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Abstract: 3-Amino-2-arylcarboxamido-thieno[2,3-b]pyridines have been shown to have anti-proliferative
activity, but are also known to have poor solubility. This has been previously proposed to be due
to their extensive planarity, which allows for intermolecular stacking and crystal packing. We
herein report the synthesis of fifteen novel thieno[2,3-b]pyridines that have incorporated bulky,
but easily cleavable, ester and carbonate functional groups in an effort to decrease crystal packing.
The addition of these ‘prodrug-like’ moieties into the thieno[2,3-b]pyridine resulted in compounds
with increased activity against HCT-116 colon cancer cells and the triple-negative breast cancer cell
line MDA-MB-231.
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1. Introduction

The potent anti-proliferative activity of alcohol-containing thieno[2,3-b]pyridines,
such as those shown in Figure 1, has been reported [1]. The parent thieno[2,3-b]pyridines
were initially developed as PI-PLC inhibitors following their discovery through vHTS in
2009 [2], after which structure refinement led to the synthesis of various analogue series that
have demonstrated excellent anti-proliferative activity against MDA-MB-231 and HCT-116
cancer cells, with the best compounds exhibiting IC50 values in the nM range [1,3].
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added to the parent alcohol-containing thienopyridines. This initially seemed to be an un-
conventional method, as esters are generally added to make a compound more lipophilic 
and could reduce solubility, and this was supported by logP and logS values (the complete 
table is shown in the Supplementary Materials), which were calculated to be higher for 
the esters and carbonates when compared to their parent alcohols. However, in this case, 
adding groups to the alcohol was hypothesised to disrupt the tightly-packed crystal struc-
ture existing in these mainly planar compounds, by increasing the rotatable bonds and 
adding bulk to the structure. It was postulated that these thieno[2,3-b]pyridines were not 
lacking in aqueous solubility due to a lack of polar groups, but because of the high level 
of strong intermolecular interactions between the molecules. Thienopyridines are highly 
planar molecules and thought to pack tightly due to these intermolecular attractive forces, 
including hydrogen bonds and π-stacking interactions [15]. This is exhibited in the high 
melting points of the thienopyridines, with elevated melting points reflecting high crystal 
packing energy, which is known to be correlated with poor solubility [17,18]. Addition-
ally, it was considered that introduction of ester/carbonate groups could assist in the cel-
lular penetration of the molecules. 

The suggested modifications of ester and carbonate moieties on the 5-CHOH group 
(Figure 2) are groups that have been utilised in many comparable FDA approved drugs. 
Examples of these include abiraterone acetate (Zytiga), which is used to treat metastatic 
castration-resistance prostate cancer (CYP17A1 inhibitor), and uridine triacetate (Xuri-
den), which is used to treat hereditary orotic aciduria (pyrimidine analogue for uridine 
replacement). These drugs both contain alcohol groups which have been converted to es-
ters to facilitate absorption [17]. 

Figure 1. Known anti-proliferative 3-amino-5-(1-hydroxyethyl)-6-methyl-N-phenylthieno[2,3-
b]pyridine-2-carboxamides.

The potent cytotoxic effect of this class of compounds is likely due to inhibition of the
phosphoinositide phospholipase C (PI-PLC) enzyme, which has been found to be upreg-
ulated in many cancers [4]. The morphology of cancer cells treated with thienopyridines
has been found to be altered, resulting in growth restriction, rounding and blebbing of the
plasma membrane [5]. This was further confirmed by studies in which MDA-MB-231 cells
that had PLC-δ1 and δ3 isoform knockdown also showed distorted cell morphology, similar
to that described above [5]. Although it has been shown that PI-PLC is a valid target by the
aforementioned studies, it must be considered that the thienopyridines could potentially
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exert some of their anti-proliferative activity through off-target interactions [5], with similar
thienopyridines having been implicated with other enzymes, including tyrosyl-DNA phos-
phodiesterase I (TDP1), A2A receptor antagonists (A2AAR), G-protein coupled receptors
(GPCRs), copper-trafficking protein Atox, P2Y12 receptors, and tubulin [6–12].

