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Abstract: In the present research work, PVFTX-100, PVFSDS, and PVFT-80 sponges were prepared
using polyvinyl-alcohol (PVA) with surfactants triton X-100/sodium dodecyl sulfate (SDS)/Tween 80,
respectively, for the removal of organic solvents from polluted soil/water samples. All three obtained
sponges were further made hydrophobic using dodecyltrimethoxysilane (DTMS). The prepared
sponges were characterized using different spectroscopic techniques and SEM analysis. The peaks
obtained near 1050 cm−1 and 790 cm−1 were attributed to Si-O-C and alkyl side chain C-H stretching
vibration that confirmed the formation of desired sponges. The SEM images showed the random
roughness with a number of protrusions on sponge surfaces, which further played an important
role in the absorption and retention of organic solvents molecules. The Sears method was chosen to
calculate the surface area and pore volume of all the synthesized sponge samples. Among all three
prepared sponges, the PVFTX-100 sponge showed a high pore volume and large surface area, with
a maximum percentage absorption capacity of 96%, 91%, 89.9%, 85.6%, and 80 for chlorobenzene,
toluene, diesel, petrol, and hexane, respectively, after eightcycles. The organic solvent uptake using
PVFTX-100, PVFSDS, and PVFT-80 sponges is quite a unique and simple technology, which could be
employed at a large scale for contaminated soil/water systems.

Keywords: hydrophobic; sponges; contaminated soil/water system

1. Introduction

The oil/organic solvent spills, due to the rupturing of the pipeline, tanker collision,
and industrial spills in the ocean and soil surfaces are hazards to the marine ecosystem,
as well as tohuman beings [1,2]. In the last decade or so, several oil spill accidents have
been reported. To name a few, around 1092 tons of diesel oil were spilled in Shelby County,
Alabama, United States [3], a heavy fuel oil spill ~2500 tons was reported in the Saronic
Gulf, Salamis, Greece in 2017 [4], crude oil (~138,000 tons) was spilled in the East China sea
in 2018 [5], petroleum oil around 1240 tons was spilled in Walsh County, North Dakota,
United States in 2019 [6], and the Colonial Gasoline oil pipeline (38,000 tons) spilled in
Huntersville, North Carolina, United States in 2020 [7]. These spills severely disturb the
aquatic ecosystem and contaminate the environment [1,2]. Approaches with different
mechanisms viz. solidifiers, absorbents, dispersants, booms, and skimmers have been
employed for the adsorption of organic solvents from water/soil bodies [8–11]. With
the exception of absorbents, all of these methods have some drawbacks, including low
recovery rate, secondary contamination, higher time consumption, and non-biodegradable
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in nature [12–15]. These days, the main focus is on absorbent substances, as they effectively
trap organic solvents from the polluted spill site [16,17].

Sponges are soft, lightweight, porous absorbents, originally consisting of the fibrous
skeleton, having unique characteristics, such as high porosity, high pore volume, good
mechanical strength, and excellent biocompatibility. The virtue of the above-maintained
sponge properties have been used for the manufacturing of surgical and bandage pads,
operative implants, mops, and as an organic solvent adsorbent.

After the innovation of polyester in 1941, it was possible for artificial sponges to be
synthesized for the first time. However, eleven years later, in 1952, polyurethane foam
was prepared for commercial purposes [18]. Jung and Bhushan observed oleophobic
surfaces with their characteristic of self-cleaning as well as antifouling in nature inoil-water
emulsions [19]. Zhu et al. (2011) synthesized superhydrophobic polyurethane sponges
through a solution immersion process and absorbed various types of oils up to 13 times
their weight [20]. Jiang et al. reported a super hydrophilic and underwater superoleophobic
PAM hydrogel, which was used for the trapping of water from oil-water systems with high
removal capacity as well as a conflict with oil fouling [21]. Zhang et al. prepared a cyclic
poly (5-hydroxy-1-cyclooctene) gel, which traps the benzene, anisole, tetrahydrofuran, and
dichloromethane up to 199 times their weight [22]. Zhao et al. reported a carbon nanotube
sponge with high absorption capacity and swelling rate, which absorbed a broad range of
organic solvents from 80 to 180 times of their initial weight [23].

