.8 ± 0.0 1.8 ± 0.1 cd 18.9 ± 0.0 ab 128 ± 4 <LOQ

CAFE 10.5 ± 1.3 a 97 ± 1 a 2.8 ± 0.1 2.1 ± 0.0 bc 19.8 ± 0.3 ab 129 ± 2 4.9 ± 0.0

CAFT 9.2 ± 0.4 b 98 ± 1 a 2.8 ± 0.2 2.1 ± 0.0 bc 21.0 ± 1.7 a 125 ± 5 4.9 ± 0.0

FRU + CAFE 9.5 ± 0.3 ab 99 ± 1 a 2.9 ± 0.0 2.4 ± 0.3 ab 19.8 ± 0.2 ab 125 ± 2 4.9 ± 0.0

FRU + CAFT 9.6 ± 0.3 ab 97 ± 0 a 2.9 ± 0.1 2.2 ± 0.0 ab 20.2 ± 0.1 ab 117 ± 5 5.0 ± 0.1

CAFE + CAFT 9.0 ± 0.2 b 97 ± 1 a 2.9 ± 0.1 2.4 ± 0.1 a 20.1 ± 0.6 ab 117 ± 0 5.0 ± 0.0

FRU + CAFE + CAFT 9.3 ± 0.1 b 97 ± 2 a 2.9 ± 0.0 2.2 ± 0.0 b 18.2 ± 0.4 b 129 ± 3 <LOQ

Significance (between
treatments) * ** NS * ** NS NS

Treatment codes: CNTL (no addition), FRU (6 g/L fructose), CAFE (5 mg/L caffeic acid), CAFT (5 mg/L caftaric
acid), FRU + CAFE (6 g/L fructose + 5 mg/L caffeic acid), FRU + CAFT (6 g/L fructose + 5 mg/L caftaric acid),
CAFE + CAFT (5 mg/L caffeic acid + 5 mg/L caftaric acid), and FRU + CAFE + CAFT (6 g/L fructose + 5 mg/L
caffeic acid + 5 mg/L caftaric acid). ± represents the standard deviation of sample means (n = 4). Different letters
represent whether means differ as determined by one-way ANOVA followed by Tukey’s honestly significant
difference (HSD) test. Significance: NS = p > 0.05, * = p < 0.05, ** = p < 0.01.
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Figure 2. Percent difference between furan-derived compound concentrations stored at 30 ◦C and
15 ◦C for 90-days. Percent difference was calculated as follows: |A − B|/[(A + B)/2] × 100%,
where A is the compound concentration determined for the 30 ◦C sample, and B is the concentration
determined for the 15 ◦C sample. +X% is interpreted as a greater concentration determined at 30 ◦C
compared to 15 ◦C, while −X% is interpreted as a lower concentration. Treatment codes: CNTL
(no addition), FRU (6 g/L fructose), CAFE (5 mg/L caffeic acid), CAFT (5 mg/L caftaric acid),
FRU + CAFE (6 g/L fructose + 5 mg/L caffeic acid), FRU + CAFT (6 g/L fructose + 5 mg/L caftaric
acid), CAFE + CAFT (5 mg/L caffeic acid + 5 mg/L caftaric acid), and FRU + CAFE + CAFT (6 g/L
fructose + 5 mg/L caffeic acid + 5 mg/L caftaric acid).

2.2.2. Ethyl-2-Furoate

Treatments did not have a significant effect on ethyl-2-furoate concentrations at 15 ◦C
(F (DF 7) = 2.3, p = 0.057), though differences in the 30 ◦C samples were significant (K
(DF 7) = 21.0, p < 0.005). A greater concentration of ethyl-2-furoate was observed at the
15 ◦C storage temperature (2.6–2.9 µg/L) compared to the storage condition at 30 ◦C
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(1.5–2.4 µg/L). This difference was greatest in the control, which had 52% less ethyl-2-
furoate in the 30 ◦C wines compared to those stored at 15 ◦C (Figure 2). Within temperature
conditions, the 15 ◦C wines did not vary across treatments under the statistical model
applied (p > 0.05). However, in the 30 ◦C storage condition, differences were observed
between treatments: caffeic (CAFE) and caftaric (CAFT) acid additions increased ethyl-2-
furoate levels by 33% and 36% respectively, relative to the control, and the addition of both
compounds (CAFE + CAFT) resulted in a greater increase of 55% relative to the control
(p < 0.05) (Table 2).

