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Abstract: The lack of suitable lightweight current collectors is one of the primary obstacles preventing
the energy density of aqueous lithium-ion batteries (ALIBs) from becoming competitive. Using
silver nanowire (AgNW) films as current collectors and a molecular crowding electrolyte, we herein
report the fabrication of ALIBs with relatively good energy densities. In the 2 m LiTFSI–94% PEG–
6% H2O solution, the AgNW films with a sheet resistance of less than 1.0 ohm/square exhibited an
electrochemical stability window as broad as 3.8 V. The LiMn2O4//Li4Ti5O12 ALIBs using AgNW
films as the current collectors demonstrated an initial energy density of 70 Wh/kg weighed by the
total mass of the cathode and anode, which retained 89.1% after 50 cycles.

Keywords: aqueous lithium-ion battery; silver nanowire; current collector; energy density;
molecular-crowding electrolyte

1. Introduction

Since the pioneering work of Dahn et al. [1], aqueous lithium-ion batteries (ALIBs)
have made tremendous strides in the past two decades as a highly promising electro-
chemical energy storage technology [2–5]. However, the use of aqueous electrolytes is
a double-edged sword. On the one hand, the high ionic conductivity, non-flammability,
and non-toxicity of aqueous electrolytes confer them with intrinsic safety and low costs
compared to conventional LIBs employing organic electrolytes. The narrow electrochemical
stability window (ESW) of water, on the other hand, severely restricts the working voltages
of ALIBs, resulting in low energy densities. Over the past few years, the discovery that
aqueous electrolytes containing high concentrations of salts, i.e., water-in-salt electrolytes,
can significantly delay the water-splitting reactions has led to intensive research on ex-
panding the ESW, thereby enabling high-voltage ALIBs [6–10]. For instance, ALIBs with
energy densities approaching 200 Wh/kg have been proposed, using LiCoO2 and sulfur
as the cathode and anode, respectively, in conjunction with a water-in-salt electrolyte [10].
Recently, efforts have been devoted to the development of electrolyte systems that enable
high-voltage operation with low-salt concentrations, thereby reducing the cost of organic
salts. Using polyethylene glycol (PEG) as a molecular crowding agent, a new aqueous
electrolyte demonstrated an ESW of up to 3.2 V at a lithium salt concentration as low as
2 m (mol/kg) [11].

Aside from the working voltages and capacities of the active materials, the energy
densities of electrochemical batteries are also affected by non-electrode components such
as current collectors, separators, binders, and encapsulation. In contrast to the intensive
investigations into electrolytes, very little attention has been paid to current collectors for
ALIBs. The vast majority of the published works employed a range of metal foils or meshes
such as stainless steel, aluminum, titanium, and nickel as current collectors for bearing the
active materials. For example, Wang and colleagues examined the ESW of stainless steel
in lithium bis(trifluoromethane sulfonimide) (LiTFSI) aqueous solutions, confirming that
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the ESW could approach 3.0 V as the salt content increased [6]. The Al foils provided an
even larger ESW of up to 4.2 V in the 21 m LiTFSI aqueous electrolyte, owing to the slower
reactions of hydrogen evolution revolution (HER) and oxygen evolution revolution (OER)
caused by the spontaneously formed surface passivation layer [12]. Nonetheless, metal
foils/meshes are heavy and susceptible to fatigue fractures when subjected to mechanical
deformations [13]. Hu et al. reported a self-standing film constructed of high-temperature
welded multi-walled carbon nanotubes (MWCNTs) for ALIB current collectors [14]. The
ESW of the film in the 21 m LiTFSI solution was 3.0 V, which is comparable to that of stain-
less steel. However, the intrinsically low conductivity of carbon-based nanomaterials may
diminish the electron transport capabilities of such current collectors [15–17]. Identifying
ideal current collectors that are lightweight, highly electrically conductive, and chemically
inert to both active materials and electrolytes remains an open question for boosting the
energy densities of ALIBs.