Nguyen et al. demonstrated that graphene-modified sponges through a dip-coating
technique have superhydrophobicity as well as high absorption capacity for various kinds
of oils [24]. However, the absorption competence significantly decreased after the first
absorbing cycle [24]. Liu et al. prepared a capture-coalescence-release model that depends
on pH-receptive polymer brushes for the removal of water-dispersed oil droplets [25]. Zhu
et al. synthesized a polyurethane sponge by coating polysiloxane, which enhanced the
strength in a harsh environment and absorption capacity of oils and organic solvents [26].
However, in this method, used materials were highly expensive, and the process of sponge
formation was complicated [26]. Further, Pan et al. prepared a novel hydrophobic polyvinyl
alcohol-formaldehyde foams and absorbed organic solvents from the water up to 89.3 g·g−1

in a few seconds [27]. Huili Peng et al. prepared a superhydrophobic magnetic cellulose
sponge using the co-deposition method and showed the high removal efficiency of oil and
reusability [28]. Wang et al. designed polyvinyl-alcohol formaldehyde sponges, with an
absorption capacity of oil from 4.0 to 14.0 g/g in different solvents [29]. Armando Encinas
et al. reported a hydrophobic luffa sponge functionalized with stearic acid and removed
more than 99% of the oil after twelve cycles [30].

The absorbents are of three types: inorganic mineral products, organic natural prod-
ucts, and synthetic polymers. The inorganic mineral products are silica, zeolites, and perlite,
but they have low absorption capacity (<2 g·g−1) [31–33]. The organic natural products viz.
wool fiber, rice straw, kapok fiber, wood fiber, corn cob, and milkweed fiber showed high
absorption capacity and are unstable in an aqueous medium after oil absorption [34,35].
However, synthetic polymers, such as rubber, polyacrylate, and polyolefin exhibit high
absorption capacity (40 g·g−1) as compared to inorganic/organic products. However, these
showed a very slow absorption rate, and rejuvenation after adsorption is complex [36].
Hence, the development of cost-effective, eco-friendly, and easily applicable sponges to
trap the spilled organic solvent efficiently is needed.

Herein, we synthesized the polyvinyl-alcohol formaldehyde sponges using polyvinyl-
alcohol (PVA) with surfactants triton X-100/sodium dodecyl sulfate (SDS)/Tween 80 and
were further employed for effective removal of organic solvents from polluted soil/water
systems.
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2. Results and Discussion
2.1. Characterizations and Properties of Prepared Sponges

Figure 1 displayed the FTIR spectra of all three prepared PVF sponge samples, i.e.,
hydrophobic PVFTX-100, hydrophobic PVFSDS, hydrophobic PVFT-80, and hydrophilic
PVFTX-100. The broad C-OH stretching vibration band around 3380 cm−1 was seen in
the case of a hydrophilic PVFTX-100 sponge. On the other hand, the absorption intensity
was reduced significantly for hydrophobic sponge samples. Further, the peaks observed at
2875 cm−1 and 1010 cm−1 in all the sponge samples are attributed to the C–H stretching
vibration of the alkyl side chain and C-O-C vibration, respectively. The stretching vibrations
obtained near 1050 cm−1 and 790 cm−1 were attributed to Si-O-C and alkyl side chains
C-H that finally confirmed the formation of desired sponges [37,38].
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Figure 1. FTIR spectra of hydrophobic PVFTX-100, hydrophobic PVFT-80, hydrophobic PVFSDS, and
hydrophilic PVFTX-100 sponges.

