
Citation: Li, Z.; Feng, N.; Li, X.; Lin,

Y.; Zhang, X.; Li, B. New Constructed

EEM Spectra Combined with N-PLS

Analysis Approach as an Effective

Way to Determine Multiple Target

Compounds in Complex Samples.

Molecules 2022, 27, 8378. https://

doi.org/10.3390/molecules27238378

Academic Editors: Siddharth S.

Matikonda and Takahiro Kusukawa

Received: 9 July 2022

Accepted: 20 September 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

New Constructed EEM Spectra Combined with N-PLS Analysis
Approach as an Effective Way to Determine Multiple Target
Compounds in Complex Samples
Zeying Li †, Na Feng †, Xinkang Li, Yuan Lin, Xiangzhi Zhang and Baoqiong Li *

School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
* Correspondence: libq201406@163.com; Fax: +86-750-3299391
† These authors contributed equally to this work.

Abstract: Excitation–emission matrix (EEM) fluorescence spectroscopy has been applied to many
fields. In this study, a simple method was proposed to obtain the new constructed three-dimensional
(3D) EEM spectra based on the original EEM spectra. Then, the application of the N-PLS method to
the new constructed 3D EEM spectra was proposed to quantify target compounds in two complex
data sets. The quantitative models were established on external sample sets and validated using statis-
tical parameters. For validation purposes, the obtained results were compared with those obtained by
applying the N-PLS method to the original EEM spectra and applying the PLS method to the extracted
maximum spectra in the concatenated mode. The comparison of the results demonstrated that, given
the advantages of less useless information and a high calculating speed of the new constructed 3D
EEM spectra, N-PLS on the new constructed 3D EEM spectra obtained better quantitative analysis
results with a correlation coefficient of prediction above 0.9906 and recovery values in the range of
85.6–95.6%. Therefore, one can conclude that the N-PLS method combined with the new constructed
3D EEM spectra is expected to be broadened as an alternative strategy for the simultaneous determi-
nation of multiple target compounds.

Keywords: new constructed spectra; N-way partial least squares; partial least squares; quantitative
analysis; complex samples

1. Introduction

Fluorescence has the advantages of being non-destructive, simple, fast, having higher
selectivity and sensitivity over extinction spectroscopic techniques, and having an in-
herently multidimensional character [1]. Excitation–emission matrix (EEM) fluorescence
spectroscopy can provide complete fluorescence information on measured samples by
covering a wide range of different excitation and emission wavelengths. In recent years,
the EEM technique has been gaining widespread analytical acceptance in many fields such
as environmental [2], cell culture media [3], cosmetics [4], food [5,6], and so on. For a given
sample, a two-dimensional signal that contains peaks from all of the excited fluorophores
can be obtained [7]. For a set of samples, complex three-way data structures with the
dimensions of emission wavelength × excitation wavelength × samples can be formed. On
the one hand, such three-way data structures may provide new opportunities for extracting
useful information for further analysis; on the other hand, they also bring a challenge for
data analysis.

An effective way of extracting characteristic information is to develop useful chemo-
metrics or properly employ the proposed methods. In the past years, a variety of chemomet-
ric methods have been used to analyze EEMs, such as parallel factor analysis (PARAFAC) [8],
alternating trilinear decomposition (ATLD) [9,10] and its variants, N-way partial least
squares (N-PLS) [11], multivariate curve resolution-alternating least squares (MCR-ALS) [12],
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and unfolded partial leasts quares/residual bilinearization (U-PLS/RBL) [13]. The at-
tractive merit of the “second-order advantage” of these methods makes sure that mul-
tiple target compounds can be accurately quantified even in the presence of unknown
interferences [14,15]. Moreover, image moments such as the Zernike moment [16], Wavelet
moment [17], Krawtchouk moment [18], and Tchebichef moment [19] have also been
successfully applied in EEM spectra analysis. Owing to the multiple advantages of the
image moments, such as inherent invariance property, image description capability, and
multi-resolution capability, the overlapping, scatterings, and other interference signals did
not affect the analytical results. Therefore, these advanced chemometric methods open a
window into exploring complex mixtures and avoid the traditional costly, complex, and
time-consuming analytical techniques.

