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Abstract: Nowadays, the use of hybrid structures and multi-component materials is gaining ground
in the fields of environmental protection, water treatment and removal of organic pollutants. This
study describes promising, cheap and photoactive self-supported hybrid membranes as a possible
solution for wastewater treatment applications. In the course of this research work, the photocatalytic
performance of titania nanowire (TiO2 NW)-based hybrid membranes in the adsorption and degrada-
tion of methylene blue (MB) under UV irradiation was investigated. Characterization techniques such
as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive
X-ray spectroscopy (EDS), X-ray powder diffractometry (XRD) were used to study the morphology
and surface of the as-prepared hybrid membranes. We tested the photocatalytic efficiency of the
as-prepared membranes in decomposing methylene blue (MB) under UV light irradiation. The
hybrid membranes achieved the removal of MB with a degradation efficiency of 90% in 60 min.
The high efficiency can be attributed to the presence of binary components in the membrane that
enhanced both the adsorption capability and the photocatalytic ability of the membranes. The re-
sults obtained suggest that multicomponent hybrid membranes could be promising candidates for
future photocatalysis-based water treatment technologies that also take into account the principles of
circular economy.

Keywords: self-supported membranes; scanning electron microscopy; photocatalysis; organic dye
decomposition

1. Introduction

Over the past decade, air and water pollution has been on an upward trend, causing
concern in everyday life around the world. In general, the industrial sectors accumulate
large quantities of wastewater during manufacturing processes, which contains various
chemical components such as pharmaceutical residues, dyes or heavy metals and salts [1]
that are costly to neutralize and remove. Semiconductors and their composites have been
studied in depth to combat the problems associated with waste generation. They include
TiO2 [2], ZnO [3], WO3 [4], Bi-based [5] and Ag-based [6] materials, etc. [7].

Titanium dioxide (TiO2) is one of the most widely used semiconductor for photocat-
alytic applications due to its advantageous properties (optical and electronic properties,
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chemical stability, low cost, lack of toxicity) [8]. However, its practical application is limited,
as it can only be effectively excited under UV light due to its wide band gap. There have
been numerous attempts to enhance the photocatalytic activity and excitability of titanium
dioxide, for example, by synthesizing TiO2 with various morphologies [9], modifying it
with noble metals [10,11], doping it with various elements [12,13] and preparing composites
with graphene [14], graphene oxides [15] and other semiconductors [16].

Copper and copper oxide are widely used as dopants on titanium dioxide materials’
surfaces to enhance their photocatalytic performance by narrowing the bandgap and
improving electron–hole separation with photoexcitation, as reported in [17,18]. Variations
of iron oxides are used to modify the properties of titanium dioxide, due to their small
band gap [19]. With the combination of iron oxide and titanium dioxide, shallow trap
sites appear between the conduction band and the valance band that leads to a reduction
in the band gap energy of TiO2 [20]. Furthermore, the radius of Fe2+ and Fe3+ ions is
smaller than that of Ti4+; thus, iron ions can diffuse into the TiO2 lattice to substitute
TiO2 [21]. In addition, iron oxides (magnetite, i.e., Fe3O4 and maghemite, i.e., Fe2O3) have
special magnetic properties in the nanoscale range [22]. These ferromagnetic properties
can be beneficial to improve the recyclability of photocatalysts and prevent particles from
clumping together [23].

Many authors have reported that enhanced photocatalytic properties are expected
from morphological modifications of TiO2-based photocatalytic nanomaterials, such as
one-dimensional TiO2 nanostructures, including TiO2 nanowires (TiO2 NW) [19,24], TiO2
nanotubes (TiO2 NT) [25,26], TiO2 hollow spheres (TiO2 HS) [27] and TiO2 hollow fibers
(TiO2 HF) [28]. These morphologies have a high specific surface area as well as other
beneficial properties, as they can decrease the hole–electron recombination rate and increase
the interfacial charge transfer rate [29,30]. TiO2 NW have excellent mechanical stability and
chemical and physical properties. For the synthesis of TiO2 NW, mostly hydrothermal [31]
and solvothermal methods [32] are used. Previous scientific results indicate that TiO2
nanowires have outstanding photocatalytic efficiency [31–33].