Herein, we propose the use of silver nanowires (AgNWs) as current collectors for
ALIBs. Metal nanowires have been investigated extensively for the fabrication of flexi-
ble/stretchable electronic devices due to their unique one-dimensional nanostructure and
physical properties [18–20]. Among the various metal nanowires, AgNWs have gained
the most attention due to their exceptionally high electrical conductivity, good mechanical
strength, and modest cost of preparation [21–23]. We found that the current collector
comprising AgNWs with a sheet resistance of less than 1.0 ohm/sq. provided an ESW
of 3.8 V in the 2 m LiTFSI–94% PEG–6% H2O electrolyte, which is sufficient for a variety
of commercial energy storage materials. The model ALIBs utilizing AgNWs films as the
current collectors and LiMn2O4 (LMO) and Li4Ti5O12 (LTO) as the active materials showed
an energy density of 70 Wh/kg when considering the total weight of the cathode and anode.
It is hoped that this strategy will assist in the development of optimal current collectors
for ALIBs.

2. Experimental Section
2.1. Preparation of Electrolytes

The molecular crowding electrolyte (2 m LiTFSI–94% PEG–6% H2O) was prepared
by mixing polyethylene glycol (PEG, with an average molecular weight of 400, Aladdin,
Shanghai, China) with ultrapure water (18.2 MΩ) at a weight ratio of 94:6. Then, the mixed
solvent was bubbled with argon for 15 min to eliminate dissolved oxygen. Finally, LiTFSI
(Sigma-Aldrich, Saint Louis, MO, USA) was dissolved into the PEG–H2O mixed solvent at
a predetermined concentration of 2 m (mol/kg).

2.2. Preparation of AgNW Films

The aqueous dispersion of AgNWs (average diameter and length of 22.5 nm and
24.5 µm, respectively, as shown in Figure S1) was provided by Xingshuo Nano Technology
(Suzhou, China). Firstly, the obtained AgNW dispersion was diluted to a concentration of
0.5 mg/mL. Then, certain amounts of the diluted dispersion were vacuum filtrated through
PTFE membranes (Millipore, pore size 0.45 µm, diameter 50 mm) and air-dried to form
AgNW films with predetermined areal densities.

2.3. Fabrication of Electrodes

Li4Ti5O12 (LTO) powders, LiMn2O4 (LMO) powders, ketjen black (KB) conductive
carbon, and acetylene black (AB) were provided by Annuohe New Energy Technology
(China). Polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) were ob-
tained from Shenzhen Kejing Star Technology (Shenzhen, China). The LMO cathodes,
using AgNWs as the current collectors were prepared as follows. The slurry consisting of
LMO, KB, and PVDF with a weight ratio of 8:1:1 in NMP was firstly blade-coated onto Al
foils (thickness = 16 µm), dried at 80 ◦C, and roll pressed. Then, the AgNW dispersion was
cast onto the top surface of the calendered samples. After drying at 80 ◦C, the samples were
carefully peeled from the Al foil and punched into disc electrodes with a diameter of 16 mm.
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The areal mass loadings of the LMO and AgNWs were controlled to be ca. 5 mg/cm2 and
200 µg/cm2, respectively. The LTO anodes on the AgNW films were prepared following a
similar approach, except that the slurry recipe was LTO:AB:PVDF = 7:1:2. The mass loading
of LTO was about 3 mg/cm2. The LMO cathodes and LTO anodes on the Al foils were also
prepared as control samples.

2.4. Electrochemical Measurements

Cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical
impedance spectroscopy (EIS) were measured on an electrochemical workstation (CHI
660E). The LSV measurements were carried out using a three-electrode configuration, in
which the AgNW film, carbon cloth, and Ag/AgCl in a saturated KCl solution were used
as the working, counter, and reference electrodes, respectively. The electrolyte was the
2 m LiTFSI–94%PEG–6%H2O aqueous solution. CR2032 coin cells were assembled using
a glass microfiber membrane (Whatman Ltd., Maidstone, England) as the separator and
the 2 m LiTFSI–94%PEG–6%H2O as the electrolyte. The cycling tests were performed on a
Neware battery testing system at room temperature. For the LMO//LTO battery cycling
tests, the full cells were charged and discharged within 1.0–3.5 V. The EIS of the full cells
was tested in the frequency range of 10−2–105 Hz.

