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Abstract: The adhesion phenomenon of polymers occurs in nature and in human activity. In the
present paper, an adhesion system of steamed bread and eggshell was observed in formation when
steamed bread and eggshells were placed in close contact and cooled slightly in the ambient air.
The adhesion phenomena and mechanism of the adhesion interface between the steamed bread
and eggshell were investigated and systematically discussed. Strong-bond interfaces were observed
by scanning electron microscope (SEM). The formation process and mechanism of the strong-bond
adhesion were also analyzed molecular dynamics simulation technology, and the results are discussed.
The simulation analyses showed that the starch molecules at the calcite (104) crystal face were diffused
in a water vapor environment, and the formation and solidification of multiple hydrogen bonds in the
starch chain and oxygen atoms in the calcium carbonate were observed in detail during cooling. The
diffusion rate of hydrogen atoms in hydroxyl groups on the calcite surface decreased gradually with
the decrease of the cooling temperature of the steamed bread’s upper surface. The strong adhesion of
the steamed bread and eggshell is attributed to the synthetic effect of the absorption, diffusion, surface
chemistry, and the formation of multiple hydrogen bonds between the starch from the steamed bread
and the calcium carbonate crystals in eggshell. The interesting findings are helpful for the design of
strong bonds, and provide an idea for new environmentally friendly adhesive materials.

Keywords: adhesion; starch; diffusion; multiple hydrogen bonds; molecular dynamic

1. Introduction

Adhesive bonding technology has become popular in recent years due to its abil-
ity to bond various types of materials [1]. It is a good alternative method to conven-
tional techniques that including mechanical fastening, welding, and soldering. Adhe-
sive bonding is applied in many fields including automotive, aerospace, and electronic
engineering [2]. Adhesive materials are often used to bond various substrates. The bond
structures and adhesion mechanism are important for enhancing the mechanical properties
of the film–substrate system [3,4]. The production processes of traditional adhesive mate-
rials used in construction or other engineering applications, such as cement orpolyvinyl
alcohol (PVA) [5,6], produce many hazardous by-products including coal slag, dust, NOx
and other pollutants. Moreover, these traditional materials are difficult to degrade by
pollution-free treatment after use [7,8]. It is of major interest to identify and develop
degradable or nonhazardous materials for use as adhesive materials with good physical
and chemical properties and favorable surface properties such as adsorption and adhe-
sion [9,10]. Among the natural polymers, starch occurs as a natural product and renewable
material, and has been of particular interest due to its positive tendencies concerning
degradability and physiological characteristics. Owing to its complete biodegradability,
low cost, and renewability, starch is considered as a promising candidate for developing
sustainable materials. Starch is found primarily in the seeds, fruits, and stem pith of
plants, most notably corn, wheat, rice, sago, and potatoes. Najafi et al. studied the fracture
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behavior between latex starch adhesive and calcium carbonate, and found that samples
containing starch had good bonding properties [11]. Starch has been used as an adhesive
in a wide range of products, including binders, sizing material, glues, and pastes [12].
Starch meets the wide range of the performance requirements and can provide high per-
formance adhesives. In some cases, starch and starch derivatives have replaces synthetic
adhesive raw materials. Starch-based adhesive is one of the formaldehyde-free adhesives.
Clearly, this makes starch as a very important adhesive material and a useful binder of
pigment such as calcium carbonate. Calcium carbonate, which is chemical compound with
a chemical formula of CaCO3 that is extensively present in shells of microorganisms and in
eggs, is one of the most common and profuse biominerals present across the world and is
widely employed as a filling material in paper and adhesive industries [13]. Adhesion is
one of the most important and difficult tasks of surface engineering. In spite of immense
potential fundamental and industrial applications, one of challenges is how to improve the
binder–pigment adhesion in terms of the crack resistance of the binder–pigment system. It
is known that numerous parameters have an influence on adhesion, including chemical
bonding and the physical properties of adhesive materials. However, there has been little
research into the physical–chemical adhesion of the attractive binder–pigment system
within an organic–inorganic system, to elucidate the theory of polymer adhesion from the
physical and chemical standpoints.

In the present research, to study the adhesive behavior of starch, bread was heated
by high-temperature water steam and then cooled with heated egg in ambient air.The
adhesion phenomenon between starch from the steamed bread and calcium carbonate
from the eggshell was observed, and the bonding interface with strong adhesion may be
beneficial for designing strong-bond interfaces and understanding the interface formation
of organic and inorganic materials. This research can provide ideas for expanding the
application prospects of starch in environmentally friendly coatings and bonding materials.