Photocatalytic membranes (PM) offer a great potential alternative for economical and
eco-friendly treatments of wastewater, based on the combination of membrane filtration
and photocatalysis [34,35]. Membrane filtration is widely used for drinking water treat-
ment and wastewater treatment [36,37] due to its simple operation and effective removal
of various types of pollutants. Using this technology, most organic and small amounts
of inorganic substances can be decomposed using solar energy to reduce the harm of
pollutants. There are various types of materials that can be used as membranes, such as
natural polymers (cellulose [38,39]), green porous nano-membranes [40], graphene [41],
carbon nanotube [42], ceramic [43] or synthetic polymer-based (polyvinyl alcohol (PVA),
polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF) etc.) [44] membranes [45]. TiO2
nanowire membranes have been investigated as mechanical microfilters and as photocata-
lysts to degrade pharmaceutical residues such as trimethoprim and other organic materials
including dyes, phenol and humic acid under UV irradiation [46]. A. Hu et al. investigated
various types of TiO2 nanostructured membranes, though the properties of CuO- and
Fe2O3-modified TiO2 photocatalytic membranes were not explored.

Cellulose-based materials are promising substances that can partly or totally replace
synthetic fibers as filters in masks [47] and can be used as membranes or support for other
materials and to remove oil and heavy metal ions during water treatment [48]. Further-
more, cellulose has unique features in comparison to the usual supports and thus allows
nanoparticles stability, reactivity, recyclability and prevents nanoparticle aggregation. Cel-
lulose also represents a sustainable alternative to known methods with the aforementioned
properties. CdS and TiO2 nanoparticle–nanocellulose hybrid composites have been used
as photocatalysts for a model pollutant, i.e., methyl orange degradation. In the CdS case,
82% degradation efficiency was achieved after 90 min irradiation, and the material was
reusable up to five times. [49]. A TiO2–cellulose hybrid composite was 20% more efficient in
degrading methylene orange than pure TiO2 after 20 min of UV irradiation [50]. In a recent
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study, it was found that the photocatalytic degradation rate of TiO2–cellulose was much
higher (99.72%) than that of bare TiO2 (69.18%) under UV irradiation for 30 min, because
cellulose served as a support for TiO2 nanoparticles distribution and also promoted the
adsorption of methyl orange molecules [51]. In this work, the aim was to develop a “green
chemistry” solution to industrial wastewater effluents. Cellulose-based membranes were
chosen over other materials due to their advantageous properties such as lack of toxicity,
low cost, biodegradability and eco-friendliness. Other than this, cellulose membranes have
excellent specific surface area, adjustable surface chemistry, hydrophilicity and mechanical
strength [52].

In the current paper, we successfully developed titanium dioxide nanowire (TiO2 NW)-
based hybrid membranes. The surface of TiO2 NW was decorated with iron oxide (Fe2O3)
and copper oxide (CuO) nanoparticles to improve the photocatalytic performance of the
as-prepared composites. Furthermore, cellulose fibers were applied as a reinforcement filler
material to prepare self-supported hybrid membranes. The photocatalytic properties of the
membranes were investigated against methylene blue decomposition under UV irradiation.
The results showed that nanofiber-based hybrid membranes can provide an excellent
alternative as environmentally friendly solutions for wastewater treatment requiring the
degradation of organic pollutants.

2. Results
2.1. HRTEM and EDS Analysis of TiO2 NW@Fe2O3 and TiO2 NW@CuO Nanocomposites

Heat-treated nanocomposite samples were investigated by the HRTEM technique.
Figure 1 shows HRTEM micrographs of the prepared TiO2 NW@Fe2O3 and TiO2 NW@CuO
nanocomposites. These images revealed that the fabrication of both nanocomposites was
successful, although different nanocomposite structures were observed during TEM. The
HRTEM images showed that inorganic nanoparticles (Fe2O3 and CuO) were attached to
the surface of TiO2 NW. Figure 1a,b show that Fe2O3 and CuO nanoparticles adhered on
TiO2 NW, respectively, and segregated particles could not be observed.
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Figure 1. HRTEM images of TiO2 NW@Fe2O3 (a) and TiO2 NW@CuO (b) nanocomposite samples.