2.5. Characterization

The sheet resistance (Rs) of the electrodes was measured using a source meter (Keithley
2450, Beaverton, OR, USA) coupled with a four-probe clamp. The static contact angles
were measured on a contact angle tester (JC2000, POWEREACH). Field-emission scanning
electron microscopy (SEM) images were recorded on an SU8110 (Hitachi, Tokyo, Japan)
at an accelerating voltage of 5 kV. X-ray diffraction (XRD) patterns were measured on a
diffractometer (Panalytical Empyrean Series 3, Almelo, Netherlands). The measurements
were carried out at 5◦/min with Cu Kα radiation (λ = 1.541 Å). The element contents were
analyzed by X-ray photoelectron spectroscopy (XPS) on a spectrometer (Thermo Scientific
K-Alpha, Waltham, MA, USA).

3. Results and Discussion

To examine the electrochemical stability window of the AgNW films in the molec-
ular crowding electrolyte, a series of AgNW films with areal densities in the range of
100–500 µg/cm2 were prepared. The AgNWs were densely packed into three-dimensional
interconnected conducting networks (see the inset in Figure 1a for an example). As shown
in Figure 1a, the sheet resistance gradually reduces from 1.92 to 0.50 ohm/sq. when the
areal density of the AgNWs increased from 100 to 500 µg/cm2. The AgNW film with an
areal density of 200 µg/cm2 showed a sheet resistance of 0.97 ohm/sq., which is about half
of that with an areal density of 100 µg/cm2. The electrochemical stability windows (ESW)
of the various conductive materials in the 2 m LiTFSI–94% PEG–6% H2O, also referred to as
the “molecular crowding electrolyte” [11], are shown in Figure 1b. Using a Au electrode as
a reference, the results clearly revealed that this electrolyte was more stable than the well-
known water-in-salt (WIS) electrolyte [6]. The ESW of the 2 m LiTFSI–94% PEG–6% H2O
on the Au electrode achieved 3.3 V. Comparatively, the ESW was only 2.5 V in the 21 m
LiTFSI [12]. This improved ESW should be primarily attributed to the inhibition of the
hydrogen evolution reaction (HER) of the water by the crowding agent PEG. In this molec-
ular crowding electrolyte, the AgNW films with areal densities of 100 and 200 µg/cm2

exhibited significantly wide ESWs of 5.0 and 3.8 V, respectively, which might compete with
commonly used Al foils for aqueous LIBs (Table S1). It is also worth pointing out that
the ESW of the AgNW films decreased dramatically when their areal densities surpassed
300 µg/cm2. Additionally, the cathodic peaks between 2.0 and 3.0 V vs. Li+/Li, which
should be ascribed to the reduction of silver oxides on the NW surfaces [24], gradually
increased as the AgNWs accumulated. Due to its low sheet resistance and reasonably wide
ESW, the AgNW film with an areal density of 200 µg/cm2 was selected as the current
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collector candidate for further investigations. In addition, the ESWs of the AgNW films in
some other aqueous electrolytes, such as 2 m LiTFSI and water-in-salt-type electrolytes, are
much narrower than those in the molecular crowding electrolyte (as shown in Figure S2).
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Figure 1. Sheet resistance and electrochemical stability window of AgNW films. (a) Sheet resistance
of AgNW films with various areal densities. The inset in (a) shows one typical SEM image of the
AgNW film of 200 µg/cm2. (b) Linear sweep voltammetry (LSV) curves of various conductive
materials under a scan rate of 10 mV/s in 2 m LiTFSI–94%PEG–6%H2O electrolyte.

