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Abstract: In this study, a V@TiO2 nanocomposite is examined for its ability to eliminate carcinogenic
Rhodamine (Rh-B) dye from an aqueous medium. A simple ultrasonic method was used to produce
the nanosorbent. In addition, V@TiO2 was characterized using various techniques, including XRD,
HRTEM, XPS, and FTIR. Batch mode studies were used to study the removal of Rh-B dye. In the
presence of pH 9, the V@TiO2 nanocomposite was able to remove Rh-B dye to its maximum extent. A
correlation regression of 0.95 indicated that the Langmuir model was a better fit for dye adsorption.
Moreover, the maximum adsorption capacity of the V@TiO2 nanocomposite was determined to be
158.8 mg/g. According to the thermodynamic parameters, dye adsorption followed a pseudo-first-
order model. Based on the results of the study, a V@TiO2 nanocomposite can be reused for dye
removal using ethanol.

Keywords: V@TiO2 nanocomposite; Rh-B dye removal; removal mechanism; regeneration

1. Introduction

Industrial wastewater contains artificial pigments that constitute an environmental
risk; thus, toxic dyes should permanently be removed from the aquatic system [1]. Dump-
ing colored wastewater into receiving waterways has become a severe environmental issue
worldwide [2]. The release of wool, rug, pulp, sheet, and textile effluents frequently tint
the collecting waters for kilometers in the direction of the source [3]. The color is visually
unappealing and inhibits the passage of light into the water, lowering the effectiveness
of photosynthesis in aquatic plants and negatively affecting their development [4]. The
extensive use of dyes in the fabric, publishing, latex, beauty product, plastic, and leather
sectors produces a massive volume of colored wastewater [5–7]. Rhodamine B has a
comprehensive application, encompassing textiles, food, laser technology, biomarkers,
molecular probes, sensitizers, electrochemical-luminescence, and solar panels [8]. rho-
damine B (Rh-B) dye is considered a skin-irritating agent, neurotoxic, chronically toxic to
aquatic organisms, and carcinogenic to humans. [9]. Thus, purifying water bodies from
Rhodamine B is an urgent task to protect the environment and human health. One of
the most popular cationic water-soluble organic dyes is Rh-B [10]; it is toxic and lethal to
aquatic environments [11]. The numerous procedures for decolorization are categorized as
chemical, physical, and microbial techniques [12–14]. Physical treatments involve sorption,
ozonation, and membrane processes [15]. While chemical procedures comprise oxidation,

Molecules 2023, 28, 176. https://doi.org/10.3390/molecules28010176 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010176
https://doi.org/10.3390/molecules28010176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-3372-9944
https://orcid.org/0000-0003-1146-9456
https://orcid.org/0000-0002-6581-0325
https://orcid.org/0000-0003-1314-9448
https://doi.org/10.3390/molecules28010176
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010176?type=check_update&version=1


Molecules 2023, 28, 176 2 of 16

precipitation/co-precipitation, and photochemical processes, biological techniques include
aerobic decomposition, bacterial destruction, and biosorption [16]. Even though these
approaches are successful, they have several drawbacks, including increased chemical
consumption and sludge formation, and they are expensive [17].

Among all the dye treatment procedures, adsorption is reported to be efficient and
economical [18]. Activated carbon is an efficient adsorbent for removing dyes from in-
dustrial sewage effluents; nevertheless, its cost limits its usage [19]. Alongside traditional
adsorbents, various economical nonconventional adsorbents have been demonstrated
to eliminate dyes efficiently [20]. For the removal of dyes, investigations, including the
analysis of practical and inexpensive adsorbents produced from available resources, are
increasingly relevant [21]. Employing nanotechnology to clean contaminated environments
has shown to be advantageous, saving a lot and lowering pollution levels to tolerable lev-
els [22–24]. Metallic nanoparticles and nanocomposites are regarded as potential adsorbents
with high dye removal capability due to their sensitivity, permeability, and recyclability
within each known sorbent [25,26]. Lately, metal-based nanocomposites such as MgO/TeSe,
(Y2O3)n–ZnO, GO-TiO2, Fly-Ash@Fe3O4, and Fe2O3–TiO2–graphene have been used to
eliminate various dyes from water systems [27–33]. Several proposals for nanoparticle
production have involved mechanical, physiochemical, and biological procedures [34–36].
Furthermore, nanostructured and composite materials can be employed to capture or
destroy dye contamination in an aqueous environment [37–39]. V-TiO2 was utilized as the
base material to synthesize triple composites and used mostly as a photocatalyst [40–42].

