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Abstract: Luminescent probes have wide applications in biological system analysis and environ-
mental science. Here, one novel luminescent dinuclear europium compound with a crown ether
analogous ligand was synthesized through a solvent–thermal reaction. Through transformation,
upon the addition of Al3+ ions to the N,N′-dimethyl formamide solution of the europium compound,
the luminescent intensity of the characteristic emission of Eu3+ decreased, and a new emission peak
appeared at 346 nm and increased rapidly. The luminescent investigation indicated that it could act
as a highly sensitive and selective luminescent probe for Al3+ ions. Moreover, mass spectrometry and
single-crystal X-ray diffraction confirmed the formation of a new more stable trinuclear aluminium
compound during the sensing process.

Keywords: lanthanide dinuclear compound; luminescent probe; aluminum

1. Introduction

In past decades, interest in the photophysical properties of lanthanide-based com-
pounds has been strongly stimulated [1–4]. Benefiting from the narrow characteristic
emissions resulting from f –f transition of lanthanide ions and few perturbations from
environments, lanthanide-based compounds have wide applications in biological sys-
tem analysis and environmental science [5–7]. Therefore, lanthanide luminescent probes
have become one of the most important methods for sensing ions due to their excel-
lent monochromaticity and high sensitivity [8,9]. Various lanthanide luminescent probes
have been reported, which mainly focus on H+ [10], F− [11], K+ [12], Ag+ [13], Ca2+ [14],
Zn2+ [15], Mg2+ [16], O2 [17], H2O2 [18], ATP [19], etc.

Moreover, due to the rapid development of metal–organic frameworks (MOFs) [20],
several lanthanide metal–organic frameworks (Ln-MOFs) as important luminescent sensors
have been widely investigated due to their advantages such as controllable pore sizes, and
the diversity of functional organic ligands for interaction recognition [21–25]. However, due
to poor solubility, the applications of MOF-based probes are still limited, especially for bio-
logic imaging. Thus, soluble discrete lanthanide metal–organic assemblies would be quite
appropriate for this application. However, due to the unpredictable coordination behavior
and the lability of the lanthanide coordination bonds, the controllable synthesis of func-
tional polynuclear discrete lanthanide metal-organic assemblies remain challenging [26].
Thus far, relevant reports on discrete polynuclear lanthanide metal–organic assemblies for
luminescent probes are still rare [27–30].

On the other hand, Al3+ ions are harmful to the human brain and nervous system,
causing Parkinson’s and Alzheimer’s disease [31,32], and they also adversely affect the
growth of plants [33]. Thus, the development of a method for the effective detection of
Al3+ ions is urgent. To date, several chemical sensors based on organic compounds [34–38]
and MOFs [39–41] for Al3+ ion detection have been reported. However, sensors based
on discrete lanthanide metal–organic assemblies are rarely reported. In this study, using
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crown ethers analogous carboxylic ligand 2,2′-(((ethane-1,2-diylbis(oxy))bis(ethane-2,1-
diyl))bis(oxy))dibenzoic acid (H2TEBA), a novel dinuclear lanthanide compound
(1, [Na4Eu2(TEBA)4(H2O)4]·[CuCl2]·Cl·H2O) was synthesized. Luminescent investiga-
tions revealed that it is a promising luminescent probe for Al3+ ions. Moreover, the sensing
mechanism was studied using mass spectrometry and single-crystal X-ray diffraction and
a transformation process was confirmed.

2. Results
2.1. Synthesis and Structure of Compound 1

Compound 1 was prepared under solvent-thermal condition. Details of the synthesis
are presented in the Materials and Methods. Single-crystal X-ray diffraction analysis
revealed that compound 1 belongs to the triclinic P1 space group. The asymmetric unit
in compound 1 consists of two dinuclear [Na4Eu2(TEBA)4(H2O)4]2+ units, two [CuCl2]−

anions, two disorder Cl−, and one lattice water (Figure S1). Each Eu3+ ion is coordinated
by eight O atoms from different TEBA2− ligands. The adjacent two Eu3+ ions form a
dinuclear unit through the bridges of carboxyl groups from four TEBA2− ligands (Figure 1).
The distance between the two Eu3+ ions is 4.13 Å. The Na+ ion located in the analogous
crown ether structure is formed by one TEBA2− ligand, which affords four ether O atoms
and two carboxyl O atoms to chelate the Na+ ion. Moreover, with one coordinated H2O
molecule and one carboxyl O atom from another TEBA2− ligand, the Na+ ion is eight-
coordinated. The Eu–O and Na–O distances are in the range of 2.30–2.58 Å and 2.30–3.01 Å,
respectively. The [Cl–Cu–Cl]− anions and the lattice water fill in the space among the
[Na4Eu2(TEBA)4(H2O)4]2+ units (Figure S1).
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Figure 1. The synthetic route and the molecular structure of compound 1. Figure 1. The synthetic route and the molecular structure of compound 1.