2. Results and Discussion
2.1. Characterization of Interface

Figure 1 shows the SEM images of the bonded sample of the steamed bread and
eggshell.. The eggs were cooked in the water and the bread on the steamer, and the water
heated to boiling for 15–20 min. After heating, the eggs and steamed bread were taken out,
and then placed in close contact with each other to cool in the ambient air. After cooling,
they stuck together. The two structures can be distinguished in the SEM images shown in
Figure 1a. The 90-fold overall topography of the adhesion interface between the steamed
bread and eggshell is shown in Figure 1a. It can be seen that the eggshell is a highly ordered
mineralized structure consisting of calcite crystals. The steamed bread is made from the
fermented dough and has a loose porous structure. The adhesion interface is shown in
Figure 1b, which shows the electron micrograph of the adhesion between the steamed
bread and eggshell at 7000-fold. The steamed bread was easily absorbed in the holes on
the surface of the eggshell. Figure 1c shows a local high-magnification SEM image of the
interface between the steamed bread and egg shell at45,000-fold. The skin of the steamed
bread is firmly attached to the surface of the eggshell and the two cannot be separated.

2.2. Microstructure Analysis

The microstructure of the adhesion interface of the steamed bread and eggshell was
measured using FTIR, to study the interesting scientific phenomenon. As shown in Figure 2,
a hydroxyl absorption peak is present at a wavenumber of 3274 cm−1 and the peak shape
is broad [14,15]. A very sharp and intense absorption is centered at 2348 cm−1. The
characteristic spectral signature of the antisymmetric stretching mode of C=O yields a fairly
strong peak at 2348 cm–1. A medium-intensity peak at 2928 cm−1 is the antisymmetric
stretching vibration of −CH2−. The absorption peak at 1640 cm−1 is the absorption
peak of the amorphous region in the absorbed water in the starch [16]. The activity at
1529 cm−1 can be noted, which may originate corresponding to the wheat flour peak region
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of proteins [17]. The absorption peak at 1443 cm−1 is −CH2− and there is a C–H in-plane
bending vibration at 1068 cm−1 with strong absorption intensities. The FTIR spectroscopy
of the test sample based on absorbance at 1410 cm−1 (nCOO−) was associated with the
aromatic ring vibration. A band at 1239 cm−1 was observed, relating to the stretching acyl
groups in egg albumen [18]. Therefore, it can be inferred that there are many hydrogen
bonds in hydroxyl groups and other groups such as carbonyl groups and hydrocarbon at
the interface of the steamed bread and eggshell. It was at this stage necessary to investigate
the formation of hydrogen bonds and the influence of hydroxyl groups on the adhesion
mechanism of the steamed bread and eggshell.
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Figure 1. SEM image of the adhesion morphology of steamed bread and eggshell: (a) 90-fold over-
all topography of the adhesion interface. (b) 7000-fold topography (area 1# shows that the steamed 
bread skin expanded into the holes on the surface of the eggshell and increased the contact area). (c) 
45000-fold topography (area2# shows the morphology detail of the adhesion). 
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Figure 1. SEM image of the adhesion morphology of steamed bread and eggshell: (a) 90-fold overall
topography of the adhesion interface. (b) 7000-fold topography (area 1# shows that the steamed
bread skin expanded into the holes on the surface of the eggshell and increased the contact area).
(c) 45,000-fold topography (area2# shows the morphology detail of the adhesion).
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Figure 2. FTIR measurements of the interface.

2.3. Analysis of AdhesionInterface

Adhesion at the interface between the steamed bread and eggshell exists as shown in
Figures 1 and 2. The factors of adhesion occurring during the cooling process of the steamed
bread and eggshell are governed by several possible mechanisms, including adsorption,
diffusion, and surface chemistry, which must be understood to interpret the phenomenon
of interest.