Furthermore, from the analysis of the HRTEM images, the average particle sizes of
Fe2O3 and CuO nanoparticles were calculated using the iTEM software (Olympus Soft
Imaging Solutions). The average particle size of these components was determined by
measuring 100 individual particles in both samples. Based on these calculations, it was
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found that Fe2O3 nanoparticles had a diameter in the range of 20–30 nm, as can be seen
in Figure 1a, while the average diameter of CuO nanoparticles was 2–3 nm, as shown in
Figure 1b.

EDS analysis was performed to determine the elements in the as-prepared nanocom-
posites. Figure 2a,b show the EDS spectra and confirmed that the most significant signals
originated from carbon (C), oxygen (O), titanium (Ti), potassium (K), copper (Cu) and
iron (Fe). The presence of TiO2 NW, Fe2O3 and CuO in the samples was confirmed by the
Ti, Fe, Cu and O peaks, as shown in the spectra (Figure 2), while in the case of the TiO2
NW@Fe2O3 nanocomposite sample, the Cu peak originated from the sample holder (a
lacey Cu grid), and the peak of K was due to the residual KOH that was used during the
preparation of the TiO2 NW.
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Figure 2. EDS spectra of TiO2 NW@Fe2O3 (a) and TiO2 NW@CuO (b) nanocomposites.

2.2. SEM and EDS Analysis of the Hybrid Membranes

In order to gain information about the surface morphology of the as-prepared hybrid
membranes, SEM analysis was performed. The surface nature and morphology of a
neat cellulose membrane (Figure 3a), the TiO2 NW (Figure 3b) and the as-prepared TiO2
NWs@Fe2O3/cellulose (Figure 3c,d) and TiO2 NWs@CuO/cellulose hybrid membranes
(Figure 3e,f) were characterized by SEM. The SEM images in Figure 3a show cellulose
wires with an average diameter of 1–5 µm, while the TiO2 NW had an average diameter of
10–15 nm, as observed in Figure 3b. Figure 3c,e show the produced self-supported hybrid
membranes, and the SEM images in Figure 3d,f demonstrate the microstructure of TiO2
NWs@Fe2O3/cellulose (d) and TiO2 NWs@CuO/cellulose (f) hybrid membranes. In the
TiO2 NWs@Fe2O3/cellulose membrane, the Fe2O3 particles stuck together resulting in
bigger agglomerates and increased pore size.

To determine the elemental composition and confirm the presence of Fe2O3 and CuO
nanoparticles in the as-prepared hybrid membranes, EDS analysis was performed for
each sample. The data of the EDS analysis in Table 1 revealed the atomic percentages
(at%) of the detected elements in the samples. The most significant signals originated
from carbon (C), oxygen (O) and titanium (Ti), confirming the presence of cellulose and
TiO2 NW in the hybrid membranes. Furthermore, iron (Fe) and copper (Cu) signals were
detected, which related to the Fe2O3 and CuO nanoparticles. Other elements were also
observed, such as sodium (Na), potassium (K) and fluorine (F), which originatied from the
preparation procedure of TiO2 NW. The results of EDS analysis from HRTEM and SEM
showed good correlations.
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Table 1. Elemental (EDS) analysis of the raw materials (cellulose and TiO2 NW) and hybrid membranes.

Sample Name C O Ti Na F K Fe Cu

Cellulose 45 55 - - - - - -

TiO2 NW - 64 36 - - - - -

TiO2 NW@Fe2O3/cellulose 20 50 23 3 - 3 1 -

TiO2 NW@CuO/cellulose 25 58 11 - 3 2 - 1

2.3. XRD and Specific Surface Area Analysis of the Hybrid Membranes

In order to determine the degree of crystallization of the as-prepared nanocomposites
and membranes and to identify and describe the crystal structure of these materials, XRD
analysis was performed. As can be seen in Figure 4a, the diffraction peaks at the angles
2(θ◦) of 24.1◦, 33.2◦, 35.6◦, 40.8◦, 49.5◦, 54.1◦, 57.3◦ and 62.6◦ correspond to the reflections
from (012), (104), (110), (113), (024), (116), (212), respectively. All of these peaks originated
from hematite (α-Fe2O3) (JCPDS 33-0664). The diffraction peaks at the angles 2(θ◦) of 25.2◦,
36.2◦, 37.5◦, 38.5◦, 48.0◦, 54.3◦ and 56,6◦ correspond to the (101), (103), (004), (112), (200),
(105), (211) and (118) reflections, respectively, and relate to anatase phase of the TiO2 NW
(JCPDS 21-1276). Furthermore, the diffraction peaks at 11.9◦, 24.2◦, 43.1◦, 60.1◦, correspond
to the crystal phase (200), (002), (602), (610) of potassium titanium oxide K2Ti6O13 (PDF
no. 40-0403). All these results are in agreement with previous reports [53]. The diffraction
peaks of cellulose (PDF no. 03-0289) could be observed at angles 2(θ◦) of 16.3◦, 22.7◦