2.2. Luminescent and Sensing Properties of Compound 1

To investigate the luminescent properties of compound 1 in N,N′-dimethyl formamide
(DMF) solution (1 × 10−4 mol/L), emission spectrum measurements were performed at
room temperature and excited by a UV light with a wavelength of 292 nm. As shown in
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Figure 2, typical emission peaks of Eu3+ ions can be observed, which can be attributed to
5D0→7F1 (594 nm), 5D0→7F2 (618 nm), and 5D0→7F4 (700 nm) transitions (black curve in
Figure 2). The luminescent lifetime of the 5D0→7F2 transition is 0.33 ms (Figure S3). The
intensity of the 5D0→7F2 transition (electric dipole) is much stronger than the intensity of
the 5D0→7F1 transition (magnetic dipole), which indicates that the coordination environ-
ment of the Eu3+ ion is asymmetric, in agreement with the results from the crystallographic
analysis (Figure 1).
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Figure 2. The emission spectra (excited at 292 nm) of compound 1 in DMF at room temperature in
the presence of 0 to 2 equiv Al3+ ions with respect to compound 1.

Upon the addition of different cations (Al3+, Ca2+, Cd2+, Co2+, Cu2+, Fe3+, K+, Mg2+, Ni2+,
and Pb2+) to compound 1 in the DMF solution (1 × 10−4 mol/L), the emission intensities of
Eu3+ ions (such as the peak at 618 nm) become weaker to some extent (Figures 2 and S4). Inter-
estingly, after the addition of Al3+ ions to the solution, the emission intensity at
346 nm increases rapidly. Up to 2 equiv Al3+ ions with respect to compound 1, the in-
tensity of the peak at 346 nm becomes around 43 times stronger than that of the original peak.
This sensing process containing both a new increasing luminescent peak and a decreasing
characteristic emission of Eu3+ is a typical OFF-ON and ON-OFF mode. The difference
between two peaks is 272 nm, which improves the sensitivity of the sensing process. The
emission intensity at 346 nm exhibits a very good linear relationship with the equivalent
addition of Al3+ ions with a correlation coefficient r = 0.999 (Figure S5). When other metal
ions were added, there were no significant increase at 346 nm (Figure 3). This implies that
compound 1 can determine the concentration of Al3+ ions within a certain concentration
range. Furthermore, additional sensing characterizations for lower concentrations of Al3+

ions were performed to determine the lowest limit of detection (Figure S6). The intensity
of emission at 346 nm was almost the same when the concentration of Al ions was below
1 × 10−6 M. However, when the concentration of Al3+ ions reached 5 × 10−6 M, an increase
in intensity could clearly be observed. These results show that the detection limit of 1 for
sensing Al3+ ions was about 5 × 10−6 M, exhibiting a good sensitivity for Al3+ ions [40].
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2.3. Sensing Mechanism Studies

The sensing behavior of compound 1 may be attributed to the direct transformation
from a compound containing Eu3+ to a new compound containing Al3+ [42–44]. To confirm
this suspicion, mass spectrometry and single-crystal X-ray diffraction were performed
to verify the new aluminum compound. To investigate the ionic state of compound 1,
electrospray ionization mass spectrometry (ESI-MS) (Figure S7) and matrix assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Figure S8) were
applied. ESI-MS results for compound 1 in DMF show the main peaks of H2TEBA +
Na+ ([C20H22O8Na]+ calcd: 413.12; found: 413.12) rather than the peaks of compound 1
(Figure S7). This can be attributed to the structural destruction of compound 1 due to
the high energy of electrospray ionization process. When MALDI-TOF MS was applied,
it showed a main fragment [Na2Eu(TEBA)2]+ (C40H40EuNa2O16 calcd: 975.13; found:
975.13) from compound 1 (Figure S8). After luminescent intensity of the DMF solution of
compound 1 no longer increased upon the addition of Al3+ ions, ESI-MS measurements of
this solution were performed, and a new m/z 1261.28 emerged (Figure S9). Compound 1
was destroyed during the ESI-MS measurement and a new peak appeared after the addition
of Al3+ ions; thus, we speculate that the new peak resulted from a newly formed aluminum
compound, which was more stable than compound 1.