As for EEM spectral analysis, previous studies usually employed the ranges of the
analytes to construct calibration models. Compared with the models on the EEM spectra,
modeling with the characteristic spectra selected via some effective methods might give
models with better performance. More efforts are needed to extract effective and character-
istic spectra for establishing quantitative models and predicting the content of the target
analytes in complex samples.

This study aims to extract characteristic spectra from the original EEM spectra to form
the new constructed 3D EEM spectra and to explore the potential of the N-PLS method
on the new constructed 3D EEM spectra to quantify multiple target compounds. To our
knowledge, there have been no articles that report on the above strategy for quantitative
analysis purposes. Moreover, comparisons were made between the results obtained from
applying the N-PLS method to the original EEM spectra and the PLS method to the
extracted maximum spectra in the concatenated mode.

2. Data Sets
2.1. Data Set 1

This data set was obtained from a public data set (http://www.models.life.ku.dk/
joda/prototype, accessed on 2 April 2021). The samples consisted of three chemicals
(valine–tyrosine–valine (Val–Tyr–Val), tryptophan–glycine (Trp–Gly), and phenylalanine
(Phe)) which were measured via fluorescence spectroscopy in the form of EEM [20]; the
corresponding data set was stored in a three-way array with the sizes of 251 (emission
wavelength points) × 21 (excitation wavelength points) × 26 (sample number). Figure 1
shows the EEM spectra of the three target compounds. As can be seen from this figure, the
three compounds overlap.

Figure 1. The EEM spectra for each target compound in Data Set 1.

http://www.models.life.ku.dk/joda/prototype
http://www.models.life.ku.dk/joda/prototype
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2.2. Data Set 2

The EEMs of 25 samples were measured with a Horiba FluoroMax-4 spectrofluorom-
eter. For the 25 samples, the first 23 samples were the standard samples only containing
magnolol and honokiol, the 24th sample was an extract of Magnoliae Cortex (a kind of
traditional Chinese medicine), and the 25th sample was a spiked sample whichwas spiked
with suitable amounts of standard magnolol and honokiol. A 1.00 cm quartz cell was
used. The excitation wavelengths ranged from 234 nm to 370 nm with 2 nm increments,
and emission wavelengths ranged from 300 nm to 500 nm increments. The corresponding
data set was stored in a three-way array with sizes of 101 (emission wavelength points)
× 69 (excitation wavelength points) × 25 (sample number). The EEM spectra for the two
target compounds (Figure 2A,B) and the Magnoliae Cortex (Figure 2C) are illustrated. As
can be seen from this figure, the spectra of magnolol and honokiol overlapped. There are
some established ways to deal with scatterings in the EEM spectra: in the present study,
we used an interpolation method to solve this problem. In more detail, the scatterings
are first removed and then the missing data are filled through interpolation using new
data consistent with the rest of the EEM spectra [21]. The spectrum without scatterings is
illustrated in Figure 2B.

Figure 2. The EEM spectra for pure magnolol and honokiol with scatterings (A), without scatterings
(B), and Magnoliae Cortex (C).



Molecules 2022, 27, 8378 4 of 13

3. Data Analysis
3.1. The New Constructed 3D EEM Spectra

The steps to obtain the new constructed 3D EEM spectra are illustrated subsequently.
Firstly, the maximum excitation and emission spectra for each target compound were
determined individually based on the EEM spectrum of the corresponding pure solution
(Figure 3A). The data of each extracted spectrum are colored in Figure 3C. Then, the
extracted maximum excitation spectrum and maximum emission spectrum were arranged
as a constructed spectrum (Figure 3B) for a target compound, and its representation of the
data matrix is illustrated in Figure 3D.

