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Abstract: A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with
propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction
proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O
bond cleavage procedure, affording a broad spectrum of products with diverse substituents in
moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new
C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
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1. Introduction

Isoquinolone is a ubiquitous, structural motif that presents in various natural products,
conjugated materials, and pharmaceuticals with a wide range of biological activities [1–4].
Meanwhile, isoquinolone derivatives, as versatile intermediates, provide wide access
to a large variety of chemical molecules and drug structures in various organic trans-
formations [5–7]. In this regard, the formation of isoquinolone derivatives has gained
significant attention among synthetic and medicinal chemists [8–14]. Traditional methods
to access these valuable derivatives involve the Bischler-Napieralski and Pictet-Spengler
reactions [15,16], but they often suffer from the need for pre-activated substrates and harsh
reaction conditions, which restrict their regioselectivity. Consequently, the development of
efficient and atom/step-economical synthetic methods to construct these structures has
attracted considerable attention from synthetic chemists.

In the last few decades, transition-metal-catalyzed C-H activation/annulations have been
recognized as a powerful and straightforward approach for the synthesis of N-heterocycles
and, therefore, have attracted increasing attention [17–20]. Recently, the transition-metal-
catalyzed oxidative cyclization of N-substituted benzamides with symmetrical alkynes or di-
azos via C-H bond activation has been an efficient method for constructing N-protected iso-
quinolone derivatives [21–28]. Meanwhile, many other substrates bearing the N-directing
group have also been used to construct an isoquinolone scaffold through the C-H acti-
vation/annulation strategy [29–31]. Despite these achievements, directing access to NH-
free isoquinolone scaffolds via cascade C-H activation/annulation has attracted our great
interest [32]. Ackermann reported the preparations of isoquinolone derivatives by Ru-catalyzed
C-H functionalization/annulation of N-methoxybenzamides or N-hydroxybenzamides with
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alkynes in water in the presence of MesCO2K or 3-(CF3)C6H4CO2K as the cocatalytic addi-
tive (Scheme 1a) [33,34]. Later, a Rh(III)-catalyzed synthesis of isoquinolones via C-H activa-
tion/annulation of benzoylhydrazines and alkynes was further developed (Scheme 1b) [35].
In addition, Li described a highly efficient synthesis pathway by the reaction of iminopyri-
dinium ylides with alkynes for the formation of an isoquinolone skeleton (Scheme 1c) [36].
Very recently, Wu disclosed a robust and convenient rhodium-catalyzed regioselective C-H
activation/[4 + 2] annulation using propargyl alcohols as two-carbon synthons to construct
3-methylisoquinolones (Scheme 1d) [37]. Among the limited successful procedures with
unsymmetric alkynes serving as the coupling partners, it is desirable to explore a new
pathway for furnishing greater structural diversity of NH-free isoquinolone derivatives.
We herein describe a novel rhodium(III)-catalyzed cascade C-H activation/annulation of
N-hydroxybenzamides and propargylic acetates to generate NH-free 3-aryisoquinolones,
releasing H2O as the sole byproduct (Scheme 1e).
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2. Results and Discussion

Our study commenced with the reaction between N-hydroxybenzamide (1a) and
3-phenylprop-2-yn-1-yl acetate (2a) in the presence of [Cp * RhCl2]2 as catalyst (Table 1,
entry 5). For experimental condition screening, the catalyst precursor [Cp * RhCl2]2 was
fixed at 2.5 mol%, and, with addition of chloride abstracting reagent NaOAc (1.0 equiv.),
the [4 + 2] annulated product 3aa was isolated in 84% yield after 12 h at 100 ◦C in toluene
(Table 1, entry 5). The reaction was then performed in the presence of other transition metal
catalysts, but none of them was as effective as [Cp * RhCl2]2 (Table 1, entries 1–4). Changing
the catalyst loading failed to improve the reaction yield (Table 1, entries 6, 7). Investigation
of the additive showed that NaOAc was the best choice (Table 1, entries 8–17). In addition,
either decreasing or increasing the loading of additive did not improve this transformation
(Table 1, entries 19, 20). Furthermore, several common organic solvents were investigated,
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and the results indicated that toluene favored this transformation (Table 1, entries 21–26).
There was no extra benefit to the product yield at elevated reaction temperature and
reaction time (Table 1, entries 27–30). Finally, we chose the reaction conditions of entry 5 as
the optimal conditions.