2.2.3. Homofuraneol

For the wines stored at 15 ◦C, significant differences between treatments (F (DF 7) = 12.3,
p < 0.0001) were found, while no significant differences were reported for the 30 ◦C sam-
ples (F (DF 7) = 1.7, p = 0.168). Similar to the results obtained for furfural, homofuraneol
variation between storage temperatures was observed: the 30 ◦C condition on average
generated 125 µg/L of the furan compound compared to 19 µg/L in the 15 ◦C condition.
This corresponds to a 147% increase between the samples stored at 30 ◦C and those at
15 ◦C (Figure 2). Within temperature conditions, the 30 ◦C sample set showed no variation
between treatments at α = 0.05 (Table 2). The fructose addition treatment was not signif-
icantly different from any of the non-sugar added treatments. Under the 15 ◦C storage
condition, variation across treatments was found: all treatments increased in homofuraneol
levels relative to the control wine at p < 0.05 (Table 2). The difference between the 5 mg/L
caftaric acid addition (CAFT) treatment and the combined 5 mg/L caffeic and caftaric
acid treatment with 6 g/L added fructose (F + CAFE + CAFT) was significant. While the
CAFT treatment increased in homofuraneol concentration by 39% relative to the control,
the combined F + CAFE + CAFT treatment only increased the homofuraneol concentration
by 20%.

2.2.4. 5-Methylfurfural

Only samples stored at 30 ◦C contained quantifiable concentrations of 5-methylfurfural
after 90 days of storage. The CNTL, FRU, and FRU + CAFE + CAFT wines contained
concentrations below the LOQ of the method, while the rest of the wines were found at 4.9
or 5.0 µg/L of 5-methylfurfural (Table 2). No influence on concentration was determined
by treatment effect (p > 0.05).

3. Discussion

The aim of this study was to determine the influence of caffeic acid, and its tartaric acid-
ester caftaric acid, on the formation of Maillard-Reaction (MR) associated furan-derived
compounds during the storage of base wine. To assess this, quantification of the furan-
derived compounds was carried out using HS-SPME-GC-MS, in addition to caffeic and
caftaric acids, which were determined by LC-UV/DAD.

3.1. Caffeic and Caftaric Acids

The decrease in the concentration of caffeic acid, alongside the reported increase
in caftaric acid in all wine samples regardless of temperature, is in contradiction to pre-
viously published results that assessed HCA concentrations over time [17,27]. In both
cited studies, the caftaric acid concentration decreased over the course of the experimen-
tal timeline. This could be due to the oxidation of caftaric acid into its o-quinone form,
or through combination with glutathione to form 2-S-glutathionyl caftaric acid (Grape
Reaction Product—GRP) [28]. Similar to the behaviour observed for caftaric acid in our
study, Serra-Cayuela et al. [17] reported up to a 77% increase in caffeic acid concentration
throughout their ageing experiments conducted at multiple temperatures (4, 16, and 20 ◦C).
This observation was explained by Ferreira-Lima et al. [27] as the hydrolysis of the esterified
forms of HCAs into the free cinnamic acid.
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3.2. Furfural

The accumulation of furfural in aged sparkling wines has been reported in previous
studies [4,11], as well as in other wine styles [29]. Furfural has been described as contribut-
ing “sweet”, “bready”, and “almond” aromas, though its odor detection threshold has only
been determined by Ferreira et al. [30] in a model wine solution at 14 mg/L. The formation
of furfural via MR has also been outlined in detail in the literature [31], and it is known to
form preferentially from fructose under acidic conditions.

Wines stored for 90 days at 30 ◦C produced concentrations of furfural in the 100 µg/L
range for all treatments, and treatments were determined to be greater in furfural content
compared to the control. The addition of 6 g/L of fructose did not provide a change in
furfural concentration, contrary to its anticipated increase [29]. The addition of 6 g/L of
fructose (FRU) in our study resulted in the equivalent production of furfural (98 µg/L)
as the addition of 5 mg/L of either HCA added independently (CAFE and CAFT, 97 and
98 µg/L, respectively). That fructose is a precursor compound to furfural has already been
established in the literature, though other sugars such as xylose or arabinose (pentoses)
are also known contributors to furfural formation via the same pathways [32]. Wang
et al. [33] reported the molar conversion of these sugars into furfural as low yielding (<3%
mol conversion), even under thermally optimal conditions (water, 150 ◦C, 50 min). The
conversion of glucose into furfural was even more challenging, with a molar conversion
of <1% under the same conditions [33]. This is due to the C-C bond cleavage of the 6-
carbon glucose molecule required to form the 5-carbon structure of furfural, which is
typically performed via a retro-aldol mechanism under acidic conditions [33]. The same
chemical mechanism applies to fructose as that of glucose, which could account for the
limited impact on furfural generation observed in the 6 g/L fructose addition treatments.
Taking into consideration the 8 µg/L greater concentration of furfural observed in the
6 g/L fructose treatment (98 µg/L) compared to the control (90 µg/L), our study reports a
molar conversion of only 0.00025% of fructose into furfural under the conditions applied.
Considering the limited increase in furfural observed in all treatments with added fructose,
and the relatively small change in fructose concentration observed over the 90-day storage
periods (<0.5 g/L for both temperature conditions for each treatment), this conversion can
be considered credible.