While the anti-proliferative activity of the thieno[2,3-b]pyridines has been extensively
studied, the potential incorporation of ‘prodrug-like’ moieties into the thieno[2,3-b]pyridines
has not been explored, despite the proven effectiveness of prodrugs in various chemother-
apy drugs [13,14]. The purpose of prodrugs is generally to optimize the absorption, distribu-
tion, metabolism, and excretion (ADME) of the parent compound, and a variety of different
chemical moieties can be attached to the potential drug structure in order to improve
these properties. As the thienopyridines have historically had poor solubility [2,15], it was
thought that modification via addition of such a chemical moiety could aid absorption and
cell penetration, after which the protecting group could be cleaved by intracellular esterases
to allow the thienopyridines to exert their potent cytotoxic effect. In order to improve the
pharmacokinetic profile of this class of anti-proliferatives, we sought to synthesise a range
of related prodrugs and assess if addition of these moieties affected their activity.

It has been previously shown that thieno[2,3-b]pyridines that contain a methylene-
hydroxyl group in the C-5 position (Figure 1) in both cyclic and acyclic derivatives have
improved anti-proliferative activity versus their equivalent non-hydroxylated analogues,
with 2,3-disubstitution (ortho,meta) on the phenyl carboxamide leading to excellent cell
growth inhibition [3,9,16]. Therefore, investigation of derivatives of the alcohol-containing
thieno[2,3-b]pyridines was of particular interest for further development.

It was hypothesised that the addition of a range of esters and carbonates could be
added to the parent alcohol-containing thienopyridines. This initially seemed to be an
unconventional method, as esters are generally added to make a compound more lipophilic
and could reduce solubility, and this was supported by logP and logS values (the complete
table is shown in the Supplementary Materials), which were calculated to be higher for
the esters and carbonates when compared to their parent alcohols. However, in this
case, adding groups to the alcohol was hypothesised to disrupt the tightly-packed crystal
structure existing in these mainly planar compounds, by increasing the rotatable bonds and
adding bulk to the structure. It was postulated that these thieno[2,3-b]pyridines were not
lacking in aqueous solubility due to a lack of polar groups, but because of the high level
of strong intermolecular interactions between the molecules. Thienopyridines are highly
planar molecules and thought to pack tightly due to these intermolecular attractive forces,
including hydrogen bonds and π-stacking interactions [15]. This is exhibited in the high
melting points of the thienopyridines, with elevated melting points reflecting high crystal
packing energy, which is known to be correlated with poor solubility [17,18]. Additionally,
it was considered that introduction of ester/carbonate groups could assist in the cellular
penetration of the molecules.

The suggested modifications of ester and carbonate moieties on the 5-CHOH group
(Figure 2) are groups that have been utilised in many comparable FDA approved drugs.
Examples of these include abiraterone acetate (Zytiga), which is used to treat metastatic
castration-resistance prostate cancer (CYP17A1 inhibitor), and uridine triacetate (Xuriden),
which is used to treat hereditary orotic aciduria (pyrimidine analogue for uridine replace-
ment). These drugs both contain alcohol groups which have been converted to esters to
facilitate absorption [17].
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and 4′-OMe (hereafter collectively referred to as the ‘representative five’) were chosen as 
they typically give a range of activities. Analogues with 2′-Me-3′-Cl and 1′-naphthyl sub-
stitution patterns typically give the best anti-proliferative activity, 4′-OMe the worst, 
whilst H and 2′-Me have moderate activity. It was decided to use this consistent substitu-
tion pattern across the studies undertaken, because if new compounds exhibited atypical 
relative activities that did not match our previous results, this could indicate the com-
pounds were interacting with off-target proteins. 

Alcohols 5a–e were then reacted with either acetic anhydride, di-tert-butyl dicar-
bonate, or methyl chloroformate in pyridine, using catalytic amounts of DMAP, to give 
6a–e, 7a–e, and 8a–e, respectively (Scheme 1). Reaction times were required to be kept 
very short (10–20 min) so as to avoid pyrimidinone formation [19] or double addition on 
both the alcohol and the primary amine, which are both known possible side reactions. It 
should be noted that compounds where the primary amine have been modified to amides, 
carbamates, or pyrimidinones have been shown to have no anti-proliferative activity, 
showing that these more robust functional group transformations render the derivatives 
inactive [19].  

Figure 2. General structure of thieno[2,3-b]pyridine derivatives targeted in this work.

As these types of modifications were proven to be useful both in clinical practice and
in the literature, it was decided to create and study a series of ‘prodrug-like’ thieno[2,3-
b]pyridine analogues. Herein, we report the synthesis and anti-proliferative activity of
fifteen novel thieno[2,3-b]pyridines that fulfil the modifications proposed in Figure 2.