Firstly, adsorption was critical to the adhesive interaction because the water vapor
on the steamed bread skin was in contact with the eggshell under high temperature and
pressure when the steamed bread and eggshell were close. Starch is a natural hydrophilic
polymer. The flour in the bread can easily absorb up to more 50% water molecules on a
dry weight basis when steamed in water vapor. Steamed bread was used in which the
starch present in the flour becomes sticky during the manufacturing process. During the
experiment, it was treated a second time with steam. During steaming of the bread, the
top surface of the starch was wet with water vapor. It would seem that water vapor from
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the upper surface of the steamed bread and the surrounding air entered the surface of the
eggshell by seepage at the interface after the surfaces made contact, and were possibly
easily condensed in the eggshell due to the contact pressure. To form an adhesive bond,
the first step requires interfacial molecular contact due to wetting, then the molecules
diffuse across the interface or even react chemically to establish covalent bonds. Thus,
water penetration through interfaces is associated with heat transport and consequently
water diffusion into the adhesive through the interface. The steamed bread sticks to the
eggshell by absorption and diffusion with the epidermal moisture.

Theoretically, the absorption processes is described by Fick’s second law of diffu-
sion [19,20]. The initial stage of absorption (Mt/M∞ < 0.5) is as follows:

Mt

M∞
= 4(

Dt
πh2 )

1/2
(1)

where Mt and M∞ are the moisture contents at time t and at equilibrium, respectively. D is
the diffusion coefficient and h is the thickness. The diffusion coefficient of water in starch
reduces because the water content evaporates gradually into the air. With increase of the
cooling time, the temperature and water vapor content of the steamed bread decrease,
thus the absorption distinctly decreases. Note that the moisture absorption increases
linearly with t1/2 in the initial stage, then the increase rate slows down and finally leads
to equilibrium. Fick’s second law, which predicts change in concentration with time due
to diffusion, is a parabolic partial differential equation. The diffusion coefficient D is an
important physical quantity describing the diffusion velocity. The larger the value of D, the
faster is the diffusion. This equation describes the change of the concentration of matter at
each point in the medium due to diffusion, under conditions of unstable diffusion. The law
of material concentration variation with time and location can be obtained by solving Fick’s
second diffusion equation according to the initial conditions and boundary conditions. The
data of time and concentration were applied to Equation (1). If the absorption process
occurs in the atmosphere at moderate relative humidity, the equilibration time may be even
longer. This analysis indicates that the absorption of water by the starch may significantly
hinder diffusion.

In this contact system, surface chemistry may give rise to adhesion under high temper-
ature and pressure. There are three steps to making steamed bread: kneading the flour into
the dough with the yeast water; fermentation; and steaming the bread. An certain amount
of acids including lactic acid may be generated on the surface of steamed bread during
fermentation and steaming, affecting the pH value of the steamed bread’s skin. The lactic
acid probably resulted in primary chemical bonds with calcium carbonate in the present
contact system, leading to high interface adhesion, as shown in Equation (2).

2CH3CH(OH)COOH + CaCO3 = Ca(CH3CH(OH)COO)2 + CO2↑ + H2O (2)

The diffusion increases the adhesive bond strength. As discussed above, diffusion
and absorption are two critical factors of adhesion. Diffusion can be divided into two
parts: water absorbed on the bread skin diffuses into the surface of the eggshell, or seeping
water spreads close to the interface at a slow rate. Absorption was determined by water
diffusion at the adhesion interface. The diffusion was related to the presence of strong
hydrogen bonding interactions between starch and eggshell at the interface. Therefore,
molecular dynamics simulations were employed to analyze the formation of hydrogen
bonds in different hydroxyl groups. This simulation provided information about diffusion
at the interface, allowing molecular insight into the adhesion mechanism.

2.4. Molecular Dynamics Simulations of the Formation of Hydrogen Bond

According to diffusion theory, it is difficult to obtain high adhesion strength when
the interfacial molecules are in directly contact with each other, and it is necessary to
create interfacial diffusion between the polymer molecular chains. The diffusion involves
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a network formed by adhesion at the interface, which leads to the disappearance of the
interface and the generation of a transition zone, and the two phases are connected through
the winding of the diffused molecules or chain segments and their cohesion to form a
strong adhesive joint. Macroscopic physical quantities are predicted and calculated by
the molecular dynamics method through simulating the microstructure and motion of
the system’s molecules [21–23]. An image of the microstructure, particle motion and
the relationship with the macroscopic properties of material can be provided, and it can
reveal the macroscopic properties and processes of many substances. Molecular dynamics
simulation experiments were conducted using the For cite module of Materials Studio
software, to study the bonding mechanism between the starch and calcium carbonate [24].

