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Abstract: The structure of phosphorus-containing dendrimers has been studied by IR spectroscopy
and optical polarization microscopy. The repeating units of dendrimer molecules are mesogens. This
property arises from the conjugation of the aromatic ring and the hydrazone group. An analysis of
the IR spectra showed that, with an increase in the generation number, the width of the stretching
vibration bands ν(PN) and ν(PO) increases. Difficulties in packing molecules of higher generations
cause conformational diversity. The shape of the dendrimer molecules was determined by analyzing
the increments of dipole moments. Additionally, the modeling of the stacking of repeating links was
performed. The spherical model of molecules does not satisfy the experimental dipole moments of
the dendrimers. The flat disk model is more suitable for explaining step changes in dipole moments.
The liquid-crystalline ordering of dendrimers under the action of applied pressure was found. With
simultaneous heating and uniaxial compression, optical anisotropy appears in dendrimers. It is
associated with the formation of liquid-crystalline order. However, a thermodynamically stable liquid-
crystalline phase is not formed in this case. Dendrimers most likely have disk-shaped molecules.

Keywords: phosphorus-containing dendrimers; IR spectra; dipole moment; microscopy

1. Introduction

Dendrimer molecules can have different spatial shapes. In particular, most dendrimer
molecules are spherical [1]. As a rule, these are conformationally mobile molecules that take
the most compact form in space. Such are, for example, polyamidoamine dendrimers [2].
The molecule also takes on a spherical shape if there are many branches. Thus, dendrimers
with a cyclotriphosphazene core have a spherical shape [3]. The repeating unit of such a
dendrimer is sufficiently flexible.

If there are anisometrically rigid components, dendrimers can adopt a non-spherical
shape [4]. Non-sphericity is accomplished because the individual dendron and repeating
unit structures control how the dendrimer molecules take their shape.

Because of the variety of dendritic structures, some have mesogenic groups in repeat-
ing units or terminal groups and have liquid-crystalline properties. Therefore, studies
of the mesomorphism of dendrimers are currently being actively conducted [5]. Some
dendrimers acquire liquid-crystalline properties only under simultaneous exposure to heat
and pressure [6].

The repeating units of phosphorus-containing dendrimers include aromatic rings
conjugated with hydrazone groups [7]. This fragment has an elongated shape and is
a typical mesogen. It would be interesting to determine the shape of the molecules of
phosphorus-containing dendrimers. It is important to determine the conditions for the
liquid-crystalline ordering of these dendrimers.

For some linear polymers, the liquid-crystalline state is formed under pressure. Such
pressure-induced mesomorphism was found for 4-methoxybenzoic and 4-ethoxybenzoic

Molecules 2022, 27, 8214. https://doi.org/10.3390/molecules27238214 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27238214
https://doi.org/10.3390/molecules27238214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-3637-5731
https://orcid.org/0000-0001-8487-3578
https://doi.org/10.3390/molecules27238214
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27238214?type=check_update&version=1


Molecules 2022, 27, 8214 2 of 10

acids, but similar studies have not been undertaken for dendrimers [8]. It is interesting
to study the liquid-crystalline ordering in phosphorus-containing dendrimers. Polarizing
microscopy is the most convenient method for observing liquid-crystalline order. We will
attempt to obtain the liquid-crystalline state of phosphorus-containing dendrimers.

2. Results
2.1. Optical Microscopy

Observations made with a polarizing microscope showed that phosphorus-containing
dendrimers are amorphous substances. Generations G’0 and G1 are crystalline, with
melting points of 106◦ and 75 ◦C, respectively. When samples of dendrimers are heated to a
temperature of 250 ◦C, the substance becomes liquid. The optical anisotropy characteristic
of the mesophase is not detected.

Pressure and high temperatures lead to the appearance of an anisotropic mesophase
in dendrimers. Under the action of pressure on dendrimer samples at high temperatures, a
liquid crystal order arises. When the load is removed, the order disappears.

The transitions observed for generations G’1–G’10 dendrimers to an anisotropic state
were recorded using photographs. It can be seen that the texture disappears when the
pressure is removed (Figure 1). An aromatic ring conjugated with a hydrazone group in
the dendrimer is a typical mesogen.