To further determine the origin of the new peak and the structural information of
the Al3+ compound, we used AlCl3·6H2O instead of CuCl2·2H2O under the same syn-
thesis conditions as compound 1, and colorless long-stripe-like crystals were obtained.
Single-crystal X-ray diffraction confirmed that it was a trinuclear aluminum compound
with a molecular structure of [Al3(µ3-O)(TEBA)3(H2O)3]2·[Eu(NO3)5]·EtOH·0.5H2O (2).
Compound 2 crystallizes in triclinic P1 space group. Each asymmetric unit consists of two
[Al3(µ3-O)(TEBA)3(H2O)3]+ units, one [Eu(NO3)5]2− anion, one lattice disordered ethanol
molecule and half a lattice water molecule (Figure S2). The Al3+ ion is six-coordinated
by four carboxyl O atoms from four different carboxyl groups, one coordinated water
molecule and one µ3-O2− atom, forming an octahedral geometry (Figure 4). Three Al3+

ions form a stable trinuclear cluster via the bridge of the µ3-O2− atom and three TEBA2−

ligands. One water molecule coordinates to each Al3+ ion, and is located in the center cave
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of the TEBA2− ligand. Each coordinated water molecule forms two hydrogen bonds with
two ether O atoms. A dissociative [Eu(NO3)5]2− anion and two trinuclear Al3+ clusters
balance the charge. The Eu3+ ion is ten-coordinated by ten O atoms from five different NO3-

ions, leading to a dodecahedron geometry. Through π–π interactions and van der Waals
forces between two [Al3(µ3-O)(TEBA)3(H2O)3]+ units and electrostatic interactions among
[Eu(NO3)5]2− anions, a three-dimensional packing structure forms.
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compound 2.

The ESI-MS result of compound 2 in DMF solution displays a main peak at m/z
1261.27 (Figure S10), which is consistent with the results of the mixture of compound 1 and
Al3+ ions (m/z 1261.28, Figure S9) as well as the theoretical value of [Al3(µ3-O)(TEBA)3]+

(C60H60Al3O25 calcd: 1261.29). The results indicate a transformation process. Upon the
addition of Al3+ ions to compound 1 in DMF solution, the [Na4Eu2(TEBA)4]2+ units de-
compose and a more stable species [Al3(µ3-O)(TEBA)3(H2O)3]+ forms with an increasing
emission peak at 346 nm. To further explore this sensing behavior, the luminescence of
the H2TEBA ligand and compound 2 were investigated (Figures S11 and S12). When
excited at 292 nm in DMF solution, the H2TEBA ligand exhibits an emission peak at
340 nm, which is close to the emission peak (346 nm) of compound 2 (Figure S12) and
the mixture of Al3+ ions and compound 1 in DMF (Figure 2). When setting the emission
peak at 340 nm, the excitation spectrum of the H2TEBA ligand shows two peaks at 268 and
312 nm, which are different from the spectra of compound 1 at 292 nm and compound 2
at 296 nm (Figure S13). The results indicate that after being coordinated to Al3+ ions, the
luminescence of compound 2 exhibits a slight red-shift compared with the ligand.
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3. Materials and Methods

All reagents and solvents were commercially available and used as received with-
out further purification. Analysis of C, H and N were carried out on an elementar vario
EL elemental analyzer. The FT-IR spectra were measured with a Bruker Tensor 27 Spec-
trophotometer (Bruker, Karlsruhe, Germany) on KBr disks. The emission spectra in the
visible region were measured on a Cary Eclipse fluorescence spectrophotometer (Agilent
Technologies Inc., Santa Clara, CA, USA). The ESI-MS spectra were measured with a VG
ZAB-HS spectrometer (VG, Manchester, UK). The MALDI-TOF spectra were measured
on a Bruker Autoflex III TOF/TOF200 spectrometer (Bruker, Karlsruhe, Germany) using
α-Cyano-4-hydroxycinnamic acid as matrix.