The molecular dynamics simulations were employed to analyze the formation of
hydrogen bonds in the steamed bread and eggshell. The simulation provided information
about the diffusion at the interface, allowing for molecular insight into the adhesion
mechanism. In order to study the diffusion rate of the starch molecules on the surface
of calcium carbonate under different temperatures, the mean square displacement of
hydrogen atoms in starch molecules was calculated to obtain the coefficient of diffusion
and characterize the compatibility between starch and calcium carbonate. Therefore, the
mean square displacement (MSD) curves of hydrogen atoms in starch molecules at these
temperatures were obtained from the molecular dynamics simulations.

The main ingredient of the steamed bread is starch [25], which is a high-molecular
polymer composed of monosaccharides (glucose) [26] and contains a large number of
dangling hydroxyl groups in the molecular chain (Figure 3a). Eggshell has a highly miner-
alized structure composed of calcite crystals with many stomata distributed on the surface
(Figure 3b). According to the measurements taken by energy dispersive spectroscopy (EDS),
the elements contained in the eggshell were mainly calcium, carbon, and oxygen (mainly
CaCO3) (Figure 3c) [27]. Optimized five-layer calcium carbonate has a molecular size of
24.26 Å × 24.95 Å, (104) and the crystal face is used as the adsorption plane of the starch
molecule [28–30].

A supercell was created by replicating the (104) crystal face three to five times the size
of the unit cell in the X and Y directions. The 3D crystal slab was created by five layers
of calcium carbonate molecules (Figure 3d). A fixed constraint was applied to the calcite
crystal. The structure of starch, shown in Figure 4a, consists of five glucose molecules.
The mechanism of the functional groups in starch was simulated using a polymer model
formed by the dehydration condensation reaction of five glucose molecules. This structure
was optimized using the smart algorithm and the COMPASS force field. The initial distance
between the starch molecule and the calcite crystals was4.0 Å. A vacuum space on top of
the starch molecule of 40 Å was established to restrict its interaction with the uppermost
atom layer of the starch and to enhance computational efficiency [31].

Ten water molecules ware added in the model to simulate the water environment in
the steamed bread. The molecular dynamics model is shown in Figure 3d. The COMPASS
force field was employed to simulate the interaction between polymers and inorganic
molecules. The COMPASS force field can accurately and reasonably represent hydrogen
bonding [32]. In the present work, the critical distance for hydrogen bonding was set to
2.5 Å [33].
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Calcium carbonate crystals were placed on the bottom and fixed at the beginning of
the simulation. Periodic boundary conditions were applied in the plane containing the
interface of the two layers, to simulate an infinite contact area. The whole model was
simulated under the NVT ensemble and the simulation temperatures were set to 323.15 K,
333.15 K, 343.15 K, 353.15 K, 363.15 K, 373.15 K, and 393.15 K in order to simulate the
adhesion between the steamed bread and egg shell. In Figure 4c, the axis represents the
acceleration voltage of the excited element. Figure 4c shows that the eggshell had a highly
mineralized structure composed of the calcite crystals with many stomata distributed on
the surface. According to the measurements of EDS, there were elements of carbon, calcium,
and oxygen at the adhesion interface.

The diffusion was analyzed theoretically to understand the structure of the solids, the
state of bonding of atoms, and other mechanisms. In order to study the diffusion rate of
the starch molecules on the surface of calcium carbonate under different temperatures, the
mean square displacement (MSD) of hydrogen atoms in starch molecules was calculated
to obtain the coefficient of diffusion and characterize the compatibility between starch
and calcium carbonate [34]. Therefore, the mean square displacement (MSD) curves of
hydrogen atoms in starch molecules at these temperatures were obtained (Figure 4a) from
the molecular dynamics simulations. It is concluded from the curves that in the first 30 ps,
there was no equilibrium state during the diffusion process and the values were unstable.
After 30 ps, the MSD curve is a straight line; the curve after 30 ps is linearly fitted and the
slope of the straight line was calculated (Figure 4b).

According to the formula of the diffusion coefficient and MSD (Nandi et al., 2012) [35]:

D = lim
t→∞

1
6t

〈
|r(t)− r(0)|2

〉
(3)

where D is diffusion coefficient; t is time; |r(0) − r(t)|2 are the square values of atomic
displacement. The diffusion coefficient is one sixth of the slope in Figure 4b, and is shown
in Table 1. The diffusion coefficient depends on many factors; diffusion is affected by
the contact time and bonding temperature. When polymers are bonded to each other,
higher temperatures and longer time generally lead to stronger diffusion. The molecular
diffusion coefficient represents the diffusion capacity. According to Fick’s law, the diffusion
coefficient depends on the type of the diffused substance, the diffused medium, and its
temperature and pressure.