2. Results and Discussion
2.1. Synthesis of Targeted Compounds

To prepare the required thienopyridine derivatives, previously employed synthetic
methods were utilised [19]. The synthesis of carbonitrile 2, chloroarylacetamides 3a–e,
thieno[2,3-b]pyridines 4a–e and compounds 5a–e were performed using previously pub-
lished protocols (Scheme 1), and all detailed information regarding the synthesis of 5a–e is
present in the Supplementary Materials.

The aryl carboxamide substitution patterns R1 = H, 2′-Me, 2′-Me-3′-Cl, 1′-naphthyl,
and 4′-OMe (hereafter collectively referred to as the ‘representative five’) were chosen
as they typically give a range of activities. Analogues with 2′-Me-3′-Cl and 1′-naphthyl
substitution patterns typically give the best anti-proliferative activity, 4′-OMe the worst,
whilst H and 2′-Me have moderate activity. It was decided to use this consistent substitution
pattern across the studies undertaken, because if new compounds exhibited atypical relative
activities that did not match our previous results, this could indicate the compounds were
interacting with off-target proteins.

Alcohols 5a–e were then reacted with either acetic anhydride, di-tert-butyl dicarbonate,
or methyl chloroformate in pyridine, using catalytic amounts of DMAP, to give 6a–e, 7a–e,
and 8a–e, respectively (Scheme 1). Reaction times were required to be kept very short
(10–20 min) so as to avoid pyrimidinone formation [19] or double addition on both the
alcohol and the primary amine, which are both known possible side reactions. It should be
noted that compounds where the primary amine have been modified to amides, carbamates,
or pyrimidinones have been shown to have no anti-proliferative activity, showing that
these more robust functional group transformations render the derivatives inactive [19].

It was observed that the transformation of the alcohols to their ester and carbonate
counterparts led to the expected decrease in melting points. Melting points ranged from
much greater than 230 ◦C for the parent alcohols and decreased to a range of 187–230 ◦C
for the fifteen new analogues, with only two exceeding 230 ◦C: the 4′-OMe substituted
analogues 6e and 8e. This was likely due to the presence of another oxygen atom, which
can act as a hydrogen bond acceptor, increasing intermolecular hydrogen bonding and
the melting points of these two analogues. This was potentially not observed in 7e as
the increase in hydrogen bonding was thought to be countered by the presence of the
bulky tert-butyl group, which could significantly disrupt crystal packing. For the remain-
ing analogues, the decreased melting point was indicative of decreased crystal packing,
and consequently, improved solubility. NMR experiments were performed with samples
dissolved in DMSO-d6 so as to be consistent with previously obtained spectra for the
thieno[2,3-b]pyridines [1,20].
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Scheme 1. Synthesis of 1-(3-amino-6-methyl-2-(phenylcarbamoyl)thieno[2,3-b]pyridin-5-yl)ethyl
acetates and carbonates 6a–e, 7a–e and 8a–e. Reagents and conditions (i) acetylacetone 1 (1.0 equiv.),
DMF.DMA (1.0 equiv.), dioxane, r.t., 24 h; Na (2.0 equiv.), cyanothioacetamide (1.0 equiv.), MeOH, r.t.,
1 h; reflux, 4 h; 2 M HCl, 2 97%; (ii) carbonitrile 2 (1.0 equiv.), chloroarylacetamides 3a–e (1.0 equiv.),
Na2CO3 (2.0 equiv.), abs. EtOH, reflux, 48 h, 4a–e 47%-quant.; (iii) ketones 4a–e (1.0 equiv.), NaBH4

(1.0 equiv.), MeOH, THF, r.t., 2 h; H2O, 5a–e 50%-quant.; (iv) alcohols 5a–e (1.0 equiv.), acetic an-
hydride, Boc anhydride (2.0 equiv.), or methyl chloroformate (1.0 equiv.), DMAP (cat.), pyridine,
10–20 min, r.t., 6a–e, 7a–e and 8a–e 17–68%.