Among the three hydrophobic sponge samples, the 13C NMR and 1H NMR of the
hydrophobic PVFTX-100 sponge was studied as it showed the best removal efficiency.
The following 13C NMR data was obtained from Figure 2a. 13C NMR (500 MHz, DMSO),
δ37.55 (7-CH3), δ 39.58 (6-CH2), δ 44.21(5-CH2), δ 71.91(4-CH), δ 72.61(3-CH), and δ 92.41(2-
CH2). A total of six signals were obtained, out of which the signals at δ 37.55 (7-CH3) and
δ 39.58 (6-CH2) were attributed to the 12-carbon side chain (grafting silane chain) con-
tained in the hydrophobic PVFTX-100 sponge, assuring the formation of the hydrophobic
sponge [37,39,40]. The following 1H NMR data were obtained from Figure 2b. 1H NMR
(500 MHz, DMSO), δ 1.28 (s, 3H8), δ 1.54 (s, 10H7), δ 1.92 (s, 12H6), δ 3.80 (s, 2H5), δ 4.36 (s,
1H4), δ 4.46 (s, 1H3), δ 4.84 (s, 2H2), and δ 7.20 (s, 1H1). Total of eight signals were obtained,
out of which the three singlets at δ 1.28 (s, 3H8), δ 1.54 (s, 10H7), and δ 1.92 (s, 12H6) were
attributed to the structure of −(CH2)n− (n ≥ 4) and −CH3 groups in a grafting silane chain
and assured the formation of the required hydrophobic sponge.
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Figure 2. (a) 13C NMR spectra and (b) 1H NMR spectra of hydrophobic PVFTX-100 sponge.

The SEM images of the synthesized PVFTX-100, PVFSDS, and PVFT-80 sponges as
shown in Figure 3. It was observed that the surface of the hydrophobic sponges showed
random roughness with many protrusions, which played an important role in the absorp-
tion and retention of the solvents. The high roughness nature of the sponge improved the
hydrophobicity of the modified sponge, and the size and number of pores in the hydropho-
bic sponge enabled them more appropriate organic solvents trappers from polluted soil
samples [37,41].
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Figure 3. SEM images of (a,b) PVFTX-100 sponge, (c,d) PVFSDS sponge, and (e,f) PVFT-80 sponge.

As summarized in Table 1, the highest pore volume and surface area were observed in
the case of the hydrophobic PVFTX-100 sponge as compared to the hydrophobic PVFSDS
and PVFT-80 sponges. The pore volume and surface area of the hydrophobic sponge
decreased from 1.21 to 1.05 cm3/g and 83.8 to 74.2 m2/g, respectively. Further, the hy-
drophobic PVFTX-100 sponge with elevated surface area (83.8 m2/g) and huge pore volume
(1.21 cm3/g) resulted in an outstanding uptake capacity of 96%, 91%, 89.9%, 85.6%, and 80
for chlorobenzene, toluene, diesel, petrol, and hexane, respectively, as compared to other
two sponges.
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Table 1. Pore volume and surface area of the hydrophobic PVFTX-100, PVFSDS, and
PVFT-80 sponges.

Sponge Samples Surface Area ± 5 m2/g Pore Volume ± 0.2 cm3/g

Hydrophobic PVFTX-100 83.8 1.21
Hydrophobic PVFSDS 77.4 1.09
Hydrophobic PVFT-80 74.2 1.05

2.2. Visual Observations of Oil Uptake by Hydrophobic PVFTX-100 Sponge

The visual observation of the complete trapping of diesel oil using a hydrophobic
PVFTX-100 sponge is shown in Figure 4. Initially, a 1.0 g sponge (Picture A) was added to
the 40 mL (5 mL of oil and 35 mL of water) oil-water mixture in the ratio of 1:7 (Picture B).
After 30 s, the sponge was removed from the mixture, and the weight of the sponge was
taken. It was observed that the weight of the hydrophobic sponge increased from 1.0 to
1.61 g. The sponge absorbed 0.61 g of diesel oil from the oil-water mixture (Picture C). After
squeezing the sponge, the same procedure was repeated for ten cycles until the complete oil
was removed (Picture E). Finally, the clean water and oil-absorbed sponge were obtained as
shown in the pictures (E and F), respectively. The oil content absorbed by the hydrophobic
sponge was approximately 100% (5 mL), which proved that the hydrophobic modification
of the sponge was very effective, and it could accurately separate oil from the oil-water
mixture, which provided high application value [42].
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2.3. Batch Adsorption Studies

