
Citation: Galeotti, F.; Scatena, L.;

Trespidi, F.; Pasini, M. A Comparative

Study of Cellulose Ethers as

Thermotropic Materials for

Self-Tracking Solar Concentrators.

Molecules 2022, 27, 8464. https://

doi.org/10.3390/molecules27238464

Academic Editor: Krzysztof

Pielichowski

Received: 28 October 2022

Accepted: 23 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

A Comparative Study of Cellulose Ethers as Thermotropic
Materials for Self-Tracking Solar Concentrators
Francesco Galeotti 1,* , Lorenzo Scatena 1, Franco Trespidi 2 and Mariacecilia Pasini 1,*

1 Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), Consiglio Nazionale delle Ricerche, Via A.
Corti 12, 20133 Milano, Italy

2 Ricerca sul Sistema Energetico (RSE), Strada Torre della Razza, Loc. Le Mose, 29122 Piacenza, Italy
* Correspondence: francesco.galeotti@scitec.cnr.it (F.G.); mariacecilia.pasini@scitec.cnr.it (M.P.)

Abstract: The continuous growth in energy demand requires researchers to find new solutions to
enlarge and diversify the possible ways of exploiting renewable energy sources. Our idea is the
development of a solar concentrator based on trapping the luminous radiation with a smart window.
This system is able to direct light towards the photovoltaic cells placed on window borders and
produce electricity, without any movable part and without changing its transparency. Herein, we
report a detailed study of cellulose ethers, a class of materials of natural origin capable of changing
their state, from transparent aqueous solution to scattering hydrogel, in response to a temperature
change. Cellulose thermotropism can be used to produce a scattering spot in a window filled with the
thermotropic fluid to create a new kind of self-tracking solar concentrator. We demonstrate that the
properties of the thermotropic fluid can be finely tuned by selecting the cellulose functionalization,
the co-dissolved salt, and by regulating their dosage. Lastly, the results of our investigation are
tested in a proof-of-concept demonstration of solar concentration achieved by thermotropism-based
light trapping.

Keywords: cellulose derivatives; hydrogels; thermotropic materials; light trapping; photovoltaic
windows; smart windows; solar concentrator; renewable energy

1. Introduction

Thermotropic polymers are a class of materials able to switch their state, from clear to
strongly scattering, in response to a temperature change. Thanks to the reversibility of this
transparent/opaque transition, they are attractive for photonic applications, particularly in
smart windows, where they can play a critical role in enhancing the energy efficiency and
the comfort level of indoor spaces [1].

The physical mechanism under thermotropism relies on a phase transition, occurring
at the critical temperature, from polymer homogeneously dissolved in the solvent to
the appearance of partially undissolved/aggregated polymer chains. Below the phase
transition temperature, that in case of polymer gels or blends is often called “lower critical
solution temperature” (LCST), the refractive indices of the polymer and the solvent are
almost identical, so that the system exhibits a transparent state. When the temperature rises
above the LCST, the refractive index of the aggregated polymer phase increases, generating
an index mismatch with respect to the matrix, which causes light scattering [2].

In addition to reflecting back part of the light passing through the material and
therefore acting similarly to an automatic temperature-driven light protection, the scattering
state of a thermotropic polymer opportunely confined in a transparent window can be
exploited to trap light into waveguide modes. In fact, as light is backscattered by the
thermotropic polymer in every direction, part of it will hit the outer surfaces of the cell
windows with angles satisfying the conditions for total internal reflection. Consequently,
light will be trapped inside the window.
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In our idea, sunlight passing through a smart window is conveyed by waveguide to
the window edges, where small photovoltaic cells are positioned. The final goal is to feed
the solar cells with more radiation than what they would normally capture, hence boosting
electricity conversion.

Several efforts have been made to maximize the efficiency of both organic and in-
organic solar cells [3,4], and these include the development of solar concentrators based
on different mechanisms such as luminescent solar concentrators [5,6], that facilitate the
conversion of the wavelength of absorbed light into the zone of maximum efficiency of the
cell, or anti-reflective coatings [7–9], that allow for the minimization of the energy loss due
to light reflection by the external surface of solar cells. In this perspective, we propose ther-
motropic cellulose ethers as possible materials enabling a new type of solar concentrator.