Table 1. Optimization of the reaction conditions a.
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2 Pd(OAc)2 NaOAc toluene trace
3 [RuCl2(p-cymene)]2 NaOAc toluene 37
4 [Cp * IrCl2]2 NaOAc toluene 65
5 [Cp * RhCl2]2 NaOAc toluene 84

6 c [Cp * RhCl2]2 NaOAc toluene 46
7 d [Cp * RhCl2]2 NaOAc toluene 71
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20 f [Cp * RhCl2]2 NaOAc toluene 80
21 [Cp * RhCl2]2 NaOAc DCE 62
22 [Cp * RhCl2]2 NaOAc MeCN 43
23 [Cp * RhCl2]2 NaOAc DMF 54
24 [Cp * RhCl2]2 NaOAc THF 67
25 [Cp * RhCl2]2 NaOAc 1,4-dioxane 59
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27 g [Cp * RhCl2]2 NaOAc toluene 61
28 h [Cp * RhCl2]2 NaOAc toluene 84
29 i [Cp * RhCl2]2 NaOAc toluene 50
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a Reaction conditions: N-hydroxybenzamide 1a (0.2 mmol), 3-phenylprop-2-yn-1-yl acetate 2a (0.2 mmol), catalyst
(2.5 mol%), and additive (0.2 mmol) in solvent at 100 ◦C for 12 h under argon atmosphere. b Isolated yields.
c The amount of catalyst was 1 mol%. d The amount of catalyst was 5 mol%. e The amount of additive was
0.5 equivalent. f The amount of additive was 1.5 equivalent. g At 80 ◦C. h At reflux. i For 5 h. j For 15 h.

With the establishment of the optimum conditions, we first investigated the scope
and generality of N-hydroxybenzamide substrates (Scheme 2a). It was found that a va-
riety of substituted N-hydroxybenzamides reacted smoothly with 3-phenylprop-2-yn-
1-yl acetate 2a to produce the corresponding isoquinolones in 41–89% yields. In gen-
eral, N-hydroxybenzamides with either electron-donating (e.g., -Me, -Et, -t Bu, -OMe) or
electron-withdrawing (e.g., -F, -Cl, -Br) groups at the para position of the benzene ring
worked well with 2a to afford the corresponding products 3ba–3ha in 53–87% yields. No-
tably, various functional groups, including phenyl and even strong electron-withdrawing
substituents -CN, -NO2, and -CF3, were tolerated well to supply the desired products
3ia–3la in 69–89% yields. Furthermore, meta- and ortho-substituted substrates were also
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tolerated regardless of the electronic property on the benzene ring, providing the desired
isoquinolones 3ma–3ra in 41–78% yields. In addition, disubstituted N-hydroxybenzamides
were also reactive to produce the corresponding products in 71–79% yields (products 3sa–3wa).
Moreover, this transformation was further extended to N-hydroxy-2-naphthamide and
N-hydroxythiophene-2-carboxamide substrates, giving the corresponding products 3xa and
3ya in 63% and 51% yields, respectively. Subsequently, we probed the scope of this transfor-
mation, employing propargylic acetates 2 bearing diverse substituents at the para position
of the benzene ring and leading to the corresponding products 3ab–3ai in 49–89% yields
(Scheme 2b). Encouragingly, the halo groups on either benzamide, as well as on the
propargylic acetates moiety, were well tolerated to produce the target products, which
may have potential applications in organic synthesis by further functionalization through
Pd-catalyzed coupling reactions.
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Scheme 2. Substrate scope. Reaction conditions: N-hydroxybenzamides 1 (0.2 mmol), propargylic
acetates 2 (0.2 mmol), [Cp * RhCl2]2 (2.5 mol%), and NaOAc (0.2 mmol) in toluene at 100 ◦C for 12 h
under argon atmosphere. Isolated yields were reported.

To further prove the robustness and the general utility of this protocol, we carried out
the reaction of N-hydroxybenzamide 1a and 3-phenylprop-2-yn-1-yl acetate 2a in gram-
scale synthesis under the standard condition. This transformation was easily scaled up to
6 mmol (scaled up to 30 times), producing the desired product 3aa in 69% yield (Scheme 3a).
Subsequently, insights into this cascade C-H activation/annulation were gained by perform-
ing control experiments to clarify the reaction mechanism. Treating N-hydroxybenzamide
1a with methanol-d4 under standard conditions for 2 h, a 74% deuterium was detected
on the ortho C-H bond (Scheme 3b(i)), which indicated that the C-H activation process
might be the reversible step. Next, a kinetic isotope effect (KIE) value of 1.08 was measured
from two parallel reactions of N-hydroxybenzamide 1a or 1a-d5 with propargylic acetate
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2a for 2 h under the standard conditions (Scheme 3b(ii)). The intermolecular competitive
experiment of para-methoxyl- and para-trifluoromethyl-substituted N-hydroxybenzamide
showed that the electron-donating group facilitated the reaction step, implying that C(sp2)-
H bond cleavage might be the limiting step (Scheme 3b(iii)). As for the distinct propargylic
acetates 2b and 2g, the electron-deficient propargylic acetate 2g delivered the product in a
higher yield.
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On the basis of the above control experiments and relevant reports [33,36,38], a plausi-
ble mechanism for the Rh-catalyzed cascade C-H activation/annulation for the formation
of NH-free isoquinolones is proposed in Scheme 4. Initially, the active catalyst was gen-
erated via ligand exchange, which mediated a facile C-H metalation process to give the
five-membered rhodacycle A. Subsequent coordination of the alkyne to the rhodium center
followed by the 1,2-insertion of the alkyne afforded the seven-membered rhodacycle C.
Then, the metal migration and C-N bond formation of intermediate C afforded the interme-
diate D, which underwent the protonation to generate the desired product 3aa along with
the release of a molecule of water.
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3. Materials and Methods