Given that, the initial concentration of fructose in the base wine was 2.2 g/L, with a
molar conversion as low as 0.00025%, it can be concluded that the majority of the furfural
generated during the 90-day storage period did not come from this precursor. Therefore,
the major contributor to furfural formation cannot be determined by this study.

While both HCAs added independently were found to increase furfural generation
significantly when compared to the control, the combination of both in the same sample
did not have a doubling effect on furfural synthesis. This result could be due to a number
of factors regarding the catalytic capability of caffeic/caftaric acid to assist in the formation
of furfural: the molecular form the HCA must occupy to function as a catalyst, the reaction
step during which it operates, and the precursor compound it acts on [34]. Labauze
et al. [34] and Zhang et al. [21] suggested that the diphenol structure and H+ donation
capability associated with caffeic/caftaric acid could be responsible for this catalytic ability,
though no mention of the chemical mechanism was made.

Our results are in agreement with Zhang et al. [21], who reported that caffeic acid
significantly increased furfural formation (1.5 mg/L) when a fructose-phosphate buffer
solution at pH 5.5 was exposed to overheating conditions (90 ◦C). Though it has been shown
in studies that used aqueous model solutions with polyphenols in it such as epicatechin
that the formation of MR-associated products by binding to intermediary compounds
responsible for their formation occurs. However, this phenomenon was not observed for
caffeic or caftaric acid with regards to furfural formation [35,36]. This is the first study
to report the direct relationship between caffeic/caftaric acid and the formation of furan-
derived compounds in base wine, albeit by a small amount.
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Despite the small increase in furfural concentration observed, its presence in wine has
larger implications on empyreumatic aroma generation. The odour detection threshold
(ODT) for furfural has been reported at a vastly greater concentration than that found
in wine (3 mg/L [37] and 14 mg/L [30]). Therefore, the increased levels observed in the
30 ◦C storage condition can be considered to have little or no impact on wine sensory
perception. However, furfural is known to be a precursor to 2-furfurylthiol, a much more
potent furan-derived aroma compound with an ODT of 0.4 ng/L [13]. To what degree the
increased 8 µg/L of furfural could contribute to 2-furfurylthiol formation, or other reaction
products, can only be speculated here as 2-furfurylthiol was not detected in any of the
wines analyzed.

3.3. Ethyl-2-Furoate

Considered to be a MR intermediary compound, ethyl-2-furoate is the ethanol-esterified
derivative of furfural or furoic acid, the oxidation product of furfural or furfuryl alcohol [32].
Discovered relatively recently in wine, ethyl-2-furoate is not well described in the litera-
ture [38], though it has been associated with “vanilla” and “burnt” aroma characteristics in
wine [24]. No ODT could be found in the literature for this compound to compare it to the
concentrations reported in our study.

Ethyl-2-furoate concentrations were no greater than 3 µg/L in all samples, though
significant variation in analyte amounts were detected. Our results lend evidence to the
reported formation of ethyl-2-furoate from furfural via the furoic acid intermediate, as the
addition of fructose and each HCA increased the furfural content in a similar manner [32].
Therefore, concentrations of ethyl-2-furoate could be considered to be primarily dependent
upon furfural synthesis. Under the 15 ◦C condition, no difference in concentrations was
found between treatments at α = 0.05 and consequently no treatment interactions could
be reported.

The formation of ethyl-2-furoate was greater under the 15 ◦C storage temperature
compared to 30 ◦C. The further reaction of ethyl-2-furoate, once formed in the wine media,
could have occurred at a more rapid rate at 30 ◦C compared to 15 ◦C, leading to the
higher concentration obtained in the cooler wines [32]. It is important to note that the
differences observed in the ethyl-2-furoate concentrations are <1.0 µg/L across all treatment
conditions, and therefore the significance of the increased analyte levels expressed should
not be overstated. More research into this compound’s formation and its further reaction
schemes are necessary to determine its relative importance in the understanding of MR
activity in wine during ageing.

3.4. Homofuraneol

A more complex furan-derivative, homofuraneol (2-ethyl-4-hydroxy-5-methyl-3(2H)-
furanone), also referred to as ethyl furoate, has been reported in several studies in food
and flavour chemistry as part of the group of furanones [13,39]. Found in fruits, furanones
are of key interest due to their pleasant aroma contributions at relatively low (µg/L)
concentrations [5]. Homofuraneol has been described as smelling like “caramel” and
“cotton candy” [13], with a relatively low ODT of 10 µg/L (determined by Kotseridis and
Baumes [40] in a model wine solution). Homofuraneol formed at detectable levels in all
wines, but was found at greater concentrations in wines stored at 15 ◦C that had 6 g/L
of fructose added. Similar to the results obtained for furfural at 15 ◦C, homofuraneol
concentrations were increased when fructose was added, as well as caffeic and caftaric
acid, with the largest increase of 39% (corresponding to approximately 5 µg/L) found in
the CAFT treatment.