Figure 3. The schematic diagram for the constructed spectrum, the maximum excitation and emission
spectra for each target compound (A), the extracted maximum excitation spectrum and maximum
emission spectrum (B), the data of each extracted spectrum (C), the representation of the data matrix (D).

As for the EEM spectra that consisted of multiple target compounds, the maximum
excitation spectrum and maximum emission spectrum were extracted (as illustrated in the
top of Figure 4) for each target compound, respectively, in which the maximum excitation
spectrum and maximum emission spectrum were determined based on the EEM spectrum
of the corresponding pure solution (Figure 3A). Then, the extracted maximum excitation
spectrum and maximum emission spectrum were combined for each target compound
(as illustrated in the middle part of Figure 4). Finally, the combined spectra of each target
compound were constructed again into three-dimensional (3D) spectra (as illustrated in the
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bottom of Figure 4). We named the constructed 3D spectra as the new constructed 3D EEM
spectra. The new data representation of a sample (DC1) can be constructed as illustrated in
the top of Figure 5, and the new data representation of all samples (DC) was constructed as
illustrated at the bottom of Figure 5.

Figure 4. The overall strategy for the construction of the new constructed 3D EEM spectra.
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Figure 5. The process of the data construction.

In the present study, for Data Set 1, the new EEM spectra of 26 samples were arranged
in a matrix with the sizes of 3 (the number of target compounds) × 272 (the sum of excitation
wavelength points and emission wavelength points) × 26 (the number of samples). For
Data Set 2, the new EEM spectra of 25 samples were also arranged in a matrix with the sizes
of 2 (the number of target compounds) × 170 (the sum of excitation wavelength points and
emission wavelength points) × 25 (the number of samples). For each data set, the matrix
(DC in Figure 5) was employed as the input data of the N-PLS method. In our opinion, in
this way, not only the useful and characteristic information can be extracted, but also the
interference information can be eliminated to some extent. It is important to note that the
partial maximum excitation and emission spectra of each target compound can be extracted
as long as the signals are not completely overlapping. Therefore, satisfactory analytical
results can be obtained with the application of some advanced chemometric methods based
on the new constructed 3D EEM spectra.

3.2. N-PLS Method

The N-PLS method is an extension of PLS to handle multi-way data [22] that can
decompose the data array (dependent variable) to parallel factor analysis and then predict
independent variables such as concentrations [23]. Bro et al. described the algorithm in
detail in the original literature [24]. The N-PLS method has successfully been used for
multi-way data modeling in many areas, such as environmental [25], food science [26], and
so on. The determination of optimum latent variables (LVs) is an important step for the
establishment of a stable N-PLS model with high accuracy. In the present study, in order
to avoid overfitting or underfitting problems and to improve the predictive performance
of the established models, leave-one-out cross-validation was used to select the optimum
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number of LVs. The N-PLS method was implemented using the MATLAB toolboxes
(http://www.models.life.ku.dk/algorithms, accessed on 5 June 2021).

3.3. PLS Method

PLS is a multivariate statistical analysis method which aims to find out the relationship
between prediction matrices and response matrices [27]. The PLS method has been success-
fully employed in the determination of multiple components in food [28], drugs [29], and
many other fields. Like the N-PLS method, the selection of the largest potential variables
(LVs) is particularly important [30]. Cross-validation is often used to optimize the number
of LVs to ensure the predictive ability of the model [31]. In the present study, leave-one-out
cross-validation was used to select the optimum number of LVs.