This research aimed to establish a straightforward method for producing V-TiO2
nanomaterial. The synthesized V-TiO2 will be analyzed by physical means and introduced
as a practical, environmentally friendly, and inexpensive composite to get rid of the coloring
dyes from water.

2. Experimental Section
2.1. Fabrication of V@TiO2 Sorbent

For the V-TiO2 sorbent, 0.0338 moles of TiO2 nanoparticles (Sigma Aldrich) were
dispersed in 0.12 L isopropanol solvent using an ultrasonic bath for 20.0 min. Then,
0.00165 moles of V2O5 were added to the milky TiO2 solution, and the mixture was son-
icated for a further 40.0 min with vigorous stirring (550 rpm). After the mixtures were
blended, they were heated for 20 h at 90 ◦C in an electric dry oven, and the resulting
nanoparticles were ground before being calcined. The greenish-white powders were an-
nealed for 2 h at 145 ◦C.

2.2. Sorbent Characteristics

The structural properties of the as-synthesized sample were investigated by X-ray
diffraction (XRD) utilizing a Rigaku diffractometer operated with Cu K radiation
(
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acquired with the KBr pellet (400 to 4000 cm−1) on a Thermo Scientific Nicolet 380 Fourier
transform spectrometer. Using a JEM-2100 high-resolution transmission electron micro-
scope (TEM), the microscopic characteristics of the materials were studied. X-ray photo-
electron spectroscopy (XPS) was utilized to investigate surface chemistry using an RBD
upgraded PHI-5000C ESCA system (Perkin Elmer) with Al K radiation (hv = 1486.6 eV).

2.3. Rh-B Sorption Studies

The batch test protocol was employed to investigate the Rh-B dye adsorption onto the
V@TiO2 nanocomposite. In 0.025 L small bottles, 5 to 100 ppm concentrations of Rh-B dye
in distilled water were mixed with 10 mg of the nanocomposite. The mixture solution was
constantly agitated for 20 h. Following the establishment of equilibrium with the aqueous
phase, the nanocomposite was isolated by filtering, and Rh-B dye concentrations were
measured using a UV-vis spectrophotometer. The amount of adsorbed Rh-B dye at any
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given time (in minutes) and adsorption equilibrium magnitudes Qt and Qe (mg/g) were
calculated using the same equation (Equation (1)):

Qt = V(C0 − Ct)/m (1)

where V is the volume of the solution in liters; C0, Ce, and Ct are the starting concentration,
equilibrium concentration, and concentration of the Rh-B dye in solution, respectively, in
milligrams per liter; and m is the mass of the adsorbent (g). The contact times data were
used to investigate the Rh-B sorption via the pseudo-first-order, and pseudo-second-order
models (PSFOM, PSSOM) as expressed in equations 2 and 3, respectively. Also, the sorption
control mechanism was studied utilizing the liquid film and the intraparticle diffusion
models (IDM and LDM) presented by Equations (4) and (5) [43]:

qt = qe

(
1 − exp−K1·t

)
(2)

qt =
k2·q2

e ·t
1 + k2·qe·t

(3)

ln(1 − F) = −KLF∗t (4)

qt = KIP∗t
1
2 + Ci (5)

where qe (mg g−1) represents qt at equilibrium and k1 (min−1) and k2 (g mg−1 min−1) are
the rate adsorption constants for the PSFO and PSSO models, which have been calculated
from the slope and intercept values, respectively. The LFDM and IPDM constants were
represented as KIP (mg g−1 min−0.5) and KLF (min−1), and both were computed from their
slope values. Ci (mg g−1) is a boundary-layer-thickness factor [44].

2.4. pH Point of Zero Charges Experiment

In each flask, with a pH ranging from 1 to 12, ten milligrams of V@TiO2 nanocomposite
and ten milliliters of a 0.1 mole/L sodium chloride (NaCl) solution were added. A trace
amount of hydrochloric acid or sodium hydroxide was incorporated into the solution in
order to bring about a change in the pH. In order to achieve equilibrium, these bottles were
left on a multi-stirrer at room temperature for exactly one hour; then, the pH levels of the
solutions were measured. The point zero charges were found by comparing the initial and
final pH values against the original pH graph.