2.2. Anti-Proliferative Activity

After synthesis of the targeted analogues, their anti-proliferative activities were tested
against HCT-116 and MDA-MB-231 cancer cell lines. It was found that the majority of
the synthesised derivatives 6a–e, 7a–e, and 8a–e had notable anti-proliferative activity
against both cancer cell lines (Table 1). The derivatives that had 2′-Me-3′-Cl and 1′-naphthyl
substitution patterns on the aryl carboxamide predictably had the best anti-proliferative
activity, whereas the derivatives that had 4′-OMe substitution had the poorest activity,
which suggested the compounds were affecting the same intracellular targets as previous
analogues. In particular, treatment of cells at 1 µM with compounds 6c, 8c, and 8d demon-
strated 99.8% growth inhibition and had IC50 values of 11, 15, and 24 nM, respectively, in
HCT-116 cancer cells. Lower growth inhibition was observed for MDA-MB-231 cancer cells
for these same compounds, but at 1 µM dosing, up to 95.4% cell growth inhibition was still
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observed, and subsequent testing gave IC50 values of 24, 21, and 32 nM for compounds 6c,
8c, and 8d, respectively.

Table 1. Anti-proliferative activity (at 1 µM) and IC50 (nM) of Series 1 compounds against HCT-116
and MDA-MB-231 cancer cell lines.

Mean Relative Growth of 1 µM in Cancer
Cell Line (%) IC50 (nM)

HCT-116 MDA-MB-231 HCT-116 MDA-MB-231

5a * 95.3 107.4 - -
5b * 99.9 97.9 - -
5c * 2.2 11.7 72 76
5d * 1.7 9.9 171 81
5e * 97.5 114.4 - -
6a 0.8 8.0 224 274
6b 1.7 11.7 387 448
6c 0.2 4.6 11 24
6d 3.1 7.1 - -
6e 70.1 77.0 - -
7a 4.0 24.6 667 768
7b 7.8 33.0 776 791
7c 0.7 5.7 61 90
7d 5.4 7.3 473 449
7e 94.8 96.4 - -
8a 7.0 15.2 - -
8b 11.1 16.7 - -
8c 0.2 3.1 15 21
8d 0.2 3.1 24 32
8e 101.1 107.0 - -

* denotes previously tested parent alcohol-containing thienopyridines [1]. The most active compounds are shown
in the highlighted rows

It is important to note that the parent alcohols and their derivatives do contain a
chiral centre at the carbonyloxy substituent, however, the alcohols have been previously
tested racemically, and molecular modelling studies have shown that both the (R)- and
(S)-enantiomers are likely to bind to the PI–PLC active site [1]. The results of this study
by Haverkate et al. showed that the most active 2′-Me-3′-Cl and 1′-naphthyl substituted
alcohols had IC50 values of 72–171 nM, higher than their derivatives [1]. The activity
of the novel ‘prodrug-like’ derivatives was therefore improved when compared to the
parent alcohols.

For further comparison, the anti-cancer drugs paclitaxel and doxorubicin have pub-
lished IC50 values of 0.3 µM [21] and 3.16 µM [22], respectively, in MDA-MB-231 cells,
highlighting the potency of these novel thienopyridines.

2.3. Molecular Modelling Study

Whilst there is no direct assay to determine PI-PLC activity, molecular modelling
has been extensively used to investigate the interaction of compounds with the active site
of the enzyme [9,23,24]. Parent alcohols, such as 5c, are predicted to bind as shown in
Figure 3, with important interactions between amino acids GLU341 and HIS311 and the
primary amine, as well as the amide carboxyl group. In addition, the alcohol group is
predicted to bind with ARG549 inside the active site. Molecular modelling of the derivatives
(e.g., carbonate 8c, Figure 3) predicts that modification of the alcohol significantly reduces
the binding. The increased size due to addition of the carbonate does not allow the molecule
to fit well within the binding site. This can be seen in Figure 3 with the primary amine
group, which is pointed inwards for 5c (H-bond with GLU341), but upon conversion
to 8c, the NH2 group is pointed outwards, eliminating the interaction with GLU3431.
This molecule flipping also removes the interaction seen between the alcohol in 5c with
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ARG549. This prediction of the flipping in the molecule is due to the increased size and
results in a much lower binding efficiency, which would then correlate with a much lower
activity [9,23–25]. However, the high biological activity of the new derivatives suggests that
the added moieties were likely cleaved intracellularly, reforming the parent alcohols, and
supported the idea that creating these modified moieties led to an enhanced intracellular
concentration of the thieno[2,3-b]pyridine, as many (6c, 8c, and 8d) had better IC50 values
when compared to their parent alcohols 5c and 5d.
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2.4. Summary