In a study focused on furaneol during wine ageing, Jarauta et al. [41] showed that its
concentration increased from approximately 60 µg/L to 140 µg/L during the first 6 months
of ageing in French oak barrels kept at cellar temperature. This range is greater than the
concentrations reported our study (15–20 µg/L), though this discrepancy can be explained
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by the presence of oak barrel ageing in the study by Jarauta et al. [41], which contributes to
a greater concentration of furaneol in wine.

3.5. 5-Methylfurfural

5-Methylfurfural has been reported frequently in wine studies as a compound cor-
related with wine ageing and contributing similar empyreumatic aroma characteristics
to that of furfural; “caramel”, “burnt sugar”, and “almond” [6,11,24]. Known to be a
sugar degradation product similar to furfural, 5-methylfurfural was also found in wines
aged in oak barrels [41]. However, oak was not used in our study, so the formation of
5-methylfurfural can only be attributed to sugar degradation/MR schemes.

Our results are in agreement with those reported by Pereira et al. [24], who determined
that 4 µg/L of 5-methylfurfural was generated in a dry Tinta Negra wine over three
months at 45 ◦C, while 50 µg/L were generated when the same wine was kept at 70 ◦C for
one month. This supports the understanding that increased temperature confers greater
formation of MR-associated products such as 5-methylfurfural [9].

3.6. Limitations of the Study

The most impactful limitation of the present study was the time duration available for
the ageing of base wine, given that the longer a wine is stored, the greater the opportunity
for empyreumatic aroma compound formation as seen in aged sparkling wines [10]. As the
timeline for the experiment was monthly as opposed to yearly, the generation of aroma
compounds at detectable levels was suboptimal, yet successful for select compounds. In
addition to this, the ambient concentration of furan-derived compounds of interest was
quite low as a result of the relative youth of the base wine studied, despite the fact that the
base wine had been aged for 18 months prior to use. An older, longer aged wine could have
served as a more substantial base for the experiment as it would have already contained
a detectable amount of the furan-derived compounds, which would have allowed for
determination of the initial concentrations. This could have aided in the quantification of
the low concentration (µg/L) of compounds, as well as allowed for the determination of
concentration changes over time during storage.

Additionally, furan-derived compound concentrations were only determined at the
end of the 90-day storage period as opposed to at regular periods during storage, which,
if the compounds were above the LOQ during this period, could have allowed for linear
regression analysis and further extrapolation of potential future concentrations. Repeating
this experiment with an older base or sparkling wine, or ageing the wine for a longer
duration at 30 ◦C, would have provided more data for interpretation.

In addition to the temporal component, several wine chemical factors such as pH, SO2,
acidity, sugars and amino acids were not varied in this study. These components and their
influence on the synthesis of furan-derived compounds during the ageing process were not
evaluated. These limitations highlight areas for future research using both base wine and
sparkling wine.

4. Materials and Methods
4.1. Chemicals and Standards

The deuterated internal standards of caffeic acid-d6 (CAS 2708298-33-1, ≥99%) and
furfural-d4 (CAS 1219803-80-1, ≥98%) were purchased from CDN Isotopes (Pointe-Claire,
QC, Canada). Furfural ethyl ether (CAS 6270-56-0, ≥97%) was purchased from Fisher Scien-
tific (Hampton, NH, USA). The following compounds were purchased from Sigma-Aldrich
Inc. (Oakville, ON, Canada); caffeic acid (CAS 331-39-5, ≥98%), caftaric acid (CAS 67879-58-
7, ≥97%), 3-acetyl-2,5-dimethylfuran (CAS 10599-70-9, ≥98%), 2-furanmethanethiol (CAS
98-02-2, ≥98%), 2,3-dihydrobenzofuran (CAS 496-16-2, ≥99%), 2-acetylfuran (CAS 1192-62-
7, ≥99%), 5-methylfurfural (CAS 620-02-0, ≥98%), homofuraneol (CAS 27538-09-06, ≥96%),
furfural (CAS 98-01-1, ≥99%), sodium chloride (NaCl, ≥99%) and ethyl-2-furoate (CAS
614-99-3, ≥99%). All solvents used were HPLC grade purity. Potassium metabisulphite
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(KMS) and potassium bitartrate (cream of tartar) were purchased from Scott Laborato-
ries Ltd. (Niagara-on-the-Lake, ON, Canada). D-fructose (≥99%) was purchased from
BioShop® Canada Inc. (Burlington, ON, Canada). Milli-Q water was obtained Millipore
(Saint-Quentin-en-Yvelines, France).

4.2. Winemaking

Chardonnay grapes were hand-harvested from Trius Winery on 19 September 2019
in Niagara-on-the-Lake, Ontario, and whole bunch pressed on site. The juice was then
transported to the Cool Climate Oenology and Viticulture Institute (CCOVI) at Brock
University for processing according to previously documented winemaking practices [42].