The detailed procedures for the synthesis and characterization of the products are
given in Appendix A.

4. Conclusions

In conclusion, we developed an efficient and practical method to construct NH-free
isoquinolones via Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides
and propargylic acetates. A variety of N-hydroxybenzamides with a diverse array of
substituents, irrespective of their electronic and steric nature, were tolerated well under
the optimal conditions. Generation of H2O as the only byproduct makes this 100% carbon-
efficient process attractive for the synthesis of isoquinolone derivatives. Moreover, the
synthetic utility and practicability of the developed methodology in gram-scale synthesis
were validated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238553/s1, Characterization data for product 3, in-
cluding 1H- and 13C-NMR spectroscopies, are available online. CCDC 2220211 contains the sup-
plementary crystallographic data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif or by emailing data_request@ccdc.cam.ac.uk or by con-
tacting the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK;
fax: +44-1223-336033.
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Appendix A. Experimental Section

Unless otherwise noted, all reagents were purchased from commercial suppliers and
used without purification. All cascade reactions were performed in a resealable screw-
capped Schlenk flask (approx. 15 mL volume) in the presence of a Teflon-coated magnetic
stirrer bar (4 mm × 10 mm). Reactions were monitored by using thin-layer chromatography
(TLC) on commercial silica gel plates (GF 254). Visualization of the developed plates was
performed under UV lights (GF 254 nm). Flash column chromatography was performed on
silica gel (200–300 mesh). 1H NMR spectra were recorded on a 500 MHz spectrometer, and
13C NMR spectra were recorded on a 125 MHz spectrometer (Supplementary Materials: 1H
NMR and 13C NMR). Chemical shifts were expressed in parts per million (δ), and the signals
were reported as s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), and
m (multiplet), and coupling constants (J) were given in Hz. Chemical shifts as internal
standards were referenced to CDCl3 (δ = 7.26 for 1H and δ = 77.16 for 13C NMR) as internal
standard. HRMS analysis with a quadrupole time-of-flight mass spectrometer yielded ion
mass/charge (m/z) ratios in atomic mass units. The melting points were measured using
SGWX-4 melting point apparatus and were not corrected. The X-ray source used for the
single-crystal X-ray diffraction analysis of compound 3aa was Mo Kα (λ = 0.71073 Å), and
the thermal ellipsoid was drawn at the 30% probability level (Supplementary Materials:
X-ray crystal data).

General procedure for the synthesis of isoquinolones 3 (product 3aa as an example).
N-Hydroxybenzamides 1a (27.4 mg, 0.2 mmol), [Cp * RhCl2]2 (3.1 mg, 2.5 mol%), and
NaOAc (16.4 mg, 0.2 mmol) were loaded into a Schlenk tube equipped with a Teflon-
coated magnetic stir bar. The tube was evacuated and flushed with argon for three cycles.
Propargylic acetates 2a (34.8 mg, 0.2 mmol) and toluene (2 mL) were then added, and the
tube was placed into a preheated oil bath (100 ◦C) and stirred for 12 h. After the completion
of the reaction, the reaction tube was allowed to cool to room temperature, extracted with
CH2Cl2 (3 × 10 mL), and washed with brine. The organic layers were combined, dried
over Na2SO4, filtered, and then evaporated under vacuum. The residue was purified using
flash column chromatography with a silica gel (200–300 mesh) and using ethyl acetate and
petroleum ether as the elution solvent to give desired product 3.

(1-Oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3aa). This compound was
purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 84% yield (49 mg); mp 163–164 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 11.58
(s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.82–7.75 (m, 2H), 7.58–7.47 (m, 6H), 4.97 (s, 2H), 2.03 (s,
3H); 13C NMR (100 MHz, DMSO-d6) δ 170.9, 162.2, 143.2, 137.5, 133.9, 133.4, 129.9, 129.8,
128.9, 127.5, 127.0, 125.8, 124.1, 106.8, 60.7, 21.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C18H16NO3 294.1125; Found 294.1127.