The results obtained from batch adsorption studies were quite interesting as men-
tioned in Table 2 and Figure 5. The absorption capacity, basically, depends upon the
density of organic solvents. It was observed that the absorption capacity was decreased
with decreases in density order from chlorobenzene > toluene > diesel > petrol > hexane,
respectively [22,27]. The maximum percentage absorption capacity obtained was 96%,
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91%, 89.9%, 85.6%, and 80 for chlorobenzene, toluene, diesel, petrol, and hexane using
thePVFTX-100 sponge within 8 cycles. The percentage absorption capacities further de-
creased when the sponges PVFSDS and PVFT-80 were used for same number of cycles. The
obtained results were further supported by the data provided in Table 1. The pore volume
and surface area were maximum for PVFTX-100 sponge, showing the highest absorption
capacity in comparison to PVFSDS and PVFT-80 sponges. Further, the surface roughness
with maximum protrusions shown in SEM images also supports the obtained results.

Table 2. Comparison table of first eight cycles for % removal efficiency of organic solvents using
PVFTX-100, PVFSDS, and PVFT-80 sponges.

Sponge Samples Number of Cycles
Removal Efficiency ± 1 (%)

Chlorobenzene Toluene Diesel Petrol Hexane

PVFTX-100

2 27.0 24.4 24.0 22.7 21.0

4 53.0 48.2 47.6 44.0 41.4

6 76.0 71.8 70.5 64.5 60.7

8 96.0 91.0 89.9 85.6 80.0

PVFSDS

2 23.6 22.5 22.0 21.4 19.0

4 45.2 43.3 43.4 41.6 36.4

6 67.0 64.2 64.0 60.6 54.7

8 85.0 82.8 81.6 77.5 71.8

PVFT-80

2 22.4 22.0 21.8 21.0 18.4

4 41.8 40.6 40.2 39.0 36.0

6 63.6 61.3 61.0 59.6 53.3

8 83.7 80.0 78.6 77.0 69.7
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Further, Table 3 demonstrates the organic solvent uptake capacity comparison of
different types of sponges prepared to date. It was noticed that the results of the present
studies were quite satisfactory, giving maximum organic solvent uptake with minimum
number of cycles as compared to other obtained results from the literature.

Table 3. Comparison of organic solvents uptake capacity by different types of sponges.

Raw Materials Amount of
Sponge Taken (g)

Organic Solvent
Uptake Capacity (g/g) Number of Cycles References

Poly (5-hydroxy-1-
cyclooctene) 1.0 199 Dna [22]

Ferric nitrate and
Ammonium
molybdate

1.0 80–180 20 [23]

Polyvinyl alcohol 1.0 89.3 35 [27]

Chitin 1.0 29–58 10 [43]

Cellulose 1.0 65 Dna [44]

Polyvinyl alcohol 1.0 1.8–7.0 10 [45]

Polyurethane 1.0 25 Dna [46]

Melamine 1.0 61.0 30 [47]

Polyvinyl alcohol 1.0 4.0 10 [29]

Catechol 1.0 99% 50 [48]

Polyvinyl alcohol 1.0 100% 10 Present work
Dna: Data not available.

3. Experimental Details
3.1. Materials and Methods

The analytical grade polyvinyl-alcohol (PVA with average molar mass of 13,000–23,000)
powder, Triton X-100, sodium dodecyl sulfate (SDS), Tween 80, dodecyltrimethoxysilane
(DTMS), formaldehyde, ammonium hydroxide (NH3.H2O, 25.0%), sulphuric acid (H2SO4,
98.0%), acetonitrile, toluene, chlorobenzene, and hexane were purchased from Sigma-
Aldrich. All the received chemicals were used as such. The diesel and petrol were procured
from a local gas station, Mullana, Ambala, India.