The primary property of appropriate current collectors is that they remain electro-
chemically inert within the operating potential window when specific active materials are
loaded onto them. We performed CV tests in a three-electrode baker cell to confirm the
electrochemical stability of the AgNW films. Figure 2a,b show the CV curves of the selected
AgNW film of 200 µg/cm2 at 3.7–4.7 V and 1.3–3.0 V vs. Li+/Li for 20 cycles. These two
potential windows correspond to the working windows of LMO and LTO, two commer-
cially available active materials for aqueous LIBs. Except for the first run, the AgNW film
remained relatively stable during the 20 CV scans. The curves were stable when cycled
within the range of 3.7–4.7 V vs. Li+/Li, with the exception of an apparent anodic peak in
the first positive scan, which could be attributed to the oxidation of Ag [25,26]. Further-
more, as the scan progressed, the polarization current gradually decayed. When cycled at
relatively low potentials within 1.3–3.0 V vs. Li+/Li, the AgNW film exhibited a cathodic
peak corresponding to the reduction of silver oxides, which vanished in subsequent scans.
The HER reaction, on the other hand, was always present, despite the polarization current
remaining relatively low (~50 µA/cm2). Figure 2c shows a comparison of the XRD curves
of the AgNW films before and after the CV scans. The patterns appeared almost identically
for all three samples. Diffraction peaks at 38.1◦, 44.3◦, 64.5◦, 77.6◦, and 82.4◦ were always
visible, corresponding, respectively, to the planes (111), (200), (220), (311), and (222) of
typical faced face-centered cubic Ag crystals [27,28]. The oxidation of the AgNWs within
3.7–4.7 V vs. Li+/Li was extremely harmful because the oxides produced on the surfaces
severely reduced the electrical conductivity of the AgNW film. Furthermore, the oxides
can dissolve in the aqueous electrolyte, possibly causing the AgNW current collector to
degrade or even fail. Therefore, XPS and SEM analyses of the AgNW film were carried
out to investigate its electrochemical stability within such a potential window. Figure S3
displays the XPS survey scan profiles of the AgNW film before and after the CV tests, which
were very similar to each other. Figure 2d,e exhibit high-resolution profiles of Ag 3d and O
1s, which confirm that the atomic contents of Ag and O on the AgNW surfaces remained
nearly constant after 20 cycles of CV scans [29–32]. Furthermore, the SEM image in Figure 2f
shows that the morphology of the AgNW percolative networks had not changed. These
findings are consistent with the CV results. All of the above results indicate that the AgNW
film is electrochemically inert in both potential windows and can be used as a current
collector to load LTO and LMO.
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Figure 2. Cyclic stability of AgNW film (areal density of 200 µg/cm2) in the molecular crowding
electrolyte. (a,b), Cyclic voltammetry curves of the AgNW film within 3.7–4.7 V vs. Li+/Li and
1.3–3.0 V vs. Li+/Li at a scan rate of 0.5 mV/s. (c) XRD patterns of the AgNW film before and after
cyclic voltammetry tests. The standard card of Ag (JCPDS PDF#25-1325) is also presented. (d) XPS
patterns of Ag 3d of the AgNW film before and after cyclic voltammetry tests. (e) XPS patterns of O
1s of the AgNW film before and after cyclic voltammetry tests. (f) Typical SEM image of the AgNW
film after 20 cycles of cyclic voltammetry tests within 3.7–4.7 V vs. Li+/Li.