4.3. Experimental Design

Fructose, caffeic and caftaric acid were added to Chardonnay wines before storing
them for 90 days at 15 ◦C (cellar temperature) and 30 ◦C (moderate accelerated ageing).
All treatments were duplicated, and each sample underwent duplicate analysis for each
chemical parameter. Studies show that caffeic acid and caftaric acid concentrations vary
widely in base and sparkling wines: 0.2–2.0 mg/L for caffeic acid and 2.2–31 mg/L for
caftaric acid [17–20]. Consequently, equal additions of 5 mg/L of caffeic acid and 5 mg/L
of caftaric acid were chosen to provide a consistent concentration to measure the effect each
acid has when its concentration is elevated. A treatment containing an additional 6 g/L of
fructose was also included to encourage the formation of furan-derived compounds, as
many of these compounds are formed from fructose degradation [32].

The 6 g/L concentration of fructose was chosen to supplement the small residual
concentration of fructose present in the base wine (<3 g/L). Fructose is typically the most
abundant sugar in wine post-alcoholic fermentation (unless a fructophillic yeast was used
for fermentation), and its prolonged presence in base and sparkling wines being aged
for extended periods allows for the synthesis of furan-derived compounds. The seven
treatments and control were made up as follows: CNTL (no addition), FRU (6 g/L fructose),
CAFE (5 mg/L caffeic acid), CAFT (5 mg/L caftaric acid), F + CAFE (6 g/L fructose +
5 mg/L caffeic acid), F + CAFT (6 g/L fructose + 5 mg/L caftaric acid), CAFE + CAFT
(5 mg/L caffeic acid + 5 mg/L caftaric acid), and F + CAFE + CAFT (6 g/L fructose + 5 mg/L
caffeic acid + 5 mg/L caftaric acid). Replicates were stored in either 15 or 30 ◦C temperature-
controlled rooms for 90 days. Following 90-day storage, the following parameters were
analyzed; total HCA estimation (A.U at λ320nm), degree of browning (A.U at λ420nm), caffeic
and caftaric acid (mg/L), and nine furan-derived compounds (µg/L) (furfural, ethyl-2-
furoate, homofuraneol, 5-methyl furfural, furfuryl ethyl ether, 3-acetyl-2,3-dimethyl furan,
2-furyl methyl ketone, 2-furfuryl thiol, 2,3-dihydro, benzofuran).

Standard Wine Chemical Analyses

Titratable acidity (g/L tartaric acid eq.) and pH were determined using an auto-
titrator (Hanna Instruments® HI 84502 Woonsocket, RI, USA). Free and total SO2 levels
was analyzed using the aspiration method [43]. Ethanol (% w/v) was measured according
to Nurgel et al. [44] using Gas Chromatography (Agilent 6890 model, Agilent Technologies
Inc., Santa Clara, CA, USA) coupled to a Flame Ionization Detector (GC-FID). Acetic acid
(g/L), L-malic acid (g/L), yeast assimilable nitrogen (YAN mg N/L), and residual sugar
levels (mg/L D-glucose & D-fructose) were measured using assay kits: K-ACET 02/17;
L-LMALL 06/07; K-PANOPA 08/14; K-AMIAR 12/12, and K-FRUGL 05/17 respectively
(Megazyme International Ltd., Wicklow, Ireland). The total HCA estimation and degree of
browning was determined according to Iland et al. [43]. The chemical analyses of the base
wine were carried out prior to additions of the target compounds (Table 3).
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Table 3. Base wine chemical composition analyzed prior to treatment additions.

Chemical Parameter 2019 Chardonnay Base Wine

pH 2.89 ± 0.01
Titratable acidity (TA g/L) 10.6 ± 0.1

Fructose (g/L) 2.2 ± 0.1
Glucose (g/L) 0.2 ± 0.0

Malic acid (g/L) 5.3 ± 0.1
Acetic acid (g/L) 0.1 ± 0.0
YAN (mg N/L) 25 ± 1
Alcohol (% v/v) 10.6 ± 0.1
Free SO2 (ppm) 11 ± 0
Total SO2 (ppm) 88 ± 5

± represents the standard deviation between sample means (n = 2).

4.4. Caffeic and Caftaric Acid Determination by Liquid Chromatography-UV Diode Array
Detection (LC-UV/DAD)
4.4.1. Sample Preparation

Wine samples were prepared up to 1 mL in 2 mL amber glass vials (Part 5182-0716,
Agilent Technologies Inc., Santa Clara, CA, USA), closed with compatible screw-top caps
(Part 5185-5823, Agilent Technologies Inc., Santa Clara, CA, USA). 0.5 mL of wine was
combined with 0.45 mL of Milli-Q H2O, and 0.05 mL of a 0.1 g/L caffeic acid-d6 (CAS
2708298-33-1, ≥99%) internal standard solution.