3.2. Synthesis of Polyvinyl-Alcohol Formaldehyde (PVF) Sponges

(a) Synthesis of PVF Sponge Using Triton X-100 Surfactant

The PVA powder (5.0 g) and deionized water (45.0 mL) were taken in a 250 mL two-
neck round bottom flask (RBF) and were vigorously stirred on a magnetic stirrer at 95 ◦C
for 8 h continuously using an oil bath. On completion of 8 h of stirring, the solution was
transferred to a 500 mL beaker and again stirred vigorously at room temperature for 15 min.
After that, the surfactant triton X-100 (0.46 mL) and formaldehyde (5.0 mL) were dropped
into the above PVA solution. In addition to this 1.5 mL of concentrated sulphuric acid
was poured into the reaction system, and finally stirred vigorously so as to obtain the
highest foam volume. The obtained foam was poured into a petri dish and oven dried
at 70 ◦C for 16 h. After 16 h oven drying the formed sponge was washed with deionized
water 3–4 times to remove any unreacted starting materials as depicted in Figure 6. Finally,
the sponge was dried in an oven at 70 ◦C for 3 h. The obtained sponge was abbreviated
as PVFTX-100 (polyvinyl-alcohol formaldehyde sponge based on triton X-100) shown in
Figure 7a.
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(b) Synthesis of PVF Sponges Using Sodium Dodecyl Sulfate Surfactant

The same procedure as mentioned above was followed, having nearly the same molar
concentrations of PVA and SDS surfactant. The obtained sponge was abbreviated as
PVFSDS (polyvinyl-alcohol formaldehyde sponge based on sodium dodecyl sulfate) as
shown in Figure 7b.

(c) Synthesis of PVF Sponges Using Tween 80 Surfactant

The same procedure as mentioned in Section 3.2 (a) was repeated for the synthesis
of the PVFT-80 sponge (polyvinyl-alcohol formaldehyde sponge based on Tween-80) as
shown in Figure 7c.
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3.3. Conversion of Hydrophilic PVF Sponges to Hydrophobic Sponges

The circular obtained PVF sponges (PVFTX-100, PVFSDS & PVFT-80) were cut into
square pieces to obtain 1.0 g mass per piece of each sponge. Then, 0.6 mL of DTMS, 75 mL
of acetonitrile, and 5.0 mL of NH3.H2O each were taken in three different 250 mL two-neck
round bottom flasks (RBF) and the mixtures were stirred for 10 min at room temperature.
After 10 min of stirring, the sponges PVFTX-100, PVFSDS, and PVFT-80 pieces prepared
above were added to the reaction mixtures separately and stirred at 50 ◦C for 6 h. After that,
the reaction mixtures were cooled down to room temperature and filtered. The obtained
sponges were washed with acetonitrile 4–5 times to remove the unreactive DTMS and
were further dried at 60 ◦C for 12 h [37]. The finally achieved hydrophobic sponges were
characterized and used in batch studies for organic solvents uptake from contaminated
soil samples.

3.4. Characterizations of the Prepared Sponges

The synthesized sponges were examined by different spectroscopic and morphological
characterization techniques. The different functional groups of all the sponge samples were
examined using Fourier Transform Infrared (FTIR) (Shimadzu 8400S FTIR spectrophotome-
ter from central instrumentation lab MM (DU) Mullana, Ambala, India). The 13C NMR
spectra was recorded on a Bruker Avance Neo 500 MHz NMR spectrometer (SAIF Lab
Chandigarh, Punjab, India) using DMSO as a solvent from to further confirm the chemical
structure of hydrophobic sponges [37]. Further, SEM (Scanning electron microscopy: Model
JSM6100; Jeol, SAIF Lab Chandigarh, Punjab, India) studied the surface morphologies of
the synthesized sponges.