In our system, depicted in Scheme 1, to capture the solar radiation in the smart window
by waveguide and let it reach the solar cells without further scattering phenomena, the
material filling the window should maintain its transparency except for a small area where
sunlight is concentrated. To do so, sunlight must be concentrated on a tiny spot by a lens, so
that the LCST of the thermotropic material is reached only in this confined area, while the
rest of the window remains in its original transparent state. The transition from transparent
to scattering state is triggered by the IR bands of solar radiation. Water, which is the
main component of the thermotropic fluid, is in fact able to adsorb part of this radiation,
generating the local heating that starts the transition. The reversibility of the process assures
that, as the direction of sun rays reaching the lens changes during the day, the position
of scattering spot on the window continuously moves (Scheme 1). Because this device
does not require a mechanical sun-tracking system, we can describe it as self-tracking solar
concentrator [10]. These kinds of photovoltaic windows have the advantage of considerably
reducing the extensions of solar cells with respect to photovoltaic roofs, and thus lowering
their cost, while preserving the original window function and appearance. This system can
also become a design element that enables the elimination of the entry of direct light in the
internal ambient, creating a more pleasant and soft light. Even though a comprehensive
analysis of possible technological solutions to solar concentration is out of the scope of this
article, it is worth to remark here that, despite the low efficiency generally expected for the
self-tracking sun concentration, this approach provides great advantages in terms of cost
and integration with residential buildings, with respect to the more traditional mechanical
tracking. Therefore, any advancement of knowledge in this field could be essential for the
development of future environmentally friendly energy production systems.
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Scheme 1. Schematized cross-section of the proposed self-tracking solar concentration-based photo-
voltaic window.

Chemically, thermoresponsive polymers have both hydrophilic and hydrophobic
subunits. The hydrophilic subunits can form hydrogen bonds with water and keep the
polymer chains in a random coil-shaped, hydrated state. Thus, the polymer is dissolved in
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water leading to a single, homogenous, transparent phase. When the temperature increases
beyond LCST, the conformation is changed from coil to globule form. The hydrophilic
subunits become inaccessible to water molecules, causing the dehydration of polymer
chains and, consequently, the formation of a biphasic, nonhomogeneous, scattering system.
Given the requirement of hydrophilic and hydrophobic domains on their chain, LCST-type
thermotropic polymers can belong to different chemical classes: ethers, alcohols, amides
and polypeptides [11].

Among thermotropic materials, one of the most widely studied is poly(N-isopropy
lacrylamide), which forms thick hydrogels with LCST around 30–32 ◦C in its homopoly-
mer form [12–14], and whose properties can be adapted and modified by mixing it
with colloidal particles [15], with nanomaterials [16], or by copolymerization with
different monomers [17,18]. Other examples of thermoregulated reversible sol/gel
transition have been reported for different copolymers, e.g., ulvan-grafted poly(N-
vinylcaprolactam) [19], poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEOPPO-
PEO) [20], and poly(ethylene glycol-b-L-lactic acid-b-ethylene glycol) (PEG-PLLA-PEG) [21].
All these thermoresponsive matrices are characterized by LCST values close to physiolog-
ical temperature, therefore they were specifically thought for the development of drug
delivery systems.

For our application, the scattering medium should be chemically simple and economi-
cally affordable, with transition temperature within the range of 45–60 ◦C, high enough to
be not reachable in standard sun conditions, and easily reachable by little sun concentration.
For these reasons, a more suitable class of material to be considered for the scattering
medium is represented by cellulose ethers.

Cellulose is a natural polymer characterized by a high hydrophilicity on its chain
structure. Because cellulose forms strong intermolecular hydrogen bonds, however, it is in-
soluble in water. When a certain fraction of hydroxyl groups is substituted by hydrophobic
groups such as methoxide groups, intermolecular hydrogen bonds are weakened, resulting
in water solubility [22]. The resultant ether derivatives are called hydrophobically mod-
ified cellulose or water-soluble cellulose. However, the degree of substitution is crucial
to achieve water-soluble cellulose, because too many hydrophobic groups make cellulose
derivatives water-insoluble again. In the case of methylcellulose, typically the average
degree of substitution of methoxy groups that provide solubility is 1.7–2.1 (out of 3 -OH
groups) per anhydroglucose unit [23].