3. Results and Discussions
3.1. XRD Analysis of V@TiO2 Nanocomposite

X-ray diffraction (XRD) examination was conducted to verify the produced V@TiO2
nanocomposite. Figure 1 depicts XRD data from generated samples pertaining to the struc-
tural properties of the V@TiO2 nanocomposite. Peaks of phase obtained at
2theta = 27.51, 36.19, 44.19, and 54.42 are consistent with rutile phase (110), (101), (111),
and (211), respectively. On the other hand, the appearance of diffraction peaks at 41.42◦

and 56.66◦ corresponds to orthorhombic phase planes (020) and (012) of V2O5, which is
consistent with JCPDS Card No. 01-0359 [45]. By means of the Debye–Scherer equation [46],
the average crystal size of the V@TiO2 nanocomposite was determined to be 33.83 nm, with
a d-spacing of 3.236 Å.
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Figure 1. XRD of the fabricated V@TiO2 nanocomposite.

3.1.1. Morphological Observations

The TEM images of the V@TiO2 sorbent at different magnifications confirmed the
morphology and indicated the elemental distribution, as shown in Figure 2a–c. The semi-
spherical form of the TiO2 nanoparticles is seen clinging to the V2O5 nanomaterials, as
shown in the TEM pictures. The elemental distribution of V, Ti, and O in the synthesized
nanomaterials is characterized by means of EDX spectra (Figure 2d). The EDX analysis
sheds light on the stoichiometry of oxygen, vanadium, and titanium, as well as the pro-
portions of these elements and the actual integration of V2O5 into the TiO2 lattice. The
transmission electron microscope (TEM) gave an estimate of 30–100 nm for the typical
particle size of the sorbent. The value, however, was comparable to the crystallite size
determined by XRD.
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3.1.2. XPS of V@TiO2 Nanocomposite

Figure 3a–c depict O1s, Ti 2p, and V2p core-level spectra of the V2O5–TiO2 samples.
The O1s peak fit into two Gaussian peaks at 529.8 eV, which arose from the lattice O
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(Ti–O–Ti) and surface-absorbed hydroxyl groups of Ti–OH (Figure 3a) [47]. Due to the
self-orbital coupling effect, the Ti 2p peak was subdivided into Ti 2p3/2 (458.3 eV) and Ti
2p1/2 (464.1 eV), as shown in Figure 3c. They were symmetrical with a normal Gaussian
peak shape, indicating that Ti4+ was predominantly present in the undoped sample. Due to
the influence of the O1s satellite peak, only the V 2p3/2 peak was displayed in the current
experiment. The V doped in the TiO2 nanoparticles (Figure 3d) consisted of two chemical
states, V5+ and V4+, with energies of 514.9 and 527.33 eV, respectively. The literature [48]
indicates that V dopants can exist in surficial VO2+, surficial V2O5 islands, interstitial, and
replacement V ions. In light of the XRD and TEM analyses, as well as the fact that V doping
can result in the O1s peak shifting, it is plausible to assume that the V ions existed in a
substituted form and not as the V2O5 isolated phase, as suggested by the literature [49].
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Figure 3. Extraordinary resolution XPS spectra of (a) Survey (b) O1s, (c) Ti 2p 3/2, and (d) V 2p 3/2
of V2O5-TiO2 nanohybrid.

Usually, due to the similar radii of V4+ and Ti4+ species, V4+ ions can typically only
integrate into the TiO2 lattice by substituting Ti4+ ions. Therefore, the Ti-O-V bond, which
results in oxygen vacancy and a high electron production capability, is formed by sharing
the oxygen atoms of the V4+ ions in the TiO2 lattice. Furthermore, the presence of more
V4+ ions leads to the creation of more O2 radicals, the most powerful oxidizing species
in photocatalysis [50,51]. As a result, the existence of V4+ contributes significantly to the
improvement of photocatalytic activity [52].