Table 1. Coefficient of diffusion.

Temperature/◦C Slope of MSD Diffusion Coefficient/A2·ps−1

50 1.66 0.28
60 1.51 0.25
70 4.37 0.73
80 5.30 0.84
90 7.12 1.19

100 9.50 1.58
120 3.16 0.53

The interaction energy of the steamed bread and eggshell was calculated to determine
the stability of the bonding interface at different temperatures. The intermolecular interac-
tion energy was calculated as the total energy of each system under a stable configuration.
The interaction energy was calculated using the following Equation (4).

Einteraction=Etotal − (Esurface + Epolymer) (4)

where Etotal is the energy of the surface of the calcium carbonate and the starch molecules;
Esurface is the energy of the surface without the starch molecules; Epolymer is the energy
of the starch molecules without the surface. Surface energy is an important parameter,
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which is required to break the chemical bonds between molecules when creating a material
surface. Surface energy is an important factor affecting adhesion strength. More heat is
required to cut through surface atoms, as surface atoms have higher heat than atoms inside
a substance. The surface-energy calculation method requires the structural optimization of
the slab model after cutting. The principle of surface-energy calculation is that the energy
required to cut the block into crystalline surfaces is equivalent to the energy required to
form two new surfaces. In the calculation of surface energy, the upper and lower surfaces
should be optimized at the same time. The intermolecular interaction energy was calculated
as the total energy of each system under a stable configuration. The action of bonding
occurs at interfaces. Good wetting and bonding are necessary to achieve the formation
of good adhesive force. Reducing the surface energy or increasing the surface energy of
the adhesive can enhance the wettability of the adhesive, thus improving the adhesive
strength. Many environmental conditions affect the performance of adhesives. One of the
most important environmental factors is temperature. A small change in temperature can
have a significant impact on the rate of adhesion. Temperature affects the bonding strength
of adhesives; the higher the temperature is, the faster the glue dries.

Figure 5 shows the interaction energy at different temperatures.
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Dried starch is generally not sticky, because the molecules in the dried starch granules
form an extremely strong associative state due to the intermolecular hydrogen bond [36].
As shown in Figure 6, the starch slurry in the steamed bread was heated and the water
molecules entered into the amorphous regions of the starch granules, and then the hydrogen
bonds were broken among the starch molecules to eliminate the association in the molecular
chain. The intermolecular hydrogen bonds in the crystalline regions of the starch granules
were destroyed under high temperature and the starch irreversibly and rapidly generated
a viscous starch paste.
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It was found that the diffusion coefficient D fluctuated from the simulation results
slightly at 50 ◦C, as shown in Table 1. The diffusion coefficient increased suddenly at
the temperature increase from 60 ◦C to 70 ◦C. At 100◦C, the diffusion coefficient reached
the maximum value of 1.58. However, the diffusion coefficient of the hydrogen atoms
decreased at a temperature of 120 ◦C. The gelatinization of wheat starch is divided into three
stages: (1) In the reversible water-absorption stage at relatively low temperatures, the water
molecules are introduced into the amorphous part of the starch granules, and the hydrogen
bonds in the crystal part are not destroyed. Therefore, this stage is reversible, and the starch
particles can be recovered in the birefringence state after drying. (2) Water molecules are
introduced into the microcrystalline area of the starch, and the starch irreversibly absorbs
a large amount of water with the increase of temperature. The volume rapidly expands
and the birefringence phenomenon gradually disappears. For wheat starch, birefringence
disappears completely when it is heated to 65 ◦C. (3) The starch is completely dissolved
in the solution. The increase in the diffusion coefficient at temperatures of 60–70 ◦C is
related to the rapid increase of gelatinization of the wheat starch in the temperature range
60–70 ◦C. The diffusion coefficient reached its maximum value at 100 ◦C, at which point
the diffusion coefficient and the diffusion rate of hydrogen atoms were at their highest. The
compatibility between the starch and the calcium carbon at e surface was the strongest at
this temperature, confirming a solid bonding between the eggshell and the steamed bread
skin at a temperature of 100◦C. However, at 120◦C, the compatibility of the starch and
calcium carbonate molecules decreased, which may be related to hydrogen bond cleavage
at 120 ◦C.