Experiments with the simultaneous influence of temperature and pressure were con-
ducted. The relationship between temperature, pressure, and generation number is es-
tablished. The temperature at which liquid-crystalline order occurs increases for high-
generation dendrimers.

This dependence is significant at temperatures below 120–140 ◦C, while at higher
temperatures it is weak. The required pressure increases as the temperature of the sample
decreases. It gradually decreases to a value of the order of 10 kg/cm2 at higher temperatures
and depends little on the generation number. The liquid-crystalline order is fixed upon
cooling and maintaining the applied pressure.

At temperatures around 300 ◦C, the destruction of dendrimers begins. The induced
liquid crystal order is preserved due to interdendron “crosslinks”. It is fixed when the
pressure is removed and the sample is cooled.

Planar repeating units of the dendrimer determine their ability to self-organize. Den-
drons are packed into a disk-like structure (Figure 2). The presence of periodic branching
does not facilitate the stacking of dendrons, like disks. For this reason, in addition to
heating, the application of pressure is necessary. This creates conditions for a denser
arrangement of repeating units due to conformational rearrangements.
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(2), and G9′ (3) obtained at a temperature of 250 ◦C; under pressure (a) and without pressure (b). The
polarizer was oriented from east to west. The analyzer oriented the direction of oscillation from north
to south.
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Figure 2. The first-generation dendrimer’s molecular structure [9]. The inset shows the fragment of
the repeating unit that corresponds to it.

2.2. Dipole Moments

An analysis of the dipole moments indicates the disk-like shape of the dendrimer
molecules. The modeling of the stacking of repeating units is consistent with a similar
shape of molecules. Dipole moments in linear polymers are known to determine the shape
of molecules. The dipole moment of flexible-chain polymers is in the tens of debyes, while
the dipole moment of rigid-chain polymers is in the thousands of debyes [10].

Spherical dendrimers with low conformational mobility have a small dipole moment.
The dipole moment of the phosphorus-containing dendrimer of the G’11 generation is
300 D [9]. To analyze the shape of dendrimers, let us consider how the dipole moment
increases with an increase in the number of generations. One interesting feature is striking:
the dipole moment for generations 1 to 3 increases by the same value for dendrimers with
different end groups (Figure 3). This pattern persists for higher generations (Table 1).
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Figure 3. Dipole moments (D) are increased in steps based on the number of generations
(N - dendrimers with terminal chlorine atoms, � - dendrimers with oxybenzaldehyde termi-
nal groups).
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Table 1. Analysis of dipole moments of molecules of phosphorus-containing dendrimers.

Gn Number of P=S Groups µ, D (Gn) ∆µ, D (Gn) µ, D (Gn’) [9] ∆µ, D (Gn’)

0 1 3.03 - 3.03 -
1 4 8.43 5.4 8.27 5.24
2 10 14.24 5.81 14.63 6.36
3 22 20.00 5.76 20.28 5.65
4 46 30.36 10.36 32.24 11.96
5 94 41.66 11.3 41.27 9.03
6 190 61.84 20.08 66.65 25.38
7 382 - - 90.65 24.0
8 766 138.5 - 132.3 41.65
9 1534 169.8 31.3 168.2 35.9
10 3070 258.0 88.2 - -
11 6172 - - 328.0 -

The spherical model of the molecule does not satisfy the experimental values of
the dipole moments of dendrimers. The flat disk model is more suitable for explaining
experimental data. The shape of the molecule depends on the orientation of the phenylene-
hydrazone fragments. The dipole moment of a dendrimer molecule depends on the parallel
or antiparallel orientation of the polar groups (Figure 4).
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Figure 4. Probable conformations of the repeating unit in dendrimer molecules.

In this case, the probability of complete compensation of the dipole moments of the
individual groups is high. The increment of the dipole moment can be the same if the bond
packing in the dendrons is the same for these generations. A change in packing leads to an
increase in the dipole moment of the dendrimer.