and 34.5◦, corresponding to the crystal planes of cellulose at (110), (110), (200) and (400)
reflections, respectively.
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Figure 4. XRD of TiO2 NW@Fe2O3/cellulose (a) and TiO2 NW@CuO/cellulose (b) hybrid membranes.

Figure 4b shows the XRD analysis of the TiO2 NWs@CuO/cellulose hybrid membrane.
As shown, the diffraction peaks located at the angles 2(θ◦) of 33.1◦, 35.7◦, 38.1◦, 47.1◦,
49.4◦, 53.2◦, 58.6◦, 62.2◦, 67.3 ◦ and 68.1◦ correspond to monoclinic crystal phases of
the reflections (110), (002), (200), (112), (202), (020), (202), (113), (022), (220), related to
copper oxide (CuO) (JCPDS card number 45-0937), which showed correlations with earlier
published results [54].

The pure materials, the membranes and the hybrid membranes were also characterized
by the N2 adsorption technique to determine their specific surface areas and pore diameters,
as can be seen in Table 2. It was found that there was no significant difference between the
surface areas of the as-prepared hybrid membranes. Both hybrid membranes had a specific
surface area of approx. 120 m2/g.
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Table 2. Specific surface areas of the pure materials and the hybrid membranes.

Sample Name Surface Area (m2/g) Pore Diameter (nm)

TiO2 NW 168 -

cellulose membrane 6 18

Fe2O3 62 -

CuO 141 -

TiO2 NW@Fe2O3 146 -

TiO2 NW@CuO 139 -

TiO2 NW@Fe2O3/cellulose 122 16

TiO2 NW@CuO/cellulose 117 16

2.4. Photocatalytic Efficiency of the Hybrid Membranes

The photodegradation efficiency of the synthesized membranes was tested using
methylene blue dye as a model pollutant, under UV light irradiation. The results revealed
the almost complete removal of MB. Approx. 90% of the initial MB dye was decomposed
by the hybrid membrane containing a photocatalyst, i.e., the TiO2 NW@Fe2O3 and TiO2
NW@CuO nanocomposites. Figure 5 presents the removal efficiency of MB of the TiO2
NW@Fe2O3/cellulose and TiO2 NW@CuO/cellulose hybrid membranes under UV light.
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It is important to note here that only the hybrid membranes are shown because it
was reported that structure deformations appear in pure cellulose exposed to UV light.
This is the reason why we applied a lower amount of cellulose in the hybrid membranes.
The high removal of MB by the membranes reflects their potential to degrade organic
dye molecules. The excellent degradation efficiency could be attributed to the synergistic
effects of the TiO2 NW with nanoparticles (Fe2O3, CuO) on their surface and the adsorption
of MB on cellulose. As the present study was carried out under UV light, significant
differences could be observed under visible light; therefore, we will explore this possibility
in a further study. In addition, since pure cellulose does not contain any photocatalyst, a
pure cellulose membrane is not expected to possess photocatalytic activity. However, its
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adsorption capacity can be non-negligible; therefore, we performed adsorption studies for
2 h of this and other membranes, as shown in Figure 6. Since a small amount of cellulose
was used in the hybrid membranes for the reason mentioned above and the adsorption
capacities appeared to be similar for all materials, it can be concluded that titanate alone
is capable of adsorbing MB molecules. In the literature, several works have reported
enhanced adsorption of different organic pollutants onto Fe2O3 and CuO, making these
compounds promising components of membranes for wastewater treatment [19,55].
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3. Materials and Methods
3.1. Materials