Cellulose ethers, like native cellulose, are not digestible, not toxic, not allergenic,
and they are extensively used as a thickener and emulsifier in various food and cosmetic
products, in laxative drugs and in the manufacturing of drug capsules [24]. More recently,
hydrogels based on cellulose ethers have been proposed for more innovative applications
like drug delivery [25,26], tissue engineering [27,28], and for smart windows [29–31].

Their easy availability, directly connected to the extensive industrial usage, their
LCST generally around 40 ◦C and above, and the possibility of different chemical substi-
tution leading to tunable optical properties, make cellulose ethers the perfect candidate
materials for our scattering-based solar concentrator, with respect to other synthetic and
natural polymers with thermotropic properties. Furthermore, this material perfectly meets
the requirements of sustainability such as low cost, easy availability, abundance, non-
toxicity and does not present disposal problems, creating a virtuous combination of energy
and sustainability. Even though the concept of a self-tracking solar concentrator based
on a scattering medium was proposed a few years ago, to our knowledge, no practical
demonstration/proof-of-concept has ever been published [32]. Following this unexplored
but innovative idea, we present here a study aimed at selecting the better matrix, based on
cellulose ethers, to realize it and at evaluating its practical feasibility.

2. Results

For our study, we initially considered six different cellulose derivatives that can be
easily found on the market. In this series, cellulose ethers are characterized by either differ-
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ent viscosity while sharing the same kind of substitution (methyl celluloses) or by different
substituting groups (methyl, hydroxyethyl, hydroxypropyl or (hydroxypropyl)methyl), as
summarized in Table 1.

Table 1. List of the different cellulose derivatives considered for the preliminary assessment of
this study.

Material Short Name Viscosity (mPa·s) 1

methyl cellulose MC-A 12–18
methyl cellulose MC-B 800–500
methyl cellulose MC-C 1200–1800

hydroxyethyl cellulose HEC 800–1500
hydroxypropyl cellulose HPC 1000–4000

(hydroxypropyl)methyl cellulose HPMC 5.0–7.0
1 At 20 ◦C, 2% in water.

In a preliminary screening aimed at testing the scattering capability of the selected
materials, the diluted aqueous solutions were gradually heated with a hair-drier until we
observed the formation of a scattering phase. The cuvette containing 1 wt % cellulose ether
solutions quickly became opaque. By repeating the experiment in partially filled vials,
we could verify by turning them upside-down that a liquid-gel transition accompanies
the observed optical transition, increasing the viscosity of the mixture. By immersing the
cuvette/vial in cold water, the temperature was quickly decreased, and the reversibility of
the process could be visually confirmed (Figure 1).
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Figure 1. Representative cellulose ether aqueous solution during the heating cycle (frames (a–e)) and
during reverse cooling process (frames (f–j)).

The visual comparison between the different cellulose derivatives before and after
reaching the LCST revealed some differences. The scattering phase of methyl-celluloses
sill maintained a minimum of transparency which allowed to glimpse the text underneath.
HEC did not show any evident scattering phase upon heating; therefore, it was not con-
sidered anymore in this study. HPC produced a narrow scattering solid immersed in
the transparent matrix. HPMC scattering phase was highly opaque and perfectly hid the
text behind (Figure 2). In general, the opacity occurs instantaneously as the transition
temperature is reached and, as soon as it is cooled, the solution becomes transparent again.
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Figure 2. Visual screening of cellulose ethers before and after heating.

Following this preliminary assay, the next step was to determine the LCST of the
different cellulose derivatives. To do so, we recorded the variation in light transmission
through the cuvette filled with the cellulose solution by the microscope camera while
varying their temperature from 30 to 95 ◦C. After reaching the highest temperature, the
temperature scan was repeated back until it reached the initial cold point.