4.4.2. LC-UV/DAD Method

The LC-UV/DAD method for caffeic and caftaric acid determination was modi-
fied from Berry and Henderson [45]—the flow rate was modified from 0.3 mL/min to
0.2 mL/min to reduce pressure. The separation of HCAs, obtained by direct injection of
wine, was performed using an Agilent 1260 Infinity LC series system (Agilent Technologies
Inc., Santa Clara, CA, USA) equipped with a 66 × 2 mL vial auto sampler (G7129 type) and
a Zorbax RRHD SB-C18 analytical column (2.1 mm × 150 mm, 1.8 µm particles). Column
temperature was kept at a constant 30 ◦C. The mobile phase for LC-UV/DAD analysis
was a mixture of (A) water with 0.1% formic acid (v/v), and (B) acetonitrile with 0.1%
formic acid (v/v), flowing at 0.2 mL/min under gradient conditions: starting at 0% B into
A (0–3.5 min), increasing to 5% B into A (3.5–7.1 min), increasing again to 15% B into A
(7.1–25 min), then increasing further to 40% B into A (25–27 min), finally ramping up to
100% B into A (27–30 min), followed by a decrease back to 0% B into A (30–45 min). The
total run time was 45 min with a post-run downtime of 5 min. For the quantification, wine
samples without any prior treatment were injected directly (1.5 µL) into the system. Each
sample was injected in duplicate. Both compounds were quantified using an external cali-
bration curve obtained from the corresponding standard measured at 280 nm and 325 nm
wavelengths.

4.4.3. Analytical Performance of the LC-UV/DAD Method
Linearity and Limits of Detection (LOD) and Quantification (LOQ)

The linearity of the LC-UV/DAD method was evaluated using the appropriate con-
centration range for sparkling wine samples as determined by Serra-Cayuela et al. [17].
An aqueous solution containing 10% (v/v) of ethanol was spiked with 5 mg/L of internal
standard alongside 6 concentration levels of each HCA (excluding 0 mg/L), with samples
prepared in duplicate. For caffeic acid the standard concentrations were the following:
0 mg/L, 0.25 mg/L, 0.5 mg/L, 0.75 mg/L, 1 mg/L, 1.25 mg/L, and 1.5 mg/L. For caftaric
acid, the concentrations were 10× greater: 0 mg/L, 2.5 mg/L, 5 mg/L, 7.5 mg/L, 10 mg/L,
12.5 mg/L, and 15 mg/L. The calibration curves were generated by plotting the relative
peak area (relative response factor (RF)) of the analyte (analyte peak area over internal
standard peak area) as a function of the analyte concentration. The linearity for all stan-
dards was deemed satisfactory, with regression coefficients (R2) of 0.98 for caffeic acid
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and 0.99 for caftaric acid in all cases. Limits of detection (LOD) and quantification (LOQ)
were determined via the signal: noise method outlined by [46]: the mean of blank sample
replicates was added to the standard deviation of blank sample replicates multiplied by
1.645 (LoB = mean blank + 1.645 (SDblank)). The LOD was subsequently calculated by
adding the LoB to the value of the lowest concentration analyte replicate standard devia-
tion multiplied by 1.645 (LOD = LoB + 1.645 (SDlow conc. sample)). The LOQ was estimated
as the LOD multiplied by 3.3 to ensure error associated with imprecision of the analytical
instrumentation was accounted for. The LODs for caffeic and caftaric acid were 0.07 and
0.46 mg/L, respectively, while the LOQs were 0.17 and 1.0 mg/L, respectively.

Repeatability, Accuracy and Specificity

The repeatability of the method was evaluated by comparing the relative standard
deviations of the samples tested. The coefficients of variation for all samples were below
10%, which confirms good precision of the method. The accuracy of the method was
determined by calculating the percent recoveries for the spiked samples compared to the
un-spiked sample. The analyte standards were spiked with either 0.5 or 1 mg/L of caffeic
acid, and either 5 or 10 mg/L of caftaric acid in a real wine sample. These spiked samples
were then compared to the corresponding real wine sample, which had not been spiked,
and the relative concentration of the analyte in the spiked sample was compared to that of
the un-spiked sample. Recovery for caftaric acid (106.0%) was considered appropriate. The
relatively similar concentration of the spike (0.5 mg/L) to that of the endogenous caffeic
acid concentrations is thought to have influenced the recovery percentage for the caffeic
acid (137.1%) samples, given that the amount of caffeic acid present was already quite low.

4.5. Headspace Solid Phase Micro-Extraction-Gas-Chromatography/Mass Spectrometry
(HS-SPME-GC-MS) Method for Furan-Derived Compounds
4.5.1. Sample Preparation

Wine samples were prepared up to 5 mL in 10 mL amber glass vials, 1.5 g of sodium
chloride (NaCl, ≥99%) was added, and closed with compatible PTFE/silicone screw-
top caps (Agilent Technologies Inc., Santa Clara, CA, USA). 4.9 mL of wine sample was
combined with 0.1 mL of a 1.0 mg/L furfural-d4 internal standard solution, for a final
concentration of 20 µg/L internal standard.