To investigate the effect of the AgNW films as current collectors for aqueous LIBs,
a typical spinel LMO and LTO were selected as the cathode and anode active materials,
respectively [33,34]. The particle sizes, XRD patterns, and morphologies of the two types
of powders are depicted in Figure S4. The electrodes were fabricated by coating AgNW
dispersion on the LMO//LTO electrodes prepared using the standard slurry-casting tech-
nique and then by removing the supporting Al foils. As exhibited in Figure S5, the AgNW
films (200 µg/cm2) on top of the LMO and LTO electrodes had the same morphology as
those produced by vacuum filtration. In addition, it should be mentioned that press rolling
prior to AgNW dispersion coating is crucial for fabrication. Figure S6 demonstrates that
after press rolling, the surfaces of the LMO- and LTO- electrodes became smoother and
had improved wettability to the aqueous AgNW dispersion, which ensured the uniform
distribution of the AgNWs on their surfaces. The CV curves of the resultant LMO and
LTO electrodes in the molecular crowding electrolyte are shown in Figure 3a,d. The CV
measurements were carried out in a three-electrode cell at a scan rate of 0.1 mV/s using
an oversized activated carbon electrode as the counter and an Ag/AgCl electrode as the
reference. The CV curves in Figure 3a display two pairs of redox peaks, which are in-
dicative of the insertion/extraction of Li ions from LMO [35,36]. Note that the area of the
CV curve of the AgNW-based electrode is larger than that of an Al foil-based electrode,
suggesting that the AgNW-based current collector can induce higher specific capacities of
LMO. A similar trend was also found in the CV curves of the LTO electrodes using the two
different current collectors [37]. As shown in Figure 3d, the electrode using the AgNWs
as the current collector offered a larger CV loop than that using Al foil. Figure 3b,e give
the GCD curves for the LMO- and LTO- electrodes in the three-electrode cells. Compared
with the electrodes on Al foil, the use of AgNWs as the current collector was found to
efficiently enhance the specific capacity and cycling stability of both the LMO and LTO
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electrodes. Under a current density of 14.8 mA/g, the LMO electrode on AgNWs showed a
discharged capacity of 101 mAh/g (based on the mass of the LMO) during the first cycle,
which remained with nearly no change over 30 charging/discharging cycles. In contrast,
the LMO electrode on Al foil decayed rapidly from 89.5 mAh/g to 34.6 mAh/g during
30 charging/discharging cycles. The LTO electrodes, however, showed relatively stable
discharge capacities when cycling at 17.5 mA/g, regardless of whether the current collector
was AgNWs or Al foil. The LTO on AgNWs had a specific capacity of 125.1 mAh/g (based
on the mass of the LTO), which gradually decreased to 109.5 mAh/g after 30 cycles. When
utilizing Al foil, the LTO electrode showed extremely low charging/discharging efficiencies,
while the discharged capacities were comparable to those on AgNWs. Figure 3c,f show
cross-sectional SEM images of the LMO and LTO electrodes on AgNWs, respectively. It can
be seen that the AgNWs were compactly packed on the LMO and LTO electrodes, allowing
for strong connections between the active material powders and the current collector.
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Figure 3. Cyclic voltammetry (CV) curves of (a) LMO and (d) LTO on AgNWs and Al foil current
collectors in 2 m LiTFSI–94% PEG–6% H2O at 0.1 mV/s. Galvanostatic charge–discharge (GCD)
curves of (b) LMO and (e) LTO on AgNWs and Al foil current collectors under the current densities
of 14.8 mA/g and 17.5 mA/g, respectively. Cross-sectional SEM images of (c) LMO on AgNWs and
(f) LTO on AgNWs.

We also investigated the electrochemical properties of the aqueous full cells using
LMO on AgNWs and LTO on AgNWs as the cathode and anode, respectively. Again,
the molecular crowding electrolyte was used as the electrolyte. The capacity ratio was
controlled at about 3:2 (cathode:anode). As shown in Figure 4a, the CV curve of the resultant
full cell exhibited a pair of redox peaks located at around 3.0 V and 2.0 V, respectively.
The results indicated that the transport of Li ions between the cathode and the anode
supported by AgNWs is highly reversible. Figure 4b shows the galvanostatic charge–
discharge curves of the full cell based on the AgNW-based current collectors at a current
density of 17.5 mA/g (based on the mass of the LTO). The cell had an initial specific capacity
of 39.6 mAh/g (based on the total mass of active materials on the cathode and anode) and
showed capacity retention of 89.1% over 50 charge/discharge cycles. In comparison, the
full cell using Al foil as the current collectors (results shown in Figure S7) showed a higher
initial specific capacity (58.2 mAh/g) but worse cycling stability. The discharge capacity
rapidly decayed to 29.1 mAh/g in 50 cycles. Figures 4c and S8 demonstrate the EIS spectra
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of the LMO//LTO full cells using AgNWs and Al foils as the current collectors before and
after the galvanostatic cycling. The full cell using the AgNW-based current collector always
exhibited a smaller charge transfer resistance (Rct) than that using the Al foil-based current
collector, which can be attributed to the tight contact of the AgNWs with the active material
particles and the intrinsically low internal resistance of AgNWs.
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Figure 4. Electrochemical properties of aqueous LMO//LTO full cells using AgNWs as current
collectors. (a) Cyclic voltammetry curve of the LMO//LTO full cell under a scan rate of 0.1 mV/s.
(b) Galvanostatic charge–discharge behavior of the LMO//LTO full cell under a current density of
17.5 mA/g (based on the mass of the LTO) for 50 cycles. (c) Nyquist plots of as-assembled LMO//LTO
full cells using AgNWs and Al foil as current collectors. (d) Energy densities (based on the total
mass of the cathode and anode) and the Coulombic efficiency of the full cells cycled under a current
density of 17.5 mA/g (based on the mass of the LTO).