As reported by the plot in Figure 3, all the tested solutions reached the LCST between
50 and 70 ◦C upon heating. As already noticed by eye observation, the hot-stage mea-
surements confirmed that the transparency loss of the scattering state is different for the
materials; the methyl-celluloses preserve a certain amount of transparency, while for HPC
and HPMC, the transparency loss is more pronounced. This indicates that the chemical
functionalization is a critical value affecting the scattering state of cellulose ethers. Specif-
ically, the introduction of aliphatic chains with hydroxy functionalities produces a more
efficient scattering phase with respect to substitution with methyl groups only. On the other
hand, the scattering state of HPC resembles more a solid polymer than a hydrogel (see the
corresponding photograph in Figure 2), indicating that hydroxypropyl functionalization
leads to a highly compact globule phase. It must be considered here that the degree of
substitution (the average number of substituent groups attached to the ring hydroxyls),
which for commercial cellulose ethers is generally kept in the range 1.5–1.9 to assure the
maximum water solubility, can also play a role in the scattering capacity. Upon cooling,
the reverse process is more gradual for all the materials with respect to the heating one,
resulting in slightly lower transition temperatures from scattering to transparent with
respect to the forward LCST.

This screening provided a first indication that cellulose ethers can be suitable for
developing a self-tracking solar concentrator based on waveguiding, provided that the
proper polymer functionalization and thus the right LCST is selected. However, the kind
of functionalization is not the only parameter that must be taken into consideration. In
fact, salts are known to influence the temperature-induced phase transitions in aqueous
solutions of thermosensitive polymers [33]. This is a key point especially when the process
of gelification, swelling and dissolution and of cellulose ethers in the presence of bio-fluids
(containing salts) are explored for drug-delivery purposes [34]. In general, salts may either
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enhance or reduce the hydrophobicity of a solute in water. The so-called “Hofmeister series”
is an order of ions ranked in terms of how strongly they affect the hydrophobicity [35].
Because gelation of cellulose ethers is due the aggregation of hydrophobic groups when
water becomes a poorer solvent for them due to temperature rise, the presence of ions with
their resultant effect is capable of influencing this process.
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For anions, a typical Hofmeister order is:

SO4
2− > F− > Cl− > Br− > NO3

− > ClO4
− > I− > SCN−,

where ions on the left-hand side exhibit strong interactions with water molecules and, as
a result, they tend to cause “salt-out” or to enhance hydrophobicity of a solute in water. The
expected effect on cellulose ethers is to lower the LCST. In contrast, ions on the right-hand
side are able to cause “salt-in”, which increases the solubility of a nonpolar solute, thus
raising the LCST of the co-dissolved cellulose.

In this scenario, we evaluated the influence of two “salting-in” anions, I− and SCN−,
and one “salting-out” anion, namely Cl−, on the LCST of cellulose ethers. To better elucidate
the effect of the anions, the counterion was always K+, and salt concentration was fixed
at 0.5 M. As expected, in the presence of KI and KSCN all the cellulose ethers increased
their LCST of 5–15 ◦C, while the addition of KCl lowered the LCST of the corresponding
polymer of 5–10 ◦C (Figure 4). Moreover, as summarized by the plot in Figure 4d, MC-B,
MC-C and HPC perfectly fulfilled the Hofmeister order, showing decreasing LCST in the
order I−, SCN−, no salt and Cl−. MC-A and HPMC showed slightly higher values of LCST
in the presence of I− than with SCN−.

On the basis of the observations and data reported so far, we selected HPMC as the
material with the better opacity and homogeneity of the scattering phase. In addition,
we selected KCl as the co-dissolved salt because it could guarantee to keep the transition
temperature of HPMC between 50 and 60 ◦C, a temperature range suitable for our ap-
plication. However, a proof-of-concept test with a home-made glass window filled with
the polymer-salt mixture evidenced the issue of insufficient viscosity of the mixture. In
fact, the gel phase formed in correspondence of the concentrated light spot, tended to
move around inside the fluid. This fact is detrimental for the envisaged application as
self-tracking solar concentrator because the migration of the scattering spot away from the
initial position lets the solar light pass through the window instead of being scattered and
then trapped by waveguiding. To overcome this problem, we tested two new polymers
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with higher molecular weight, 86 and 120 kDa, respectively, and sufficient viscosity to
avoid any migration effect. The main characteristics of the selected high viscosity materials
and of HPMC 10, the one used in the preliminary assessment tests, are reported in Table 2.
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Table 2. Main characteristics of the (hydroxypropyl)methyl cellulose batches selected for this study.