(6-Methyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ba). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a white solid in 87% yield (53 mg); mp 166–167 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.52 (s,
1H), 8.29 (d, J = 8.5 Hz, 1H), 7.52–7.47 (m, 6H), 7.36 (d, J = 8.0 Hz, 1H), 5.13 (s, 2H), 2.53 (s,
3H), 2.12 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4, 163.1, 144.4, 142.4, 142.3, 138.0, 134.3,
130.3, 129.3, 128.9, 128.3, 123.6, 108.0, 61.2, 22.7, 21.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd
for C19H18NO3 308.1281; Found 308.1283.

(6-Ethyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ca). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 85% yield (54 mg); mp 172–173 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.76 (s, 1H),
8.30 (d, J = 8.0 Hz, 1H), 7.50–7.48(m, 6H), 7.39 (d, J = 8.0 Hz, 1H), 5.15 (s, 2H), 2.82 (q, J = 7.5,
2H), 2.12 (s, 3H), 1.31 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4, 163.3, 150.5,
142.4, 138.1, 134.3, 130.3, 129.4, 129.3, 128.4, 127.8, 123.8, 122.4, 108.2, 61.2, 29.9, 21.5, 15.8;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C20H20NO3 322.1438; Found 322.1430.



Molecules 2022, 27, 8553 8 of 13

(6-(tert-Butyl)-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3da). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a white solid in 53% yield (37 mg); mp 174–175 ◦C; 1H NMR (500 MHz, CDCl3)
δ 8.68 (s, 1H), 8.38 (d, J = 8.5 Hz, 1H), 7.74–7.68 (m, 1H), 7.64–7.57 (m, 1H), 7.54–7.47 (m,
5H), 5.21 (s, 2H), 2.10 (s, 3H), 1.41 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 171.3, 162.7, 157.3,
141.9, 137.6, 134.5, 130.3, 129.5, 129.2, 128.1, 125.4, 123.6, 120.1, 108.6, 61.0, 35.9, 31.5, 21.3;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C22H24NO3 350.1751; Found 350.1759.

(6-Methoxy-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ea). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a white solid in 77% yield (49 mg); mp 172–173 ◦C; 1H NMR (500 MHz, CDCl3)
δ 9.62 (s, 1H), 8.32 (d, J = 10.0 Hz, 1H), 7.51 (s, 5H), 7.14–7.05 (m, 2H), 5.14 (s, 2H), 3.92 (s,
3H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4, 164.1, 162.4, 142.8, 140.0, 134.4, 130.4,
130.4, 129.5, 129.2, 119.6, 116.1, 108.1, 105.9, 61.0, 55.9, 21.4; HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C19H18NO4 324.1230; Found 324.1228.
(6-Fluoro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3fa). This compound

was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a white solid in 73% yield (45 mg); mp 161–162 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.00 (s,
1H), 8.42 (m, 1H), 7.53–7.47 (m, 6H), 7.35 (dd, J = 10.5 Hz, 2.0 Hz, 1H), 5.07 (s, 2H), 2.10
(s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.3, 166.4 (d, JC-F = 250.1 Hz), 162.4, 143.6, 140.6
(d, JC-F = 9.9 Hz), 133.7, 131.5 (d, JC-F = 10.1 Hz), 130.4, 129.2 (d, JC-F = 26.2 Hz), 115.9(d,
JC-F = 23.1 Hz), 115.6, 109.4, 109.2, 60.8, 21.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C18H15FNO3 312.1030; Found 312.1022.

(6-Chloro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ga). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 75% yield (49 mg); mp 174–175 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.37 (s, 1H),
8.38 (d, J = 2.0 Hz, 1H), 7.70–7.64 (m, 2H), 7.54–7.48 (m, 5H), 5.13 (s, 2H), 2.10 (s, 3H); 13C
NMR (125 MHz, CDCl3) δ 171.3, 161.9, 142.4, 136.3, 134.1, 133.9, 133.5, 130.6, 129.5, 129.2,
127.8, 127.1, 125.7, 108.1, 60.8, 21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15ClNO3
328.0735; Found 328.0727.

(6-Bromo-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ha). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 71% yield (52 mg); mp 164–165 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.20 (s, 1H),
8.26 (d, J = 9.0 Hz, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.64 (dd, J = 8.5, 2.0 Hz, 1H), 7.56–7.46 (m,
5H), 5.08 (s, 2H), 2.12 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.3, 162.5, 143.4, 139.5, 133.9,
130.7, 130.7, 130.0, 129.5, 129.2, 129.2, 126.8, 124.6, 107.5, 60.8, 21.4; HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C18H15BrNO3 372.0230; Found 372.0235.