4.5.2. HS-SPME-GC-MS Method

The Headspace Solid Phase Micro-Extraction-Gas-Chromatography/Mass Spectrome-
try (HS-SPME-GC-MS) method for furan-derived compounds was modified from Burin
et al. [11]—furfural, homofuraneol, furfuryl ethyl ether, ethyl-2-furoate, and 2-furfurylthiol
were added to the existing list of analytes. Analyses were carried out on an Agilent Tech-
nologies 7890B GC system (Agilent Technologies Inc., Santa Clara, CA, USA), coupled to an
Agilent 5977B quadrupole mass spectrometer equipped with a PAL RSI 85 autosampler (Ag-
ilent Technologies Inc., Santa Clara, CA, USA). An 85 µm carboxen/polydimethylsiloxane
(CAR/PDMS) metal alloy SPME 23-gauge fiber assembly (Sigma Aldrich, St. Louis, MO,
USA) was used for sampling. A DB-624UI capillary column was used (30 m × 0.25 mm,
1.4 µm film thickness, Agilent technologies Inc., Santa Clara, CA, USA), with the helium
carrier gas (Ultra high purity 5.0) flowing at a rate of 1 mL/min. Vials were stored at 4 ◦C
prior to injection using of a cooling plate accessory (model G4565A). Samples were prepared
for injection by agitating (250 rpm) at 40 ◦C for 5 min before being exposed to the SPME
fiber for 55 min at 40 ◦C with continued agitating (250 rpm), followed by desorption in the
inlet at 250 ◦C for 5 min. The column oven temperature program was: initial temperature
40 ◦C for 4 min, then raised at 2 ◦C/min to 160 ◦C and held for 1 min, and finally ramped
to 230 ◦C at a rate of 5 ◦C/min, and held at that temperature for 5 min. The total run time
for this method was 84 min. The acquisition mode was selective-ion monitoring (SIM), and
the interface was kept at 280 ◦C using electron impact (70 eV) ionization mode. Prior to
quantification in SIM mode, a scan was performed (40–300 m/z) for the identification of
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target compounds. Analytes and the internal standard were identified according to the
ions in Table 4, using OpenLAB CDS Acquisition Agilent Software (Version 2.4.5.9, Agilent
Technologies Inc., Santa Clara, CA, USA). The quantifying ions were manually extracted by
comparing them to standard peaks, and the ratio of the standard over the internal standard
was plotted against the concentration of the compound to fit a linear regression equation.

Table 4. Retention times (min), quantifying ions (m/z), qualifying ions (m/z), regression coefficient
(R2), calibration range (µg/L), limits of detection (LODs), and limits of quantification (LOQs) of all
furan-derived compounds analyzed.

Compound Retention
Time (min)

Quantifying
Ion (m/z)

Qualifying
Ion(s) (m/z)

Regression
Coefficient (R2)

Calibration
Range (µg/L)

LOD a

(µg/L)
LOQ b

(µg/L)

Furfural-d4 24.0 100 70, 99 - - - -

Furfural 24.0 96 67, 95 0.9999 2.5–300 0.76 2.5

Ethyl-2-furoate 41.2 95 112, 140 0.9978 1.76–75 0.53 1.76

Homofuraneol 24.0 97 101 0.9995 1.59–300 0.48 1.59

5-methyl furfural 35.2 110 53 0.9988 4.9–300 1.47 4.9

Furfuryl ethyl ether 27.2 81 98, 126 0.9999 1.09–300 0.33 1.09

3-acetyl-2,3-dimethyl furan 43.4 123 138 0.9996 1.00–50 0.30 1.00

2-furyl methyl ketone 30.3 110 95 0.9995 1.03–300 0.31 1.03

2-furfuryl thiol 28.2 81 85 0.9942 4.79–75 1.45 4.79

2,3-dihydro benzofuran 42.5 91 65, 120 0.9999 0.36–50 0.11 0.36
a LODs were calculated by adding the LoB to the value of the lowest concentration analyte replicates’ standard
deviation multiplied by 1.645 (LOD = LoB + 1.645 (SDlow conc. sample); b LOQs were calculated as the LOD
multiplied by 3.3 [32].

4.5.3. Analytical Performance of the HS-SPME-GC/MS Method
Linearity and Limits of Detection (LOD) and Quantification (LOQ)

The linearity of the HS-SPME-GC/MS method was evaluated using the appropriate
concentration range for sparkling wine samples determined by Burin et al. [12]. A low-
aroma concentration white wine, which had been dearomatized by rotary evaporation
was spiked with the target compounds listed in Table 4, using 6 or 7 concentration levels
(excluding 0 µg/L) depending on the peak limit of the instrument, with samples being
prepared in duplicate. For all compounds, the standard concentrations were the following:
0 µg/L, 1 µg/L, 5 µg/L, 10 µg/L, 25 µg/L, 50 µg/L, 75 µg/L, and 300 µg/L. The calibration
curves were generated by plotting the RF of the analyte (analyte peak area over internal
standard peak area) as a function of the analyte concentration. The linearity for all standards
was considered satisfactory, with regression coefficients (R2) greater than 0.99 in all cases.
LOD and LOQ’s can be found in Table 4.