Figure 4d compares the energy densities and Coulombic efficiencies of the two
LMO//LTO full cells using different current collectors. The energy density was calculated
based on the total mass of the cathode and anode, including the mass of the active materi-
als, conductive carbon, polymer binder, and current collectors. The total mass of the two
electrodes for the AgNW-based cell was 35.6 mg, which was much lower than that of the Al
foil-based cell (53.6 mg). Therefore, the two cells exhibited similar initial energy densities,
although the initial specific capacity of the AgNW-based cell was relatively lower. The full
cell using AgNWs as the current collectors showed an energy density of 69.3 Wh/kg, which
was maintained at 61.7 Wh/kg after 50 cycles. These values are better than most ALIBs
using metal foils/grids as current collectors (see Table S2) and are competitive for current
commercial aqueous batteries such as lead-acid batteries [38,39]. In addition, in terms of
the Coulombic efficiency, the AgNW-based full cell showed both more stable efficiency
values and also a better initial efficiency, as high as 75.1%, which is far greater than that of
55.3% in the case of the Al foil-based full cell. Moreover, the cost of the AgNW film used
in this study was approximately 40 USD/m2 at an areal density of 200 µg/cm2, which is
approximately 50 times that of conventional Al foils. Through large-scale wet-chemical
synthesis, the price of AgNWs is anticipated to decrease significantly.

4. Conclusions

In this work, we investigated the feasibility of using AgNWs as current collectors for
aqueous LIBs. In a molecular crowding electrolyte, the AgNW films with an areal density
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of 200 µg/cm2 exhibited an electrochemical stable window of 3.8 V. By selecting LMO
and LTO as the representative active materials, the AgNW-based current collectors gave
rise to higher specific capacities than conventional Al foils. The resultant LMO//LTO
full cells using AgNWs as the current collectors demonstrated an initial energy density of
69.3 Wh/kg (based on the total mass of the cathode and anode) and a Coulombic efficiency
of 75.1% with a capacity retention of 89.1% over 50 cycles. These results confirm that the
use of lightweight and highly conductive AgNWs is promising for improving the specific
energy density of aqueous LIBs, which thus facilitates their commercialization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238207/s1, Figure S1: Length and diameter statistics
of the AgNWs used in this study; Figure S2: LSV curves of the AgNW film with areal density of
200 µg/cm2 under 10 mA/s in various aqueous electrolytes; Figure S3: Typical XPS profiles of
the AgNW films filtrated on PTFE membranes before and after cyclic voltammetry tests within
3.7–4.7 V vs Li+/Li; Figure S4: Size distribution, XRD pattern, and typical SEM morphology of
the LMO and LTO particles; Figure S5: Top-view SEM images of (a) LMO and (b) LTO electrodes
at the AgNW-coating side; Figure S6: Typical SEM images and static contact angles with AgNW
aqueous dispersion of the electrode surfaces before and after press rolling; Figure S7: Galvanostatic
charge-discharge curves of an aqueous LMO//LTO full cell using Al foil as current collectors cycled
at 17.5 mA/g (based on the mass of the LTO); Figure S8: Nyquist plots of the LMO//LTO full cells
after 50 charge/discharge cycles under the same current density of 17.5 mA/g (based on the mass of
the LTO); Table S1: Electrochemical stability window (ESW) of various current collectors for aqueous
lithium-ion batteries; Table S2: Specific capacity and energy density of full cells based on total mass
of the electrodes. Source: [1,6–8,11,12,40–43].
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