(1-Oxo-3,6-diphenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ia). This compound was
purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 89% yield (65 mg); mp 181–182 ◦C; 1H NMR (500 MHz, CDCl3) δ 8.68 (s,
1H), 8.52 (d, J = 8 Hz, 1H), 7.92 (s, 1H), 7.80 (dd, J = 8.5, 1Hz, 1H), 7.68 (d, J = 5.0 Hz, 2H),
7.49–7.55 (m, 7H), 7.44 (m, 1H), 5.21 (s, 2H), 2.12 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
171.4, 163.1, 146.4, 142.8, 140.6, 138.3, 134.3, 130.4, 129.5, 129.4, 129.4, 129.2, 128.8, 127.9,
126.5, 124.7, 122.1, 108.5, 61.1, 21.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C24H20NO3
370.1438; Found 370.1439.

(6-Cyano-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ja). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a white solid in 76% yield (48 mg); mp 205–206 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.42 (s,
1H), 8.50 (d, J = 8.0 Hz, 1H), 8.05 (s, 1H), 7.74 (dd, J = 8.0, 1Hz, 1H), 7.59–7.52 (m, 6H), 5.12
(s, 2H), 2.13 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.1, 161.8, 144.1, 138.2, 133.5, 131.0,
129.5, 129.4, 129.2, 129.1, 128.9, 128.4, 118.6, 117.3, 107.6, 60.6, 21.4; HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C19H15N2O3 319.1077; Found 319.1079.

(6-Nitro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ka). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a yellow solid in 72% yield(48 mg); mp 191–192 ◦C; 1H NMR (500 MHz, CDCl3) δ 10.16
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(s, 1H), 8.61 (s, 1H), 8.54 (d, J = 9.0 Hz, 1H), 8.39–8.21 (m, 1H), 7.60–7.50 (m, 5H), 5.19 (s,
2H), 2.12 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.1, 161.9, 151.3, 144.4, 138.9, 133.4, 131.0,
130.4, 129.6, 129.5, 129.2, 120.9, 119.8, 108.5, 60.7, 21.3; HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C18H15N2O5 339.0975; Found 339.0971.
(1-Oxo-3-phenyl-6-(trifluoromethyl)-1,2-dihydroisoquinolin-4-yl)methyl acetate (3la). This

compound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6)
to provide a white solid in 69% yield (50 mg); mp 193–194 ◦C; 1H NMR (500 MHz, CDCl3)
δ 9.40 (s, 1H), 8.53 (d, J = 8.0 Hz, 1H), 7.99 (s, 1H), 7.74 (d, J = 8.5 Hz, 1H), 7.57–7.53 (m, 3H),
7.52–7.48 (m, 2H), 5.16 (s, 2H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 162.5, 143.7,
137.9, 135.1 (q, JC-F = 32.5 Hz), 133.4, 130.4, 129.3, 129.1, 127.7, 125.18 (q, JC-F = 271.3 Hz),
123.0, 122.8, 121.1, 108.1, 60.6, 21.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H15F3NO3
362.0999; Found 362.1007.

(7-Chloro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ma). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 46% yield (30 mg); mp 177–178 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.11 (s, 1H),
8.39 (d, J = 2.0 Hz, 1H), 7.70 (dd, J = 10.0, 5.0 Hz, 1H), 7.66 (d, J = 10.0 Hz, 1H), 7.57–7.51 (m,
3H), 7.49 (dd, J = 5.0, 1.5 Hz, 2H), 5.12 (s, 2H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
171.3, 161.9, 142.3, 136.3, 134.1, 133.9, 133.6, 130.6, 129.5, 129.2, 127.8, 127.1, 125.7, 108.1, 60.8,
21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15ClNO3 328.0735; Found 328.0741.

(7-Bromo-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3na). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a white solid in 41% yield (30 mg); mp 172–173 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.77 (s,
1H), 8.50 (s, 1H), 7.82 (dd, J = 5.0, 1.5 Hz, 1H), 7.58 (d, J = 10.0 Hz, 1H), 7.56–7.47 (m, 5H),
5.12 (s, 2H), 2.10 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 161.6, 142.4, 136.6, 136.5,
133.8, 130.8, 130.5, 129.3, 129.0, 127.2, 125.6, 121.2, 107.9, 60.6, 21.2; HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C18H15BrNO3 372.0230; Found 372.0231.