Repeatability, Accuracy and Specificity

The repeatability of the method was carried out by comparing the relative standard de-
viations of the standards and samples tested. The coefficients of variation for all standards
except for furfurylthiol and 2,3-dihydrobenzofuran were below 10%, which verifies good
precision of the method. The accuracy of the method was determined by calculating the
percent recoveries for the spiked samples compared to spike blanks. The analyte standards
were spiked with 0.1 mL of a 100 µg/L composite standard solution (2 µg/L final analyte
concentration) in a de-aromatized real wine sample in duplicate. These spiked samples
were then compared to a spike blank dearomatized real wine sample, which had instead
been spiked with the 0.1 mL of a 10% ethanol solution, and the relative concentration of
the analyte in the spiked sample was compared to that of the spike blank. Recoveries
for furfural (106.6%), ethyl-2-furoate (97.9%), and homofuraneol (99.4%) were considered
appropriate, and show good accuracy of the method.
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4.6. Statistical Analyses

Statistical analysis was carried out using XLSTAT (Version 2021.1.1, Addinsoft, Paris,
France) for Excel (Version 16.0.14326 for Windows 10, Microsoft Corporation, Redmond,
WA, USA). For all data, the Shapiro-Wilk test for normality was performed before any
analysis took place to determine which statistical model would be applied. For the total
HCA estimation, degree of browning, and LC-UV/DAD data, two-way analysis of variance
(ANOVA) and Tukey’s honestly significant difference (HSD) test was used to separate
sample means for normally-distributed data, while the Kruskal-Wallis test followed by the
Conover-Iman procedure was used for not normally-distributed data, at α = 0.05. For both
statistical models, analyte response/spectroscopic reading was the dependent variable,
while treatment and temperature were the independent categorical variables. For the HS-
SPME-GC/MS and UV-Vis Spectroscopic data analysis, a one-way ANOVA with Tukey’s
HSD0.05 test was performed on normally-distributed data, while the Kruskal-Wallis test
followed by the Conover-Iman procedure was used for not normally-distributed data, at
α = 0.05. All graphs and tables were generated using Microsoft Excel (Version 16.0.14326 for
Windows 10, Microsoft Corporation, Redmond, WA, USA). The percent difference of com-
pounds stored at 30 ◦C and 15 ◦C was calculated as follows: |A − B|/[(A + B)/2] × 100%,
where A is the compound concentration determined for the 30 ◦C sample, and B is the
concentration determined for the 15 ◦C sample. +X% is interpreted as a relatively greater
concentration determined at 30 ◦C compared to 15 ◦C, while −X% is interpreted as a
relatively lower concentration.

5. Conclusions

The addition of 5 mg/L of caffeic acid to Chardonnay base wine stored at cellar
temperature (15 ◦C) for 90-days increased the synthesis of furfural by 15% relative to the
control. Homofuraneol concentration was also increased by 31% in the caffeic acid-treated
wine (20 µg/L) compared to the control (15 µg/L), though wines were above the ODT for
this compound. When storage temperature was increased to 30 ◦C, a smaller increase in
furfural (8%) occurred for caffeic acid-treated wine, while no increase was reported for
homofuraneol. This shows a direct synergistic relationship between caffeic acid and fur-
fural/homofuraneol formation in wine. The addition of 6 g/L of fructose to the base wine
resulted in less significant increases in furan-derivatives than anticipated, a phenomenon
that requires further investigation if the synthesis of furan-derived compounds in wines
are to be better understood. Additionally, the formation of ethyl-2-furoate was improved
in wines kept at 15 ◦C compared to 30 ◦C by up to 50% in the control wine, although the
concentration of this compound did not exceed 3 µg/L. The storage of base wines/reserve
wines for a period of three months or more may be a viable method to encourage the forma-
tion of empyreumatic aroma compounds in the final wine. Alternatively, artificially heating
base wine for a prolonged period (four months) has been shown to increase furan-derived
compounds, and as a consequence could be considered for small batches of base wine in a
winery prior to blending to enhance the wine’s complexity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227891/s1, Table S1: Concentrations of hydrox-
ycinnamic acids and hydroxycinnamates reported in sparkling wines aged for 1–2 years post-
disgorgement at cellar temperature; S.1: Wine sample preparation; S.2: Total hydroxycinnamic
acid (HCA) estimation and degree of browning; Figure S1: Total hydroxycinnamic acid (HCA) es-
timation (A.U) in base wine samples at Day 0 (a) and Day 90 (b) stored at 15 and 30 ◦C; Figure S2:
Degree of browning (A.U) in base wine samples at Day 0 (a) and Day 90 (b) stored at 15 and 30 ◦C.
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