Titanium dioxide (TiO2) (P25), anatase nanopowder (with an average diameter of
21 nm), ammonium hydroxide (NH4OH, 25%) and sodium hydroxide (NaOH) were pur-
chased from Sigma Aldrich (Budapest, Hungary). Hydrochloric acid (HCl, 37 %) and
copper (II) acetate monohydrate (Cu(OOCCH3)2 × H2O) were obtained from VWR Chemi-
cals (Debrecen, Hungary). Potassium hydroxide (KOH) was purchased from Thomasker
Co., (Budapest, Hungary). Iron chloride hexahydrate (FeCl3 × 6H2O) was purchased from
Scharlab, (Debrecen, Hungary). Cellulose originated from DIPA Ltd. (Miskolc, Hungary).
A polyvinylidene (PVDF) filter membrane with pore size of 0.1 µm and diameter of 47 mm
(Durapore-VVLP04700) was used for hybrid membranes’ preparation.

3.2. Synthesis of TiO2 Nanowires (TiO2 NW)

Recently, we showed the preparation of TiO2 NW using the so-called solvothermal
process [56]. In brief, a homogeneous TiO2 suspension was transferred into a Teflon®-lined
autoclave. The autoclave was kept in a dryer at 160 ◦C for 24 h. The as-prepared TiO2 NWs
were washed with 0.1 M HCl and deionized water until a neutral pH was reached. The
products were dried and calcined at 500 ◦C for 1 h.

3.3. Synthesis of TiO2 NW@Fe2O3/Cellulose Membranes

For the synthesis of the hybrid membrane, firstly, a TiO2 NW@Fe2O3 nanocomposite
was prepared. The calculated amount of FeCl3 × 6H2O precursor was dissolved in 100 mL
of distilled water to obtain a homogeneous solution. Then, 0.95 g of previously prepared
TiO2 NWs was added to the solution and stirred for 1 h, then transferred to the autoclave
for 9 h at 90 ◦C. The product obtained was washed with 0.1 M NaOH to adjust the pH
to 7, dried for 12 h at 50 ◦C and then calcinated for 2 h at 500 ◦C using a static furnace.
The load of the Fe2O3 nanoparticles in the final composition was 5 w/w %. In the next
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step, 0.2 g of the as-prepared TiO2 NW@Fe2O3 nanocomposite powder was dispersed
in 100 mL of distilled water for 1 h, then 5 g of cellulose solution (1 w/w %) was added
to the solution and stirred for 1 h. Finally, the preparation of the cellulose-based hybrid
membranes was accomplished by vacuum filtration through a PVDF membrane (total mass
of 250 mg/membrane), followed by drying in a furnace for 30 min at 40 ◦C.

3.4. Synthesis of TiO2 NW@CuO/Cellulose Membranes

In the same way, a calculated amount of (Cu(CH3COO)2 × H2O) was dissolved in
100 mL of EtOH and left under vigorous stirring for 30 min to ensure complete dissolution.
Then, 0.95 g of TiO2 NW was added directly to the solution, which was kept under vigorous
stirring for 1 h. The mixture was poured into an autoclave and placed in a static furnace at
150 ◦C for 12 h. The final product was collected and washed using vacuum filtration and
calcinated for 2 h at 500 ◦C. The load of the CuO nanoparticles in the final composition
was 5 w/w %. To prepare the TiO2 NW@CuO/cellulose membranes, 0.2 g of the above
prepared composite was dipped into 100 mL of EtOH for 1 h, then 5 g of cellulose (1%) was
added to the solution for another 1 h, and finally, the membrane was obtained by vacuum
filtration using a PVDF membrane (total mass of 250 mg/membrane), followed by drying
in a furnace for 30 min at 40 ◦C.

3.5. Characterization Techniques

For the qualitative characterization, high-resolution transmission electron microscopy
(FEI Tecnai G2 F20 HRTEM, Hillsboro, OR, USA) was used to analyze the morphology of the
synthetized TiO2 NW@Fe2O3 and TiO2 NW@CuO nanocomposites. To prepare the samples
for HRTEM, the nanocomposites were dispersed in ethanol and sonicated for 5 min. On
a Cu TEM-grid (300-mesh copper grids, lacey carbon, Ted Pella Inc., Redding, CA, USA),
we placed a droplet of each suspension. The diameter of the materials was determined
using the ImageJ software, utilizing the HRTEM images and the original scale bar. To
determine the elemental composition of the TiO2 NW@Fe2O3 and the TiO2 NW@CuO
nanocomposites, energy-dispersive X-ray spectroscopy (EDS; AMETEK Inc., Berwyn, PA,
USA; active area 30 mm2) coupled to HRTEM was applied.