The interaction energy is shown in Figure 6. The interaction energy gradually de-
creased with the increase of temperature, which means that the adhesion between the
starch molecules and the calcium carbonate crystals occurred easily at high temperature
and solidified stably at relatively low temperatures. The simulation results showed that
adhesion between the steamed bread skin and eggshell occurred under high temperatures
and solidified during cooling.

There are two types of hydroxyl groups in starch. One is a primary hydroxyl group
attached to a primary carbon atom, and the other is a secondary hydroxyl group attached
to a secondary carbon atom. The interaction energies of the two hydroxyl groups and
the surface of the calcium carbonate crystals were calculated by the molecular dynamics
method. According to Formula 2, the Einteraction between the surface of the calcium carbon-
ate and the primary hydroxyl groups was −0.74 kcal·mol−1 and the Einteraction between the
surface of the calcium carbonate and the secondary hydroxyl groups was −0.12 kcal·mol−1.
The primary hydroxyl groups have higher interaction energy than the secondary hydroxyl
groups. Therefore, the primary hydroxyl group bonded preferentially to form a stable
hydrogen bond with the oxygen atom in calcium carbonate [37].

According to the 3D model, it can be seen that the hydroxyl groups in the starch along
with the oxygen atoms in the calcium carbonate molecule formed into the hydrogen bond
structures, and the schematic representation of the simulation process is shown in Figure 7.
The hydrogen atoms and oxygen atoms in the hydroxyl groups of the D-glucose monomer
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are covalently bonded. The ability to attract valence electrons is strong, as oxygen atoms
have large electronegativity. Therefore, the oxygen atoms in the hydroxyl group adsorb
electrons in the hydrogen atoms to one side, making the hydrogen atoms almost bare-pore
protons. Because the radius of the proton is extremely small, it can interact with the oxygen
atoms in the calcium carbonate with a lone electron pair and large electronegativity to form
a hydrogen bond. According to the simulation results, only hydrogen atoms in the primary
hydroxyl group reacted chemically to form hydrogen bonds with the calcium carbonate
crystals before 18 ps (Figure 7a). At 18–30 ps, the hydrogen atoms in the secondary hydroxyl
group were also preliminarily involved in forming hydrogen bonds. After 30 ps, according
to the MSD curve, the system balanced towards equilibrium and the hydrogen bonds were
formed by both types of hydroxyl groups (Figure 7b). The OH functional groups improved
adhesion-forming organic–inorganic hybrid chemical bonds. A strong adhesion formed
between the starch molecules and calcium carbonate crystals during cooling.
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Adhesion is considered a reflection of the force necessary to rupture interface bonds
when bodies are separated. The nature of adhesion has been studied extensively. There are
many factors affecting the adhesion of eggshell and steamed bread, such as the components
and structures of eggshell and bread, the water, the temperature, time, and environmental
conditions, adsorption, diffusion, cold shrinkage in water, starch, and calcium carbonate,
adhesion of proteins and glucose, and so on. As we know, eggshell is highly porous, as
shown in Figure 1, a feature of the metabolism of life and of evolution. This porous structure
is helpful for the adsorption and diffusion of water and starch into the eggshell. There are
also many pores in bread, and water is easily diffused in steamed bread. The adhesion of a
surface is strongly related to its wetting. The diffusion coefficient of water is high, and the
moisture absorption is determined by the diffusion of water at the interface. Continued
diffusion leads to the formation of a chemical bond between calcium carbonate atoms and
water vapor atoms at the interface. In other words, there is a “bridge” of bonded atoms
that connects the eggshell and skin of bread. Thus, the interface has achieved a steady-state
structure and strong adhesive bonds can be formed between atoms on the contact surfaces.
Adhesion depends somewhat on the nature of the polymer, but mostly on local physical
conditions. Diffusion depends on many parameters (temperature, etc.); it has been shown
that increasing temperature clearly increases diffusion. Temperature was found to bean
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important factor in the adhesion of eggshell and steamed bread. At high temperatures, the
water vapor was diffused quickly, and the speed of diffusion and the water vapor content
decreased with decrease of temperature. Where the eggshell and starch interact directly
with each other, the starch molecules come into interplay with the others. In the case of
long-chain polymer molecules, molecules of starch are adsorbed onto the eggshell surface.
The adhesion is associated with physical and chemical contributions of the active chains
of polymer molecules. Owing to the direct interaction with starch surfaces, physisorption
and direct molecular bonding coexist at points of contact. The chemisorptions of polymer
chains are explained by the appearance of strong chemical bonds at the contact points.