(8-Methyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3oa). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 78% yield (48 mg); mp 182–183 ◦C; 1H NMR (500 MHz, CDCl3) δ 10.77 (s,
1H), 7.56–7.48 (m, 7H), 7.24 (d, J = 7.0 Hz, 1H), 5.13 (s, 2H), 2.76 (s, 3H), 2.10 (s, 3H); 13C
NMR (125 MHz, CDCl3) δ 171.5, 164.8, 142.8, 139.7, 134.1, 132.7, 130.2, 130.0, 129.6, 129.1,
124.2, 121.7, 108.0, 61.7, 24.3, 21.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H18NO3
308.1281; Found 308.1286.

(8-Fluoro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3pa). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
brownish yellow solid in 66% yield (41 mg); mp 164–165 ◦C; 1H NMR (500 MHz, CDCl3)
δ 9.45 (s, 1H), 7.70–7.66 (m, 1H), 7.53–7.49 (m, 5H), 7.47 (d, J = 5.0 Hz, 1H), 7.17 (dd,
J = 15.0 Hz, 5.0 Hz, 1H), 5.11 (s, 2H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.3, 163.3
(d, JC-F = 262.5 Hz), 160.6, 143.6, 140.8, 134.6 (d, JC-F = 10.0 Hz), 133.7, 130.6, 129.5, 129.3 (d,
JC-F = 7.5 Hz), 119.7 (d, JC-F = 5.0 Hz), 115.1 (d, JC-F = 5.0 Hz), 114.2 (d, JC-F = 21.2 Hz), 107.5,
61.3, 21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15FNO3 312.1030; Found 312.1031.

(8-Chloro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3qa). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
brownish yellow solid in 69% yield (45 mg); mp 171–172 ◦C; 1H NMR (500 MHz, CDCl3)
δ 10.28 (s, 1H), 7.60–7.49 (m, 8H), 5.11 (s, 2H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
171.4, 161.8, 143.8, 141.1, 136.4, 133.6, 133.2, 130.5, 130.4, 129.4, 129.4, 122.8, 122.4, 107.6, 61.4,
21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15ClNO3 328.0735; Found 328.0744.

(8-Bromo-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ra). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
brownish yellow solid in 62% yield (46 mg); mp 168–169 ◦C; 1H NMR (500 MHz, CDCl3) δ
10.21 (s, 1H), 7.76 (d, J = 7.5, 1H), 7.64 (dd, J = 8.5, 1.0 Hz, 1H), 7.55–7.50 (m, 5H), 7.47 (t,
J = 8.0 Hz, 1H), 5.10 (s, 2H), 2.10 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4, 161.8, 143.6,
141.1, 134.3 133.7, 133.3, 130.4, 129.4, 123.8, 123.5, 123.3, 107.7, 61.4, 21.4; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C18H15BrNO3 372.0230; Found 372.0237.
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(7,8-Dimethyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3sa). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a white solid in 79% yield (51 mg); mp 198–199 ◦C; 1H NMR (500 MHz, CDCl3)
δ 10.14 (s, 1H), 7.56–7.46 (m, 6H), 7.42 (d, J = 8.3 Hz, 1H), 5.12 (s, 2H), 2.78 (s, 3H), 2.42
(s, 3H), 2.10 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.5, 164.7, 141.6, 140.8, 137.8, 136.6,
135.3, 134.2, 130.0, 129.5, 129.2, 124.2, 120.9, 107.9, 61.7, 21.5, 21.4, 18.3; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C20H20NO3 322.1438; Found 322.1444.

(6,8-Dimethyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ta). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a light yellow solid in 71% yield (45 mg); mp 214–215 ◦C; 1H NMR (500 MHz,
CDCl3) δ 10.75 (s, 1H), 7.56–7.45 (m, 5H), 7.28 (s, 1H), 7.07 (s, 1H), 5.10 (s, 2H), 2.71 (s, 3H),
2.44 (s, 3H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.6, 164.7, 143.1, 142.9, 142.6, 139.8,
134.3, 131.8, 129.9, 129.6, 129.1, 121.9, 121.6, 107.7, 61.8, 24.1, 22.4, 21.5; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C20H20NO3 322.1438; Found 322.1437.

(6-Fluoro-8-methyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ua). This
compound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6)
to provide a white solid in 76% yield (49 mg); mp 182–183 ◦C; 1H NMR (500 MHz, DMSO-
d6) δ 11.43 (s, 1H), 7.53–7.48 (m, 3H), 7.48–7.39 (m, 2H), 7.30 (d, J = 10.0 Hz, 1H), 7.19 (d,
J = 10.0 Hz, 1H), 4.88 (s, 2H), 2.84 (s, 3H), 2.02 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ
170.4, 164.1 (d, J = 247.2 Hz), 162.5, 145.8 (d, J = 1.0 Hz), 144.2, 141.9 (d, J = 10.5 Hz), 133.1,
129.6, 129.2, 128.4, 120.6, 117.1 (d, J = 27.5 Hz), 107.0, 106.8, 106.0 (d, J = 5.0 Hz), 60.6, 23.7,
20.8; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H17FNO3 326.1187; Found 326.1179.