3.4. Regression Modeling and Evaluation

As for the two employed data sets, the calibration and test sets were divided. The
models were developed based on the calibration set and then used to predict the test set.
The statistical parameters, including the correlation coefficient of calibration (Rc), leave-one-
out cross-validation (Rloo-cv), and prediction (Rp) as well as the root mean squared errors of
calibration (RMSEC), leave-one-out cross-validation (RMSECV), and prediction (RMSEP),
were calculated to estimate the reliability and accuracy of the established models and their
predictive ability in practical applications. To be specific, RMSEC explains how good the
model is, RMSECV explains the ruggedness, and RMSEP illustrates the predictive ability
of the model [32]. An excellent model has good model precision and prediction ability with
a higher Rp and a lower RMSEP [33]. Furthermore, to test the reliability of the calibration
results visually, the calculation concentrations and the experimental concentrations of the
target compounds were plotted. Once a calibration model was established, the RMSEC was
defined as follows:

RMSEC =

√√√√√ n
∑

i=1
(yi − ỹi)

2

n
(1)

where yi is the experimental value of the ith sample, ỹi is the calculated value of the ith
sample which is predicted by the model directly, and n is the number of samples in the
calibration set. RMSECV can be calculated as follows:

RMSECV =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(2)

where yi is the experimental value of the ith sample, ŷi is the predicted value of the ith
sample which is estimated by the model when the ith sample is removed (the process
is repeated for every sample in the training set), and n is the number of samples in the
training set. RMSEP can be calculated as follows:

RMSEP =

√√√√√ m
∑

i=1

(
yj − ỹj

)2

m
(3)

where yj is the experimental value of the jth sample and ỹj is the estimated value of the jth
sample in the test set, whereas m is the number of samples in the test set.

4. Results and Discussion
4.1. N-PLS Method on New Constructed 3D EEM Spectra
4.1.1. The Results of Data Set 1

The whole data set was divided into a calibration set (19 samples) and a test set
(7 samples). The optimum number of LVs for each N-PLS model was determined according

http://www.models.life.ku.dk/algorithms
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to the corresponding minimum RMSECV value. Here, the optimum number of LVs for
the determination of Val–Tyr–Val, Trp–Gly, and Phe can be selected as three, five, and five,
respectively. Then the calibration models for the three target compounds can be established.

After the calibration step, the established models were used to predict the concen-
trations of Val–Tyr–Val, Trp–Gly, and Phe in the test set. The statistical parameters for
the evaluation of the established models and their predictive abilities are summarized in
Table 1. For the convenience of observation, the calculation concentrations are compared
with experimental concentrations in Figure 6. As illustrated in Table 1 and Figure 6, good
results were obtained. The established models have high values of Rc and Rloo-cv (higher
than 0.9872) and low values of RMSEC and RMSECV (lower than 0.2335), showing that the
established models have good linearity, high reliability, and accuracy. Moreover, the values
of Rp and RMSEP are higher than 0.9983 and lower than 0.1111, respectively, indicating
that the established models have a good predictive ability.

Table 1. The statistical parameters of the N-PLS models using the new constructed 3D EEM spectra,
the N-PLS models using the original EEM spectra, and the PLS models using the extracted maximum
spectra in the concatenated mode of Data Set 1.

Method Item Val–Tyr–Val Trp–Gly Phe

*N-PLS*1 LVs 3 5 5
Rc 0.9964 0.9999 0.9958

RMSEC 0.1333 0.0254 0.1339
Rloo-cv 0.9951 0.9997 0.9872

RMSECV 0.1553 0.0487 0.2335
Rp 0.9991 0.9993 0.9983

RMSEP 0.0901 0.0961 0.1111
*N-PLS*2 LVs 3 2 5

Rc 0.9957 0.9967 0.9925
RMSEC 0.1457 0.1756 0.1778
Rloo-cv 0.9941 0.9957 0.9808

RMSECV 0.1453 0.1706 0.2512
Rp 0.9999 0.9869 0.9987

RMSEP 0.0812 0.3944 0.0940
PLS LVs 3 4 5

Rc 0.9969 0.9999 0.9963
RMSEC 0.1208 0.0278 0.1241
Rloo-cv 0.9948 0.9997 0.9853

RMSECV 0.1562 0.0511 0.2527
Rp 0.9992 0.9993 0.9984

RMSEP 0.0881 0.0972 0.1020

*N-PLS*1: N-PLS models using the new constructed 3D EEM spectra. *N-PLS*2: N-PLS models using the original
EEM spectra.