Although hydrogen bonds are the dominant source of adhesion of the calcium car-
bonate and the starch, there may be other factors involved, such as the nonbonded van
der Waals interactions, which are always attractive and are considered a source of adhe-
sion. Adhesion may be also generated at the interface, by the capillary condensation of
water vapor from the high relative humidity environment and from surface molecular
irregularities interlocking at the interaction on the starch surface. If sufficient water is
present to form a meniscus bridge, the number of contacting and near-contacting asperities
forming meniscus bridges increases with an increase of humidity, leading to an increase in
meniscus force. The combined effect of the contribution of van der Waals and meniscus
forces increases the adhesive force.

3. Experimental Materials and Methods
3.1. Materials and Experimental Details

There are many natural adhesive systems, such as gecko footpads (van der Waals
forces), the secretions of mussels and tube worms (hydrogen bonds), and various biological
processes including cell adhesion to extracellular bio-molecules, or bacterial adhesion [38].
This study paper reports research about the role of starch adhesives in nature as a source of
inspiration. Steamed bread was reheated by high-temperature water steam from boiling
water on a steam drawer, and the egg was cooked in the hot water in the steamer. Then,
the steamed bread and the cooked egg we replaced together ensuring they were in direct
as closely as possible, and finally they were cooled in the ambient air. An interesting
phenomenon of strong bonds can thus be observed when breakfast food is cooked in
everyday life. The experimental procedures are described here as follows. The steamed
bread samples, which were bought from the local store, were reheated in a food steamer
by high-temperature water steam. The steamed bread mainly contained carbohydrates,
crude fiber, protein, and manganese as well as other substances. The eggs were bought at
local supermarkets and generally consumed for breakfast. They were cooked in the boiling
water in the steamer. After cooking, the steamed bread and cooked eggs were immediately
taken out from the food steamer and placed together in contacted with each other as closely
as possible, in a bowl in ambient air to cool for testing. The cooking temperature was
around 100 ◦C, the time of exposure to steam was about 20 min, and the time for sufficient
cooling was about 20 min in ambient air. The experiments were performed many times
when the bread and eggshell were cooked every morning. It is interesting to observe that
the strong bond between the top surface of the steamed bread cooked at high temperature
and the shell of the cooked egg was firmly formed when the steamed bread and eggshell
were in close contact and completely cooled to room temperature after 20 min in ambient
air. In these experiments, the steamed bread and eggs were placed in a steam pot and
heated. Then, the steamed bread and the cooked eggs were removed into the atmosphere
and brought into contact with each other at room temperature. The edge of the bread
was selected for sample preparation after cooling. Finally, the eggshell attached to the
steamed bread’s upper surface was removed carefully to provide the test sample, as shown
in Figure 8. Figure 8 shows the image of the steamed bread’s upper surface and the eggshell
after cooling. It is well known that the steamed bread is made of wheat flour mixed with
water and baking soda. After steaming, the steamed bread became loose and porous with
plentiful water vapor on its skin. The two surfaces of steamed bread and eggshell stuck
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firmly and could not be peeled apart completely after cooling. A skin was formed on the
steamed bread during steaming, and adhered to the surface of the eggshell during cooling
when the steamed bread and eggshell were put in contact with each other. Starch is mainly
composed of two homopolymers of D-glucose, i.e., amylase, a mostly linear glucan, and
branched amylopectin, with the same backbone structure. There are many hydroxyl groups
in the starch chain, among which are secondary hydroxyl groups connected to C-2 and
C-3,as well as one primary hydroxyl group unlinked at C-6. In other words, they can
be easily oxidized in ambient air especially at high temperatures, and may participate in
the formation of hydrogen bonds, ethers, and esters. Starch granules exhibit hydrophilic
properties and strong intermolecular association via hydrogen bonding formed by the
hydroxyl groups on the granule surface [39]. Eggshell, a highly ordered porous ceramic,
contains about 80% calcium carbonate, 15% proteins, and other microelements such as Zn,
Cu, Mn, Fe and Se [40].
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3.2. Analysis of Structure