3.1.3. pHzc of V@TiO2 Nanocomposite

The pH of the point of zero charge (pHzc) of the V@TiO2 nanocomposite was evaluated
using the pH drift method to completely comprehend the pH effect on the adsorptive
removal of dye pollution from an aqueous medium. According to the obtained results, the
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pHZPC value of the V@TiO2 nanocomposite was 4.2. At this pH (pHzc = 4.2), the surface
charge on the V@TiO2 nanocomposite is zero, whereas the surface charge is positive at
pH values less than 4.2 and negative at pH values greater than the pHZPC (Figure 4). The
influence of pH on Rh-B dye removal is a significant factor for the adsorption technique, as
it modifies not only the active sites on the V@TiO2 surface of the adsorbent that are capable
of Rh-B dye bonding, but also the solubility of Rh-B dye in the aqueous solution.
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3.1.4. Surface Characteristics of the V@TiO2 Nanocomposite

From the surface property investigation, the isotherm and pore size distribution of the
manufactured V@TiO2 nanocomposite are depicted in Figure 5a. The resulting isotherm is
of class IV with H1 hysteresis loops, which seem to be characteristic of nanostructured and
mesoporous materials [53,54]. Figure 5b shows a BET surface area of 16 m2/g and a pore
volume of 0.018 cc/g, along with a pore size distribution with a median of roughly 27.6 nm.
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3.2. Adsorption of Rd-B by V@TiO2 Sorbent

Figure 6a depicts the effect of contact duration on Rh-B dye sorption on V@TiO2, with
experimental qt values of 138 mg g−1 and adsorption equilibrium points of 4.0 h. It is
worth mentioning that nearly 95% of these uptakes occurred during the first 60 min of
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interaction. In addition, the impact of the concentrations of Rh-B on sorption by V@TiO2
was tested. Figure 6b illustrates that the qt value increased proportionally up to 75 mg L−1,
after which the inflation occurred, indicating the suitability of a 1:4 sorbent solution ratio
up to 75 mg L−1. Typically, qt values of 133.4 mg g−1 from 100 mg L−1 Rh-B solutions
imply the applicability of the V@TiO2 for treating industrial effluents with high pollutant
concentrations. Additionally, the semi-complete Rh-B dye removal by V@TiO2 from the
10 mg L−1 solutions demonstrates its effectiveness in treating contaminated water resources.
Furthermore, the decrease of qt values from the same concentrations as the temperature
increased showed the exothermic nature of removing Rh-B dye by a V@TiO2 sorbent.
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Figure 6. (a) The contact time study for the adsorption of Rh-B dye on the synthesized V@TiO2,
(b) the influence of a solution’s pH on Rh-B dye sorption, (b) the impact of feeding concentration on
the Rh-B sorption on V@TiO2 at 20 ◦C, 35 ◦C, and 50 ◦C for (a) Rh-B dye, and (c) The zero-charge
investigation of V@TiO2.

Furthermore, the pH impact on Rh-B adsorption on V@TiO2 was evaluated (Figure 6c).
The obtained results show the suitability of mild alkaline media for removing Rh-B dye.
The decrease in sorption capacity for V@TiO2 in strongly acidic media is probably due to the
protonation of oxygen atoms in the nanocomposite and/or turning part of the oxides into
soluble salts. On the other hand, the hydroxyl groups in strong alkaline media may compete
with Rh-B dye for sorbent sites and/or repulse it away from the V@TiO2 surface [55,56].

3.2.1. Adsorption Kinetics

The linear regression plots of the PSFOM, PSSOM, IDM, and LDM for Rh-B dye
sorption on V@TiO2 are illustrated in Figure 7. The k1, k2, KIDM, and KLDM values gath-
ered in Table 1 were computed utilizing the extracted regression parameters (slope and
intercept) [43,57]. The obtained results revealed that Rh-B sorption on V@TiO2 fit the
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PSFOM model, which may explain their relatively short-time equilibrium. Further, the
investigation of the rate-control step showed that the intraparticle diffusion step controlled
the adsorption of Rh-B onto the V@TiO2 surface. These findings indicate that Rh-B dye has
a higher affinity toward the V@TiO2 surface and imply fast pore-diffusion during the Rh-B
dye removal by V@TiO2 [58].
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Table 1. The kinetic parameters for Rh-B adsorption on the V@TiO2 nanocomposite from 50 mg L−1

pollutant solution.