Synthesis of [Na4Eu2(TEBA)4(H2O)4]·[CuCl2]·Cl·H2O (1). A mixture of H2TEBA
(0.3 mmol, 117.0 mg), Eu(NO3)3·6H2O (0.1 mmol, 44.6 mg), CuCl2·2H2O (0.2 mmol, 34.0 mg),
NaOH (0.4 mmol, 16 mg) and 10 mL ethanol was sealed in 25 mL Telfon-lined stainless steel
container, and heated to 160 ◦C for 72 h, then cooled to room-temperature (temperature
decrease rate: 2 ◦C/h). The yellow long-stripe-like crystals were obtained in ca. 44% yield
based on Eu. Elemental Analysis calcd: C, 43.67; H, 4.08%; found: C, 43.19; H, 4.19%.

Synthesis of [Al3(µ3-O)(TEBA)3(H2O)3]2·[Eu(NO3)5]·EtOH·0.5H2O (2). A mixture of
H2TEBA (0.3 mmol, 117.0 mg), Eu(NO3)3·6H2O (0.1 mmol, 44.6 mg), AlCl3·6H2O (0.2 mmol,
48.3 mg), NaOH (0.4 mmol, 16 mg) and 10 mL ethanol was sealed in 25 mL Telfon-lined
stainless steel container, and heated to 160 ◦C for 72 h, then cooled to room-temperature
(temperature decrease rate: 2 ◦C/h). The colorless long-stripe-like crystals were obtained in ca.
32% yield based on Al. Elemental Analysis calcd: C, 46.53; H, 4.45%; found: C, 45.94; H, 4.16%.

Suitable crystals of compound 1 and 2 were selected and mounted on a SuperNova,
(Single source at offset) Eos diffractometer equipped with graphite monochromated Mo Kα
radiation (λ = 0.71073 Å) under the temperature 120(2) K. Using Olex2 programme [45], the
structures were solved with the ShelXS structure solution program using Direct Methods
and refined with the ShelXL refinement package using Least Squares minimisation [46].
Both structures were treated as twinning crystal.

Crystallographic data for 1 and 2 reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2215277
and 2215275, respectively. This data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on
26 October 2022).

4. Conclusions

In conclusion, a novel luminescent dinuclear europium compound with a crown ether
analogous ligand was synthesized through solvent–thermal reaction and was structurally
characterized. The luminescent investigations indicate that this compound is a promising
luminescent probe for Al3+ ions. Through transformation, a new, more stable trinuclear
aluminum compound was formed. The luminescent intensity of the characteristic emissions
of Eu3+ decreased, and a new emission peak appeared at 346 nm and increased rapidly as the
concentration of Al3+ increased. This transformation mechanism provided a novel OFF–ON
and ON–OFF luminescent probe, which improved the sensitivity of this sensor. We believe
that this novel probe will open a new route to the design of lanthanide luminescent probes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248761/s1, Figure S1: ORTEP view of the X-ray
crystal structure of compound 1. Figure S2: ORTEP view of the X-ray crystal structure of compound 2.
Table S1: Crystal data and structure refinement for 1 and 2. Table S2: Bond lengths for 1.
Table S3: Bond lengths for 2. Figure S3: Luminescence decay kinetics of the Eu3+ emission (618 nm)
in compound 1 under 292 nm excitation at room temperature. The green line is the fit for delay time.
Figure S4: The luminescent emission spectra (excited at 292 nm) of compound 1 in DMF upon the
addition up to 2 equiv of Ca2+, Cd2+, Co2+, Cu2+, Fe3+, K+, Mg2+, Ni2+ and Pb2+ ions. Figure S5:
The relationship between the emission intensity at 346 nm and the equivalent addition of Al3+ ions.
Figure S6: The emission spectra (excited at 292 nm) of compound 1 in DMF at room temperature

www.ccdc.cam.ac.uk/data_request/cif
https://www.mdpi.com/article/10.3390/molecules27248761/s1
https://www.mdpi.com/article/10.3390/molecules27248761/s1
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in the presence of different low concentration of Al3+ ions. It reveals that the detection limit of 1
for sensing Al3+ ions is about 5 × 10−6 M. Figure S7: The ESI-MS of compound 1 in DMF solution.
Figure S8: The MALDI-TOF of compound 1. Figure S9: The ESI-MS of compound 1 in DMF solution
after addition of Al3+ ions. Figure S10: The ESI-MS of compound 2 in DMF solution. Figure S11: The
luminescent emission spectra of ligand H2TEBA in DMF solution with an emission peak at 340 nm.
Figure S12: The luminescent emission spectra of compound 2 in DMF solution with a main emission
peak at 346 nm. Figure S13: The excitation spectra of ligand H2TEBA, compound 1 and compound 2
in DMF solution observed at their highest emission peak, respectively.
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