After cooling, the morphology and structure of the sample were measured by scanning
electron microscope (SEM, S-3000N, Tokyo, Japan) operating at 20 kV. The cross-section
of the test sample was cooled to room temperature and then gold-sprayed. Qualitative
observations of the microstructure and the interface between the steamed bread and the
eggshell were made using SEM, to study its morphology in detail. The observations
were made using a secondary electron detector. Firstly, the overall topography of the
steamed bread and eggshell was measured by SEM to identify the adhesion interface at low
resolution. Resolution is the most basic performance index of SEM. It was necessary that
we should clarify some details using high resolution SEM, so the location of the adhesion
interface obtained from low resolution topography was observed under high resolution
at 7000-fold, which revealed that the steamed bread skin expanded into the holes on the
surface of the eggshell and increased the contact area. Finally, the adhesion of the steamed
bread and eggshell was observed under high resolution at 45,000-fold to obtain details of
the adhesion interface. There are many types of vibrations in molecules, some of which can
cause changes in molecular dipole distance. When the frequency of vibrations is the same
as that of the infrared light, molecules can absorb the energy of the infrared light, forming
the infrared absorption spectrum. Due to their different molecular structures, different
compounds have different characteristic peaks of infrared absorption spectra. Like human
fingerprints, no two compounds are completely consistent. Therefore, Fourier transform
infrared spectrometry (FTIR) is considered a very effective method in the analysis and
identification of polymer materials. This technique offers information about the vibration
of chemical bonds that can be utilized to characterize the microstructure. In structural
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identification, quantitative analysis and chemical kinetics research, analysis can provide
information about functional groups, the position and intensity of the infrared absorption
peaks reflecting the characteristics of molecular structure, thus FTIR can be used to identify
the structure of an unknown substance or determine its chemical groups. FTIR analysis is an
important modern analytical method, and has been widely used to obtain material evidence
in the judicial authentication of samples (including organic and inorganic materials) by
qualitative and quantitative analysis. Not only it can accurately determine materials of all
kinds of chemical composition, but it can also carry out comparative analysis quickly and
efficiently. The microstructure of the adhesion interface of the steamed bread and eggshell
was measured using FTIR, to study the interesting scientific phenomenon presented in
this paper. The FTIR (Nicolet iS50, Thermo Fisher, Waltham, MA, USA) performed sample
testing in the range of 800~4000 cm−1.

3.3. Molecular Dynamic Simulations

A molecular model of the starch–calcium carbonate system was established to study
the bonding mechanism between starch and calcium, based on molecular dynamic methods.
All molecular dynamic (MD) simulations were conducted with periodic boundary condi-
tions and explicit treatment of all atoms in the structures. All charges applied throughout
the whole system were based on the atom parameters from the COMPASS force field, and
the entire model had 960 atoms. All MD simulations were conducted using the canonical
NVT ensemble (constant number of atoms, volume, and temperature). The standard Verlet
algorithm was applied to iterate the equations of motion in the system. The temperature
was controlled using a Nosé–Hoover thermostat with a relaxation time of 0.1 ps. A 1 fs
time step was used and all the simulations were run for a total of 100 ps.

4. Conclusions

The strong-bond case of the steamed bread’s upper surface and the eggshell was
investigated systematically, and the adhesion mechanism based on the multiple hydrogen
bonds in starch molecules has been scientifically discussed according to observations of
the adhesion phenomena and molecular dynamics simulations. This mechanism can be
successfully converted into a starch-based bonding material with potential value in engi-
neering applications. The adhesion mechanism is attributed to the absorption, diffusion,
surface chemistry, and the presence of the multiple hydrogen bond structure at the interface
layer formed by hydrogen atoms in two different active hydroxyl groups, and oxygen
atoms in calcium carbonate. The hydrogen atoms in the primary hydroxyl group in starch
firstly form hydrogen bonds with the oxygen atoms in calcium carbonate at the initial
interface, due to the strong activity of the primary hydroxyl, and then hydrogen atoms in
the secondary hydroxyl group are bonded with the oxygen atoms in calcium carbonate. A
multiple hydrogen bond structure is formed by two types of hydroxyl groups. Based on
the adhesion phenomena and mechanism, the present work provides a design method for
bonding materials, especially oxygen-containing minerals such as building materials. The
current toxic and harmful traditional bonding materials are undoubtedly due to be replaced
by the next generation of bonding materials with environmentally friendly advantages.
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