A change in the shape of a dendrimer molecule leads to a change in its dipole moment.
However, this cannot explain the observed large increase in dipole moments. Therefore,
the most probable shape of the molecules of the dendrimer is a disk.

2.3. IR Spectroscopy

In dendrimers, internal rotation around PO and PN bonds is possible [11,12]. There-
fore, attention should be paid to the change in the width of the stretching vibration bands
of these bonds. The bandwidth in the IR spectra depends on the magnitude of internal
stresses in macromolecules. An increase in the number of conformations is accompanied
by an increase in the width of the bands in the IR spectra [13].

An analysis of the IR spectra showed that with an increase in the generation number,
the width of the stretching vibration bands ν(PN) and ν(PO) increases (Figures 5 and 6).
This indicates the conformational diversity of these fragments. In the packing of higher
generations, steric hindrances arise. They prevent the achievement of the most energetically
favorable conformational states. This diversity leads to a corresponding broadening of the
bands in the IR spectra. They are practically invisible in the Raman spectra.
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series of phosphorus-containing dendrimers.
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3. Discussion

The liquid-crystalline order of dendrimers is similar to the mesomorphic order of
linear polymers. In the case of dendrimers, this effect is determined by the shape and the
cooperative intramolecular interaction of the dendrons in the molecule itself. Cooperative
intermolecular interaction of fragments is realized in a linear polymer chain.
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The modeling of the stacking of molecules is consistent with their disk-like shape.
Molecule sizes correspond to experimental data [14]. The experimentally measured di-
ameter of the 10th-generation molecule, equal to 150 Å, is in good agreement with the
calculated value for a flat stack of dendrons.

Molecular dynamics calculations showed that the combination of “rigid” anisotropic
fragments of the dendrimer and “nodes” of low conformational mobility determines the
disk-like shape of the molecule [15]. It is interesting to note that the absence of such “hinges”
in very rigid aromatic dendrons leads to the spherical shape of the molecules [15].

Our studies have shown that the molecules of phosphorus-containing dendrimers
are disk-shaped. Anisotropic fragments and flexible bonds are required to realize the
liquid-crystalline phase.

The observed phenomenon must be distinguished from piezo-optical effects or pho-
toelasticity. The textures of the observed birefringence differ. The applied pressure for
dendrimers is 2–3 orders of magnitude lower than for linear polymers.

A number of linear polymers containing anisotropic fragments were analyzed. A
phenomenon similar to that observed in dendrimers was not found. Typical photoelastic
patterns for polyethylene terephthalate were observed under a polarizing microscope at
temperatures ranging from room temperature to 220 ◦C. Near the viscous-flowing state of
the polymer, a similar texture is fixed.

We have investigated rigid-chained, amorphous dendrimers that include phosphorus.
It becomes apparent that they exhibit the ability to organize liquid-crystalline order under
pressure. This essentially kinetic state is characterized by reproducibility. It is the limit of
the classical thermodynamically stable liquid-crystalline phase. Of particular interest is the
ability of dendrimer molecules to self-organize. This is determined by their disk shape.

The study of the mechanically induced liquid crystal order of dendrimers is just
beginning. Its existence in other types of dendrimers remains to be seen. The potential
practical possibilities of this effect for optical applications can already be assessed.

We used this technique to study a number of generations of organosilicon dendrimers
with very flexible mobile repeating units. However, no such effect was found. This is
due to the isotropic, spherical shape of the molecules. Detailed temperature-dependent,
wide-angle, and small-angle X-ray diffraction will be the subject of future research.

The use of phosphorus-containing dendrimers makes it possible to obtain sensitive,
specific, and reusable sensors [16]. These dendrimers can be used as chemical and biological
sensors. Fluorescent dendrimers are used for biological imaging.

4. Materials and Methods

We have studied two series of dendrimers, Gn and G’n (Figure 7).
The nucleophilic substitution reaction of 4-hydroxybenzaldehyde with P(S)Cl3 was

the first step [7]. The second step is the Schiff reaction between the aldehyde fragments
and the phosphorohydrazide.