(6-Bromo-8-methyl-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3va). This
compound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6)
to provide a white solid in 72% yield (55 mg); mp 180–181 ◦C; 1H NMR (500 MHz, DMSO-
d6) δ 11.49 (s, 1H), 7.69 (s, 1H), 7.50 (s, 4H), 7.42 (d, J = 5.0 Hz, 2H), 4.88 (s, 2H), 2.80 (s, 3H),
2.01 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 170.8, 162.7, 144.7, 144.2, 140.9, 133.5, 132.1,
130.1, 129.7, 128.9, 126.8, 124.4, 123.0, 105.9, 60.8, 23.7, 21.2; HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C19H17BrNO3 386.0386; Found 386.0377.
(6,8-Dichloro-1-oxo-3-phenyl-1,2-dihydroisoquinolin-4-yl)methyl acetate (3wa). This com-

pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a white solid in 73% yield (53 mg); mp 217–218 ◦C; 1H NMR (500 MHz, CDCl3) δ
9.74 (s, 1H), 7.57–7.25 (m, 7H), 5.05 (s, 2H), 2.12 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.2,
161.0, 144.8, 141.9, 139.3, 137.6, 133.3, 130.8, 130.3, 129.5, 129.2, 122.6, 120.9, 107.0, 61.2, 21.4;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H14Cl2NO3 362.0345; Found 362.0339.

(1-Oxo-3-phenyl-1,2-dihydrobenzo[g]isoquinolin-4-yl)methyl acetate (3xa). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
yellow solid in 63% yield (43 mg); mp 185–186 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.24 (s,
1H), 9.03 (s, 1H), 8.15 (s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.66–7.60 (m,
1H), 7.59–7.50 (m, 6H), 5.26 (s, 2H), 2.14 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.6, 163.7,
141.1, 136.2, 134.6, 133.5, 131.9, 130.3, 129.8, 129.4129.3, 128.9, 128.6, 126.8, 124.1, 122.6, 108.2,
61.5, 21.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C22H18NO3 344.1281; Found 344.1277.

(7-Oxo-5-phenyl-6,7-dihydrothieno [2,3-c]pyridin-4-yl)methyl acetate (3ya). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6)
to provide a white solid in 51% yield (30 mg); mp 158–159 ◦C; 1H NMR (500 MHz, CDCl3)
δ 9.64 (s, 1H), 7.80 (d, J = 5.0 Hz, 1H), 7.53–7.51 (m, 5H), 7.38 (d, J = 5.0 Hz, 1H), 5.13 (s, 2H),
2.09 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 171.0, 158.9, 147.1, 142.8, 134.4, 133.1, 130.1, 129.1,
129.0, 124.4, 123.5, 108.0, 61.2, 21.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H14NO3S
300.0689; Found 300.0684.

(1-Oxo-3-(p-tolyl)-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ab). This compound was
purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 72% yield (44 mg); mp 163–164 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.67 (s, 1H),
8.39 (d, J = 8.0 Hz, 1H), 7.76–7.68 (m, 2H), 7.54 –7.51 (m, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.30 (d,
J = 8.0 Hz, 2H), 5.15 (s, 2H), 2.43 (s, 3H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4,
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163.2, 142.5, 140.5, 138.0, 133.6, 131.3, 130.0, 129.2, 128.3, 127.1, 125.8, 123.8, 108.1, 61.2, 21.8,
21.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H18NO3 308.1281; Found 308.1279.

(3-(4-Ethylphenyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ac). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a white solid in 67% yield (43 mg); mp 165–166 ◦C; 1H NMR (500 MHz, CDCl3) δ 9.94 (s,
1H), 8.38 (d, J = 8.0 Hz, 1H), 7.76–7.68 (m, 2H), 7.51 (m, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.33 (d,
J = 8.0 Hz, 2H), 5.17 (s, 2H), 2.73 (q, J = 5.0 Hz, 2H), 2.11 (s, 3H), 1.30 (t, J = 5.0 Hz, 3H); 13C
NMR (125 MHz, CDCl3) δ 171.5, 163.5, 146.6, 142.7, 138.1, 133.6, 131.5, 129.4, 128.8, 128.3,
127.1, 125.8, 123.7, 108.0, 61.3, 29.1, 21.5, 15.7; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C20H20NO3 322.1438; Found 322.1436.