4.1.2. The Results of Data Set 2

As for this data set, the whole data set was divided into two groups randomly, the
calibration set includes 17 samples and the test set includes 6 samples. The optimum
number of LVs for the N-PLS model was determined similarly to Data Set 1. The optimum
number of LVs for the determination of magnolol and honokiol were determined as four
and four.

The statistical parameters for the evaluation of the established models and their predic-
tive abilities are summarized in Table 2. For the convenience of observation, the calculation
concentrations are compared with the experimental concentrations in Figure 7. As illus-
trated in Table 2 and Figure 7, good results were obtained. The established models have
high values of Rc and Rloo-cv (higher than 0.9780), and low values of RMSEC and RMSECV
(lower than 4.7487), showing that these models have good linearity, high reliability, and
accuracy. Moreover, the values of Rp and RMSEP are higher than 0.9906 and lower than
4.5444, respectively, indicating that the established models have a good predictive ability.
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Figure 6. Plot of the experimental concentration against the calculation concentration obtained from
the N-PLS method on the basis of the new constructed 3D EEM spectra for Data Set 1. A-1, A-2, and
A-3 are the correlation coefficient of calibration (Rc) for Val–Tyr–Val, Trp–Gly, and Phe, respectively. B-1,
B-2, and B-3 are the correlation coefficient of prediction (Rp) for Val–Tyr–Val, Trp–Gly, and Phe, respectively.

Table 2. The statistical parameters of the N-PLS models using the new constructed 3D EEM spectra,
the N-PLS models using the original EEM spectra, and the PLS models using the extracted maximum
spectra in the concatenated mode of Data Set 2.

Method Item Magnolol Honokiol

*N-PLS*1 LVs 4 4
Rc 0.9928 0.9994

RMSEC 2.3957 0.7081
Rloo-cv 0.9780 0.9976

RMSECV 4.7487 1.4362
Rp 0.9906 0.9974

RMSEP 4.5444 1.4700
*N-PLS*2 LVs 4 5

Rc 0.9894 0.9993
RMSEC 2.8895 0.7442
Rloo-cv 0.9693 0.9962

RMSECV 5.5521 1.8324
Rp 0.9921 0.9978

RMSEP 3.8600 1.4685
PLS LVs 5 4

Rc 0.9974 0.9974
RMSEC 1.4284 1.4275
Rloo-cv 0.9905 0.9919

RMSECV 2.8213 2.6537
Rp 0.9684 0.9781

RMSEP 10.1635 4.0459

*N-PLS*1: N-PLS models using the new constructed 3D EEM spectra. *N-PLS*2: N-PLS models using the original
EEM spectra.
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Figure 7. Plot of the experimental concentration against the calculation concentration obtained from
the N-PLS method on the basis of the new constructed 3D EEM spectra for Data Set 2. A-1 and A-2
are the correlation coefficient of calibration (Rc) for magnolol and honokiol, respectively. B-1 and B-2
are the correlation coefficient of prediction (Rp) for magnolol and honokiol, respectively.

4.2. Comparison with Other Methods

In order to further validate the performance of the proposed strategy, the N-PLS
method has been applied to the original EEM spectra, and the PLS method has been
applied to the extracted maximum excitation and emission spectra in the concatenated
mode, in other words, putting together extracted maximum excitation and emission spectra
for all target compounds in the single row vector).

4.2.1. N-PLS Method on the Original EEM Spectra

As for Data Set 1, the optimal LVs determined for Val–Tyr–Val, Trp–Gly, and Phe
were three, two, and five, respectively, and the corresponding statistical parameters are
illustrated in Table 1. As for Data Set 2, the optimal LVs determined for magnolol and
honokiol were four and five, respectively, and the corresponding statistical parameters are
illustrated in Table 2.