The crystal structure of the TiO2 NW@Fe2O3/cellulose and TiO2 NW@CuO/cellulose
membranes was determined using X-ray powder diffraction (XRD) (Bruker D8 Advance
diffractometer, Billerica, MA, USA) at (CuK α = 0.15418 nm; 40 kV and 40 mA) in parallel
beam geometry (Göbel mirror) with a position-sensitive detector (Vantec1, Springfield,
IA, USA; 1◦opening). On top-loaded specimens in zero-background Si sample containers,
measurements were made in the 2–80◦ (2 Theta) range using a 0.007◦ (2 Theta)/14 s
goniometer speed.

The surface morphology of the as-prepared TiO2 NW@Fe2O3/cellulose and TiO2
NW@CuO/cellulose membranes was investigated by scanning electron microscopy. SEM
and EDS spectroscopy was carried out in a Nova 600i Nanolab (Thermofisher, Eindhoven,
The Netherlands) equipped with an EDS system for elemental analysis (EDAX Inc., Mah-
wah, NJ, USA). The EDS system mounted an Octane Elect Plus X-rays detector. Typical
EDS maps and spectra were acquired using acceleration voltage values between 10 kV
and 25 kV, with take-off angle of 35◦ and Dwell Time of 200 ms. For SEM analysis, the
powders were deposited on a sticky carbon tape. Both powders and membranes were
imaged directly without any conductive coating. The typical SEM working distance was
5 mm, and the acceleration voltage ranged from 2 kV up to 25 kV, depending on image
quality and charging conditions.

To determine the surface area of the raw materials, the nanocomposites and the hybrid
membranes, nitrogen adsorption–desorption experiments were carried out at 77 K to
determine the Brunauer–Emmett–Teller [24] (BET) specific surface area using an ASAP
2020 instrument (Micromeritics Instrument Corp., Norcross, GA, USA).
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3.6. Photocatalytic Experiments

The photocatalytic activity of the membranes was evaluated by studying the degra-
dation of methylene blue as a model pollutant in an aqueous solution under UV light
irradiation. The membranes were dipped into 100 mL of 0.03 mM MB solution and kept
in the dark for two hours to attain the adsorption–desorption equilibrium. After this, the
solution containing the pollutant and the photocatalyst (hybrid membranes) was exposed
to UV-A lamps at a power between 300 and 500 W (Cosmedico N 400 R7S) for 60 min.
The samples were withdrawn at regular time intervals and analyzed using a UV–Vis spec-
trophotometer (BEL UV-M51). The removal efficiency of the membranes was measured by
recording the absorbance at 664 nm, and the degradation efficiency (% deg.) was calculated
using the following formula:

% deg. =
(c0 − ct)

c0
× 100

where, c0 is the initial concentration at time t = 0, ct is the concentration at time “t”, and
% deg. is the photodegradation efficiency of the materials in relation to MB removal.

4. Conclusions

Herein, we presented the synthesis of two types of novel TiO2 nanowire-based
hybrid membranes and studied their adsorption properties and photocatalytic perfor-
mance in the decomposition of methylene blue under UV light. The as-prepared TiO2
NW@Fe2O3/cellulose and TiO2 NW@CuO/cellulose membranes were characterized by
TEM, SEM, EDS and XRD. The results clearly demonstrated that not only the preparation
of raw TiO2 NW, Fe2O3 and CuO decorated TiO2 NW, but also the production of hybrid
membranes was successful.

Comparing the results of photocatalysis, it was found that both types of hybrid mem-
branes showed outstanding performance in removing MB in only 60 min of UV irradiation.
The photocatalytic degradation efficiency in MB removal of TiO2@Fe2O3/cellulose was
88%, while that of TiO2@CuO/cellulose membrane was up to 90%.

Since we applied UV light in this study, a significant degradation could presumably
be observed under visible light irradiation; therefore, we intend to explore this possibility
in a future study. Furthermore, we are planning to submit a further study in the near
future regarding the microbiological and toxicological properties of the hybrid membranes
here presented. It is believed that by exploiting the advantageous properties of the hybrid
membrane-based water treatment technologies and solutions presented here, new and
sustainable strategies could be implemented for photocatalyst-based water treatment technologies.
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