(3-(4-(tert-Butyl)phenyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ad). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a white solid in 49% yield (34 mg); mp 171–172 ◦C; 1H NMR (500 MHz, CDCl3) δ
8.42 (dd, J = 10.0, 5.0 Hz, 1H), 7.75–7.74 (m, 1H), 7.69 (d, J = 5.0 Hz, 1H), 7.53–7.51(m, 3H),
7.43 (dd, J = 5.0, 2.0 Hz, 2H), 5.18 (s, 2H), 2.13 (s, 3H), 1.38 (s, 11H); 13C NMR (125 MHz,
CDCl3) δ 171.5, 162.9, 153.6, 142.4, 138.0, 133.7, 131.3, 129.0, 128.3, 127.2, 126.4, 125.9, 123.8,
108.0, 61.3, 35.3, 31.6, 21.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C22H24NO3 350.1751;
Found 350.1754.

(3-(4-Methoxyphenyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ae). This com-
pound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to
provide a white solid in 76% yield (49 mg); mp 174–175 ◦C; 1H NMR (500 MHz, CDCl3) δ
8.77 (s, 1H), 8.45 (d, J = 7.5 Hz, 1H), 7.77–7.68 (m, 2H), 7.56–7.50 (m, 1H), 7.42 (d, J = 8.5 Hz,
2H), 7.02 (d, J = 8.5 Hz, 2H), 5.16 (s, 2H), 3.88 (s, 3H), 2.12 (s, 3H); 13C NMR (125 MHz,
CDCl3) δ 171.4, 163.0, 161.2, 142.0, 138.0, 133.7 130.6, 128.3, 127.2, 126.5, 125.8, 123.8, 114.9,
108.1, 61.3, 55.8, 21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H18NO4 324.1230;
Found 324.1225.

(3-(4-Fluorophenyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl acetate (3af). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 87% yield (54 mg); mp 193–194 ◦C; 1H NMR (500 MHz, CDCl3) δ 10.50 (s,
1H), 8.35 (d, J = 8.0 Hz, 1H), 7.78–7.70 (m, 2H), 7.59–7.47 (m, 3H), 7.22 (dd, J = 8.5, 8.5 Hz,
2H), 5.14 (s, 2H), 2.11 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.1, 164.1 (d, J = 243.8 Hz),
163.4, 141.2, 137.5, 133.5, 131.4 (d, J = 8.8 Hz), 123.0, 128.0, 127.2, 125.6, 123.6, 116.2 (d,
J = 21.2 Hz), 108.4, 60.8, 21.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15FNO3
312.1030; Found 312.1021.

(3-(4-Chlorophenyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ag). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide a
white solid in 84% yield (55 mg); mp 184–185 ◦C; 1H NMR (500 MHz, CDCl3) δ 10.57 (s, 1H),
8.34 (d, J = 8.0 Hz, 1H), 7.78–7.70 (m, 2H), 7.57–7.47 (m, 5H), 5.13 (s, 2H), 2.11 (s, 3H); 13C
NMR (125 MHz, CDCl3) δ 171.3, 163.6, 141.3, 137.8, 136.6, 133.8, 132.5, 131.0, 129.5, 128.2,
127.5, 125.8, 123.9, 108.7, 60.9, 21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15ClNO3
328.0735; Found 328.0736.

(3-(4-Bromophenyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ah). This compound
was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to provide
a white solid in 79% yield (58 mg); mp 178–179 ◦C; 1H NMR (500 MHz, CDCl3) δ 10.55
(s, 1H), 8.35 (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 7.5, 7.5 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H),
7.66 (d, J = 8.5 Hz, 2H), 7.56 (dd, 7.5, 7.5 Hz, 1H), 7.41(d, J = 8.5 Hz, 2H), 5.13 (s, 2H), 2.11
(s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.3, 163.6, 141.3, 137.8, 133.8, 132.9, 132.5, 131.2,
128.3, 127.5, 125.8, 124.9, 123.9, 108.7, 60.9, 21.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C18H15BrNO3 372.0230; Found 372.0225.

(1-Oxo-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-4-yl)methyl acetate (3ai). This
compound was purified by column chromatography (EtOAc/petroleum ether = 1:6) to
provide a white solid in 89% yield (64 mg); mp 195–196 ◦C; 1H NMR (500 MHz, CDCl3) δ
10.87 (s, 1H), 8.32–8.29 (m, 1H), 7.81–7.69 (m, 6H), 7.59–7.57 (m, 1H), 5.14 (s, 2H), 2.12 (s, 3H);
13C NMR (125 MHz, CDCl3) δ 171.1, 163.5, 141.0, 137.6, 137.5, 133.9, 132.1 (q, J = 32.5 Hz),
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130.2, 128.2, 127.7, 126.2, 125.9, 124.2 (q, J = 276.3 Hz), 108.9, 60.5, 21.2; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C19H15F3NO3 362.0999; Found 362.0992.
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