After condensation, the first-generation dendrimer, G1, is obtained. Repeating the
reaction with the sodium salt of hydroxybenzaldehyde gives the second-generation G2
dendrimer. This process is repeated until the formation of the 12th generation of the
dendrimer. Each step of the synthesis was monitored by 31P NMR (81.01 MHz in CDCl3,
Table 2).

The geometric parameters of G’0 and G1 molecules were determined by XRD [9].
The molecular structure of the generations is as follows: the trifunctional core S = P(O)3,
repeating unit –C6H4−CH=N−N(CH3)−P(S)<, terminal groups of 4-oxibenzaldehyde
fragments, –C6H4−CHO.

The IR spectra of the dendrimers were recorded on a Bruker IFS-113v spectrophotome-
ter (Bruker, Germany).
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Figure 7. The sequence of reactions is repeated to produce 12th-generation dendrimers.

To study the optical properties of dendrimers, an MIN-8 polarizing optical microscope
was used. The magnification of the microscope was 31.

The temperature was measured on a Boetius heating table. Photographs of textures
were obtained from a series of 10 generations of a dendrimer placed between glass plates
and placed on a microscope heating stage. Experiments with increased pressure were
conducted manually with a spatula. In addition, a special cuvette that exerts uniform
pressure on the sample was used. The cuvette provided uniform heating of the sample
throughout the entire volume. The base of the cuvette was attached to the heating table so
that the hole in the base coincided with the hole on the heating table for better heat transfer.
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Table 2. 31P NMR chemical shifts of phosphorus-containing dendrimers.

Gn δ(31P) 1

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

G1 52.3 63.1 - - - - - - - - - - -
G’1 52.5 60.4 - - - - - - - - - - -
G2 52.6 62.0 63.2 - - - - - - - - - -
G’2 52.7 62.2 60.6 - - - - - - - - - -
G3 52.7 62.3 62.0 63.2 - - - - - - - - -
G’3 52.7 62.7 62.3 60.4 - - - - - - - - -
G4 52.5 62.7 62.3 62.0 63.1 - - - - - - - -
G’4 52.5 62.9 62.7 62.3 60.4 - - - - - - - -
G5 52.5 63.1 62.7 62.3 62.0 63.1 - - - - - - -
G’5 52.6 63.1 62.9 62.7 62.3 60.4 - - - - - - -
G6 52.6 63.1 62.9 62.7 62.3 62.0 63.1 - - - - - -
G’6 52.5 61.7 61.7 61.7 61.7 61.5 60.0 - - - - - -
G7 - 63.1 63.1 63.1 62.3 62.2 62.0 63.1 - - - - -
G’7 - 63.0 63.0 63.0 63.0 62.7 62.3 60.4 - - - - -
G8 - 63.1 63.1 63.1 63.1 62.6 62.3 62.1 63.1 - - - -
G’8 - 62.9 62.9 62.9 62.9 62.9 62.7 62.3 60.4 - - - -
G’10 - 63.0 63.0 63.0 63.0 63.0 63.0 63.0 62.8 62.4 60.4 - -
G11 - 63.0 63.0 63.0 63.0 63.0 63.0 63.0 62.6 62.4 62.0 - -
G’11 - 63.0 63.0 63.0 63.0 63.0 63.0 63.0 62.8 62.6 62.4 60.4 -
G12 - 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.4 62.2 62.0 -

1– P0–phosphorus core; P1, P2, P3, and P4—phosphorus atoms of the first, second, third, and fourth generation,
respectively.

5. Conclusions

Molecules of phosphorus-containing dendrimers of all generations have an anisomet-
ric structure of repeating units. Therefore, they can exhibit a liquid-crystalline order. This
order is realized only under the simultaneous action of temperature and pressure. When
heated without pressure, these substances remain amorphous.

The observed order is due to anisotropic repeating units and the self-organization
of dendrons. These structural features determine the association of disk-shaped den-
drimer molecules.

By rapidly chilling the samples under pressure, the liquid-crystalline order can be
fixed. This can also be achieved at very high temperatures using dendron crosslinking pro-
cesses. The stable reproducibility of the phenomenon reflects the possibility of its practical
applications. Dendrimers can be used as new optical temperature and pressure sensors.
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