This study considered a new approach for optimizing activity in bioactive thieno[2,3-
b]pyridines, which was the incorporation of ‘prodrug-like’ moieties on the known anti-
proliferative alcohol-containing thienopyridines. It was thought that the addition of es-
ter and carbonate groups would aid solubility by disrupting the planar structure of the
thienopyridines, creating a lower energy crystal structure, thereby increasing solubility
and improving the intracellular concentrations of the compounds. The success of this
was reflected in the lowered melting points of the novel products, and in the improved
anti-proliferative activity of the derivative thienopyridines (6c, 8c and 8d) over their parent
alcohols (5c and 5d). Overall, fifteen novel and highly anti-proliferative compounds were
successfully synthesised, many of which exhibited record new IC50 values. Compounds 6c
and 8c in particular had IC50 values of 11 nM, and 15 nM, respectively, for HCT-116 cells,
which are the lowest (and most potent) thienopyridines yet.

3. Materials and Methods
3.1. Synthesis of the Compounds

General Details: All reactions were carried out under a nitrogen atmosphere in dry,
freshly distilled solvents unless otherwise noted. All NMR spectra were recorded on a
Bruker Avance DRX 400 MHz spectrometer (Bruker Scientific Instruments, Billerica, MA,
USA)at ambient temperatures. Chemical shifts are reported relative to the solvent peak
of DMSO (δ 2.50 for 1H and δ 39.5 for 13C). 1H NMR data are reported as position (δ),
relative integral, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of
doublets; td, triplet of doublets; tt, triplet of triplets; m, multiplet; br, broad peak), coupling
constant (J, Hz), and the assignment of the atom. 13C NMR data are reported as position
(δ) and assignment of the atom. All NMR assignments were performed using HSQC and
HMBC experiments. All melting points for solid compounds, given in degrees Celsius (◦C),
were measured using a Reicher-Kofler block and are uncorrected. Infrared (IR) spectra
were recorded using a Perkin-Elmer Spectrum 1000 series Fourier Transform Infrared ATR
spectrometer (Perkin Elmer, Waltham, MA, USA) Absorption maxima are expressed in
wavenumbers (cm−1). High-resolution mass spectroscopy (HRMS) was carried out by
either chemical ionization (CI) or electrospray ionization (ESI) on a MicroTOF-Q mass
spectrometer (Bruker Scientific Instruments, Billerica, MA, USA). Unless noted, chemical
reagents were used as purchased. General procedures, synthetic experimental methods,
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and full characterization data (including copies of NMR spectra for all synthesized final
compounds) can be found in the Supplementary Materials.

3.2. Cell Proliferation Assay

The synthesised ‘prodrug-like’ thieno[2,3-b]pyridines were measured for their anti-
proliferative activity against triple negative breast cancer MDA-MB-231 and colorectal
cancer HCT-116 cell lines (purchased from the American Type Culture Collection, Man-
assas, VA, USA) using 3H-thymidine incorporation assays. As previously described in
Leung et al. [6], 3000 cells were seeded in each well using 96-well plates with varying
concentrations of thieno[2,3-b]pyridines for three days. Experiments were performed in
triplicate, with a minimum of two experimental repeats. An amount of 0.04 µCi of 3H-
thymidine was added to each well five hours prior to harvest, after which the cells were
harvested onto glass fibre filters using an automated TomTec harvester (Tomtec, Chicago,
IL, USA). The filters were incubated with Betaplate Scint and thymidine incorporation
was determined with a Trilux/Betaplate counter (Perkin Elmer, Waltham, MA, USA).
Effects of inhibitors on the incorporation of 3H-thymidine into DNA were determined
relative to the control samples (a previously known active compound and triplicate wells
with no inhibitor).