Material Short Name Mn (Da) Viscosity (mPa·s) 1

(hydroxypropyl)methyl cellulose HPMC 10 10,000 5.0–7.0
(hydroxypropyl)methyl cellulose HPMC 86 86,000 2600–5000
(hydroxypropyl)methyl cellulose HPMC 120 120,000 75,000–140,000

1 At 20 ◦C, 2% in water.

In the plots showed in Figure 5, we report the scattering transition properties of the
different HPMC derivatives in the presence of different concentrations of KCl. At this
stage, the temperature cycle was reported in sequential mode (from T at time 0 to T at the
end of the cycle) in order to better visualize the small differences imparted by different
salt concentrations.
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Figure 5. Transparency as a function of temperature during a thermal cycle from heating to cooling
at 1 ◦C/min for 1 wt % aqueous solution of HPMC without and with the addition of KCl. In the
last frame, the variation in LCST without and in the presence of increasing concentration of KCl
is reported.

All the three HPMC batches showed similar temperature-dependent transparency
variations, as evidenced by the shape of the plots in Figure 5. The similar values recorded
in the flat bottom part of the curves indicate that the transparency loss after gelification
was only slightly affected by viscosity. As expected, by increasing the salt concentration,
the “salting-out” effected is augmented for all the polymer solutions, causing the lowering
of the respective LCST. This concentration-dependency effect is more pronounced for
HPMC10 and HPMC86, for which we observed a variation of 20 and 15 ◦C, respectively,
between the solution with no salt and the one spiked with KCl 1.0 M. For HPMC120, the
observed LCST variation is in the range of 5 ◦C, which suggests that the high molecular
weight polymer is only partially affected by the presence of co-dissolved salts.

These last measurements allowed us to assess that the LCTS of HPMC con be finely
tuned by adjusting the amount of KCl, which was a crucial requirement for testing the
thermotropic fluid in a prototype cell for solar concentration.

For the proof-of-concept demonstration of self-tracking solar concentrator, we selected
as thermotropic fluid 1 wt % aqueous solution of HPMC86 with 1.0 M KCl. In fact, this
mixture fulfilled both the main requirements for this test: LCST around 45 ◦C and viscosity
high enough to avoid the migration of the scattering mass inside the window.

This test was conducted using a cell with glass windows and internal dimensions
of 160 × 160 × 4 mm, filled with the thermotropic fluid. We performed two different
measurements on the same cell, by positioning the spot of the sunlight concentrated by
a lens in the center of the cell and at 3 cm of distance from one side. The obtained solar
concentration factor (CS) data are reported in Figure 6.
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Figure 6. Solar concentration as a function of wavelength measured on the side of a window with the
light spot at 8 cm (green) and at 3 cm distance from the side (blue). The solar spectrum is reported in
red, for comparison.

The CS values were obtained by measuring with an integration sphere the light reach-
ing the lateral side of the cell. For each wavelength λ, the ratio between the value measured
on the cell side (trapped light) and the one measured by orienting the integration sphere
towards the sun (solar light) provided the concentration values C(λ). The concentrated
irradiance was then obtained according to the following equation:

Irc =
∫ 1000nm

350nm
C(λ) Re f (λ)dλ

where Irc is the concentrated irradiance, C(λ) is the concentration factor and Re f (λ) is the
reference solar spectrum AM 1.5 D [36,37]. The ratio between Irc and the reference solar
irradiance Ir1s (1 sun), provided the CS values reported in the plot of Figure 6:

CS = Irc/Ir1s

The average CS values in the investigated wavelength range were equal to 0.49 and
0.32 for the measurements at 3 cm and at 8 cm, respectively. These results indicate that the
system in this non-optimized setup failed to concentrate the solar radiation. In fact, for
CS values smaller than 1, the concentrated light reaching the window’s side is less than
the non-concentrated light reaching the same area. Still, the amount of light trapped by
our system and potentially usable to generate electricity is relevant, and the experiment
demonstrated for the first time the potentiality of using thermotropic cellulose derivatives
in self-tracking solar concentrators. The setup however demonstrated that a part of the
light collected by the lens was deviated from its original direction through this optical
device and in principle such behavior should happen for a certain range of incidence angles
without the need of any mechanical tracking system.

To achieve a real working system, the main parameters must be optimized. Specifi-
cally, by regulating the thickness of the thermotropic fluid (internal distance between the
two glass layers of the cell), the size and efficiency of the scattering spot and the perfor-
mance of the focusing optics, it would be possible, in principle, to maximize the amount of
light reaching the window edges and to reach the goal of CS values exceeding unity.
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3. Materials and Methods

Cellulose ethers were purchased from TCI Europe N.V. (Brussels, Belgium) except
for (hydroxypropyl)methyl cellulose batches, that were purchased from Merck KGaA
(Darmstadt, Germany).

The transparency variation plots were obtained by using a Nikon Eclipse Te2000
(Tokyo, Japan) inverted microscope equipped with a Linkam hot-stage system (Redhill, UK).
Micrographs were taken every 2 s while the sample temperature was varied between 30 to
95 ◦C and then back to the 30 ◦C, at the rate of 1 ◦C × s−1. The maximum temperature was
maintained for 10 s before starting the return run. The same values of light intensity and
exposition were used for all the experiments. The transparency data were extrapolated by
measuring the average brightness of each micrograph with ImageJ [38]. Since the digital
images are stored in the form of a matrix of numbers representing the brightness of each
pixel, their average values go from 0 (total black, no transparency) to 255 (total white,
complete transparency).

The solar concentration experiments were performed by focalizing the solar radiation
on a glass cell of 160 × 160 × 4 mm filled with the thermotropic fluid, by using a PMMA
Fresnel lens. The temperature of glass surface in correspondence of the concentrated
light spot during a sunny day reached 50–55 ◦C. Data were acquired by positioning
an integration sphere on the edge of the window and on the window’s face, towards
the sun (Figure 7).
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4. Conclusions

In this study, we proposed to use the phenomenon of thermotropism to produce
a scattering spot in a window filled with a thermotropic fluid, to create a new kind of
self-tracking solar concentrator. By investigating different cellulose ethers in aqueous
solution, we demonstrated that the properties of the thermotropic fluid can be finely tuned
by selecting the cellulose functionalization, the co-dissolved salt, and by regulating their
dosage. Then, we tested the results of our study in a proof-of-concept demonstration of
solar concentration, showing that a part of the light collected by the lens is effectively
trapped and deviated from its original direction by thermotropic effect without the need of
any mechanical tracking, even though the system needs some optimization.

It is worth noting that the perfectly sustainable thermotropic system developed here is
highly tunable to respond to a certain temperature range; specifically, fluids with different
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LCST can be used in different geographical areas or can be easily replaced in the same
window depending on the season, thanks to the low cost, low toxicity and easy availability
of the chosen approach. A further advantage is that this kind of transparent photovoltaic
window utilizes only the direct sun radiation, while the diffused skylight arising from
the scattering of the direct solar beam by molecules or particulates in the atmosphere,
which represents normally 10–15% of the total radiation, will be still available to illuminate
the internal ambient. More importantly, conversely to what happens with luminescent
solar concentrators, here the natural illumination is maintained without any chromatic
modification. Therefore, this system, based only on a lens protruding from a transparent
window, can possibly become a design element that, by preventing the entry of direct light,
is able to create a more pleasant and soft illuminated ambient.

In conclusion, after proper optimization, the solution proposed could be a viable alter-
native to enlarge and diversify the possible ways of exploiting renewable energy sources.
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