3.5. Surface Area Determination of the Prepared Sponges

The surface area of the hydrophobic PVF sponge samples were calculated using the
Sear’s method [41,49]. The 1.5 g sample each of the hydrophobic PVFTX-100, hydrophobic
PVFSDS, and hydrophobic PVFT-80 sponges were taken individually in three different
500 mL beakers and mixed with 100 mL of water and 30.0 g of NaCl. The resulted mixtures
were stirred for 5 min. Further, 0.1 N HCl was added to each mixture making the final
volume to 150 mL. Finally, the pH of the mixtures was increased from pH 4.0 to pH 9.0
using 0.1 N NaOH. The volume of 0.1 N NaOH required was noted, and the surface area
was calculated using Equation (1).

A = 32V − 25 (1)

where A is the calculated surface area of the sponge samples per gram (m2/g), and V is the
volume of 0.1 N NaOH required to elevate the pH from 4.0 to 9.0.

3.6. Determination of Pore (Void) Volume

The 2.0 g each of the hydrophobic PVFTX-100, PVFSDS, and PVFT-80 sponges were
immersed in 30.0 mL of deionized water in three different 250 mL RBFs and heated at
100 ◦C for nearly thirty minutes. The objective of this process was to remove the adsorbed
air in the pores of the sponge. After thirty minutes of heating, all three samples were
removed from the RBFs and were dried superficially in the folds of simple filter papers by
simple pressing. The dried samples were weighed. Finally, the pore volume was calculated
using Equations (2) and (3) [49,50].

∆w = wfinal − winitial (2)

pv =
∆w
pw

(3)

where ∆w is the weight (g) difference between initial (winitial) and final (wfinal) weights of
the sponges, pv is the pore volume (cm3/g), and pw is the density of water (g/cm3).
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3.7. Batch Adsorption Studies

The soil samples were prepared according to procedure adopted in our previous
article [49,50]. Firstly, 20 g diesel-spiked soil samples (DSS, containing 5.0 mL diesel) were
stirred in 100 mL of deionized water for 3 h in a 500.0 mL single-neck RBF. Then, the
obtained mixture was filtered, and the filtrate was collected in a separate beaker. Finally,
1.0 g of the PVFTX-100 sponge was immersed to the filtrate solution, and after 30 s, the
sponge sample was removed from the beaker, and was squeezed using stainless steel lemon
squeezer to remove the maximum oil from the sponge, and calculated the percentage oil
uptake capacity [49–51] using Equations(4) and (5).

%R =
Vf
Vi

× 100% (4)

Vo = mf − mi (5)

where %R is the percentage oil uptake capacity of the sponge, Vf is the volume of oil
absorbed by the sponge, Vi is the initial oil volume in solution, mf is the final weight of the
sponge with absorbed oil, and mi is the initial weight of the sponge before oil adsorption.
The sponge was immersed again in the oil water mixture for nearly 8 cycles and the oil
was recovered. Following the same methodology, experiments were performed with other
organic solvent-spiked soil samples, and absorption capacity was calculated. Exactly the
same procedure was followed using PVFSDS and PVFT-80 sponges.

4. Conclusions

In conclusion, PVFTX-100, PVFSDS, and PVFT-80 sponges were prepared using
polyvinyl-alcohol (PVA) with surfactants triton X-100/sodium dodecyl sulfate (SDS)/Tween
80 for the sorption of organic solvents from contaminated soil/water samples. The surfaces
of the three obtained sponges were made hydrophobic in nature using dodecyltrimethoxysi-
lane (DTMS) as the modifier, which further enhances their uptake capacity. The Fourier
transform infrared (FTIR) studies of the sponges were carried out and a comparison was
done, which authenticated the new Si–O–C bond formation. The SEM images analysis
showed the random rough surface with numerous porous, which ultimately increases the
organic solvents trapping efficiency. The surface area and pore volume calculated were
the highest (83.8 m2/g and 1.21 cm3/g) for the PVFTX-100 sponge. Further, the batch
studies were carried out using the all three sponges, and a maximum percentage absorption
capacity of 96%, 91%, 89.9%, 85.6%, and 80 for chlorobenzene, toluene, diesel, petrol, and
hexane was obtained using PVFTX-100 sponge in 8 cycles.
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