As illustrated in Tables 1 and 2, the established models have high values of Rc and
Rloo-cv (higher than 0.9693), and low values of RMSEC and RMSECV (lower than 5.5521),
showing that these models have good linearity, high reliability, and accuracy. Moreover,
the values of Rp and RMSEP are higher than 0.9921 and lower than 3.8600, respectively,
indicating that the established models have a good predictive ability.
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4.2.2. PLS Method on the Extracted Maximum Spectra in the Concatenated Mode

As for Data Set 1, the optimal LVs determined for Val–Tyr–Val, Trp–Gly, and Phe
were three, four, and five, respectively, and the corresponding statistical parameters are
illustrated in Table 1. As for Data Set 2, the optimal LVs determined for magnolol and
honokiol were five and four, respectively, and the corresponding statistical parameters are
illustrated in Table 2.

As illustrated in Tables 1 and 2, the established models have high values of Rc and
Rloo-cv (higher than 0.9853), and low values of RMSEC and RMSECV (lower than 2.8213),
showing that these models have good linearity, high reliability, and accuracy. Moreover, the
values of Rp and RMSEP are higher than 0.9684 and lower than 10.1635, respectively,
indicating that the prediction ability of the model is not poor. As can be seen from
Tables 1 and 2, the results of the N-PLS method using the new constructed 3D EEM
spectra are comparable to those of the N-PLS method on the original EEM spectra and
the PLS method using the extracted maximum spectra in the concatenated mode. These
obtained results demonstrate that the characteristic spectra were effectively extracted from
the original EEM spectra.

To further check the accuracy of the N-PLS models on the new constructed 3D EEM
spectra, the N-PLS models on the original EEM spectra, and the PLS models on the extracted
maximum spectra in the concatenated mode, an analytical recovery experiment for Data
Set 2 was carried out using a standard addition method, and the results are summarized in
Table 3. The concentrations predicted using the N-PLS models using the new constructed 3D
EEM spectra showed a recovery of 95.6% for magnolol and 85.6% for honokiol. The N-PLS
models using the original EEM spectra showed a recovery of 91.0% for magnolol and 86.7%
for honokiol. The PLS models on the extracted maximum spectra in the concatenated mode
showed a recovery of 89.6% for magnolol and 88.1% for honokiol. The obtained results
demonstrated that the proposed method has better recovery and precision for magnolol and
honokiol. The above results demonstrated that the proposed strategy showed acceptable
analytical performance in the real analytical utility.

Table 3. Determination results of magnolol and honokiol in Magnoliae Cortex sample using
different methods.

Compound Method Magnoliae Cortex
(µg/mL)

Added Sample
(µg/mL)

Added Predicted Recovery (%)

Magnolol *N-PLS*1 9.0 34.8 95.6
*N-PLS*2 10.1 27.0 34.7 91.0

PLS 11.7 35.9 89.6
Honokiol *N-PLS*1 6.6 29.3 85.6

*N-PLS*2 6.8 26.6 29.9 86.7
PLS 8.9 32.3 88.1

*N-PLS*1: N-PLS models using the new constructed 3D EEM spectra. *N-PLS*2: N-PLS models using the original
EEM spectra.

5. Conclusions

In the present contribution, the N-PLS method on the new constructed 3D EEM spectra
was proposed and applied in two Data Sets. In order to display real spectral information
and guarantee the model, the resulting spectral data were preprocessed, such as via scatter
removal. The correlation coefficients of prediction based on N-PLS on the new constructed
3D EEM was above 0.9906, and the recovery values were in the range of 85.6–95.6%.
Therefore, one can conclude that the N-PLS method combined with the new constructed
3D EEM spectra is expected to be broadened as an alternative strategy for the simultaneous
determination of multiple target compounds. Moreover, the comparison of results with the
N-PLS method on the original EEM spectra and the PLS method on the extracted maximum
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spectra in the concatenated mode demonstrated that the satisfactory results of the proposed
strategy are attributed to the proper extraction of the characteristic spectra. In conclusion,
this study has shown that the proposed approach can open a new window to the analysis
of the EEM spectra in the presence of signal overlap.
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