3.3. Molecular Modelling

The thieno[2,3-b]pyridines synthesised in this study were docked into the mammalian
PI-PLC-δ1 crystal structure, which was obtained from the Protein Data Bank (PDB ID: 1DJX-
04, from Rattus norvegicus). The software GOLD suite version 5.8.1 was used to prepare the
crystal structure for docking, by the addition of hydrogen atoms and the removal of water
molecules, and the co-crystallised ligand (D-myo-inositol-1,4,5-triphosphate, IP3). Basic
amino acids were assumed to be protonated, and acidic amino acids deprotonated, in order
to closely resemble a cell’s in vivo environment. The coordinates of the binding pocket
were located at the Ca2+ ion, i.e., x = 126.257, y = 38.394, z = 22.370, as stated in the literature,
with a 10 Å radius. ChemDraw 3D 15.0 was used to build the thieno[2,3-b]pyridines and
to perform energy minimisation (MM2) of all studied structures. For each ligand to be
docked, 50 docking runs were allowed at 100% search efficiency. The scoring functions
ChemPLP, GoldScore, ChemScore, and ASP were implemented to validate the predicted
binding modes and relative energies of the ligands using the GOLD suite version (CSD,
Cambridge, UK) 5.8.1.

Supplementary Materials: The following supporting information can be downloaded online, Refs. [1,26]
are cited in the Supplementary Materials. Figure S1: 1H NMR spectrum of 6a (400 MHz; DMSO-d6),
Figure S2: 13C NMR spectrum of 6a (100 MHz; DMSO-d6), Figure S3: 1H NMR spectrum of 6b
(400 MHz; DMSO-d6), Figure S4: 13C NMR spectrum of 6b (100 MHz; DMSO-d6), Figure S5: 1H NMR
spectrum of 6c (400 MHz; DMSO-d6), Figure S6: 13C NMR spectrum of 6c (100 MHz; DMSO-d6),
Figure S7: 1H NMR spectrum of 6d (400 MHz; DMSO-d6), Figure S8: 13C NMR spectrum of 6d
(100 MHz; DMSO-d6), Figure S9: 1H NMR spectrum of 6e (400 MHz; DMSO-d6), Figure S10: 13C
NMR spectrum of 6e (100 MHz; DMSO-d6), Figure S11: 1H NMR spectrum of 7a (400 MHz; DMSO-
d6), Figure S12: C NMR spectrum of 7a (100 MHz; DMSO-d6), Figure S13: 1H NMR spectrum of 7b
(400 MHz; DMSO-d6), Figure S14: 13C NMR spectrum of 7b (100 MHz; DMSO-d6), Figure S15: 1H
NMR spectrum of 7c (400 MHz; DMSO-d6), Figure S16: 13C NMR spectrum of 7c (100 MHz; DMSO-
d6), Figure S17: 1H NMR spectrum of 7d (400 MHz; DMSO-d6), Figure S18: 13C NMR spectrum of 7d
(100 MHz; DMSO-d6), Figure S19: 1H NMR spectrum of 7e (400 MHz; DMSO-d6), Figure S20: 13C
NMR spectrum of 7e (100 MHz; DMSO-d6), Figure S21: 1H NMR spectrum of 8a (400 MHz; DMSO-
d6), Figure S22: 13C NMR spectrum of 8a (100 MHz; DMSO-d6), Figure S23: 1H NMR spectrum of 8b
(400 MHz; DMSO-d6), Figure S24: 13C NMR spectrum of 8b (100 MHz; DMSO-d6), Figure S25: 1H
NMR spectrum of 8c (400 MHz; DMSO-d6), Figure S26: 13C NMR spectrum of 8c (100 MHz;
DMSO-d6), Figure S27: 1H NMR spectrum of 8d (400 MHz; DMSO-d6), Figure S28: 13C NMR
spectrum of 8d (100 MHz; DMSO-d6), Figure S29: 1H NMR spectrum of 8e (400 MHz; DMSO-d6),
Figure S30: 13C NMR spectrum of 8e (100 MHz; DMSO-d6), Figure S31: HRMS of 6a (top) and 6b
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(bottom), Figure S32: HRMS of 6c (top) and 6d (bottom), Figure S33: HRMS of 6e (top) and 7a (bot-
tom), Figure S34: HRMS of 7b (top) and 7c (bottom), Figure S35: HRMS of 7d (top) and 7e (bottom),
Figure S36: HRMS of 8a (top) and 8b (bottom), Figure S37: HRMS of 8c (top) and 8d (bottom),
Figure S38: HRMS of 8e, Figure S39: Antiproliferative results of compounds 5a–e, 6a–e, 7a–e, and
8a–e, Table S1: Computational logP and logS values for thieno[2,3-b]pyridines 5a–e, 6a–e, 7a–e, and
8a–e as calculated by ChemDraw Professional 19.1.1.21, Table S2: Melting points of compounds 5a–e,
6a–e, 7a–e, and 8a–e.
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