Adsorption Kinetic

Adsorption Rate Order

qe exp. (mg g−1)
PSFO PSSO

qe cal. (mg g−1) R2 k1 qe cal. (mg g−1) R2 k2

88.367 88.7 0.947 0.114 90.000 0.927 0.002

Adsorption mechanism

IPDM LFDM

KIP (mg g−1 min0.5) C (mg g−1) R2 KLF (min−1) R2

Stage 1 3.4950 55.38 0.9959
0.015 0.956

Stage 2 0.3369 80.256 0.9306
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3.2.2. Adsorption Isotherms

The Langmuir and Freundlich models (LIM and FIM) were the most used isotherm
models for describing adsorption processes. Both linearized models (Equations (6) and (7))
were utilized to analyze Rh-B sorption on synthesized V@TiO2.

qe =

(
KlqmCe

1 + qmCe

)
(6)

qe = KF·C
1
n
e (7)

In these equations, Ce (mg L−1) is the equilibrium solution concentration, qm is the
computed maximum sorption capacity, 1/n is the Freundlich adsorption intensity, and KL
and KF are the LIM and FIM constants, respectively [59]. The linear fits of LIM and FIM
studies of Rh-B sorption on synthesized V@TiO2 are shown in Figure 8. Better fitting to
LIM was observed in the data presented in Table 2. The Rh-B sorption showed preferential
sorption, as indicated by the 1/n value below unity, which was also consistent with its
PFOM agreement [60–62].
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Figure 8. The (a) LIM and (b) FIM investigations for the adsorption of Rh-B on the synthesized
V2O5@TiO2 at 20 ◦C.

Table 2. Removal parameters of the V@TiO2 sorbent compared with the diverse Rh-B dye adsorbent
nanomaterials.

Nanomaterials Adsorption Capacity (mg g−1) References

Halloysite HU 8.37 [63]
alpha alumina (α-Al2O3) 52.0 [64]
L-Asp capped Fe3O4 NPs 7.7 [65]

Magnetic ZnFe2O4 12.1 [66]
MWCNT-COOH 42.68 [67]

Humic acid functionalized MNPs 161.8 [68]
Sodium montmorillonite 42.19 [69]

Lignocellulose 82.34 [70]
NiO nanoparticles 111 [71]

NiZnAl-LDH nano-sheets 97.09 [72]
V@TiO2 nanocompostie 158.8 This paper

As shown in Table 2, the performance of the V@TiO2 nanocomposite in adsorbing
Rh-B dye has been further evaluated and compared to that of other adsorbents that have
been reported in the literature. First, the equilibrium time for the V@TiO2 nanocomposite is



Molecules 2023, 28, 176 10 of 16

shorter. These obtained results show that the Rh-B dye leaves the aqueous solution quickly.
Further, the V@TiO2 nanocomposite has a more significant adsorption capacity than the
other nanostructures, i.e., 158.8 mg/g compared to 7–161 mg/g, as documented in Table 2.

3.2.3. Adsorption Thermodynamics

The thermodynamics of Rh-B removal by the V@TiO2 were inspected. The slope and
intercept extracted from the plot of Equation (8) (Figure 9) were utilized in computing
the enthalpy and entropy (∆So and ∆Ho). The Gibbs free energy (∆Go) was obtained by
applying the ∆So and ∆Ho values in Equation (9). The ideal gas constant (R) was used
as 0.0081345 kJ mol−1 for calculating these parameters, and the findings are summarized
in Table 3.

ln Kc =
∆H o

RT
+

∆S o

R
(8)

∆ G o = ∆ H o − T ∆ S o (9)
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Figure 9. Thermodynamic study of the sorption of Rh-B on the synthesized V@TiO2 at 298, 313, and
328 ◦K.

Table 3. The isotherms and thermodynamic findings for the Rh-B sorption on the V@TiO2 nanocomposite.

Adsorption Isotherms

Langmuir Freundlich

R2 KL (L mg−1) qm (mg g−1) R2 Kf (L mg−1) n−1 (a.u.)

0.952 0.056 158.8 0.880 0.536 0.065

Thermodynamic parameters

Fed conc. (mg L−1) ∆Ho (kJmol−1) ∆So (kJmol−1) ∆Go (kJmol−1) 298 K ∆Go (kJmol−1) 313 K ∆Go (kJmol−1) 328 K

10 −28.450 −0.091 −1.439 −0.079 1.280

25 −34.026 −0.105 −2.714 −1.138 chem1.280

50 −18.856 −0.055 −2.335 −1.503 −0.672

75 −23.573 −0.073 −1.739 −0.640 0.460

100 −18.979 −0.063 −0.339 0.599 1.537

Table 3 shows that Rh-B sorption possessed negative ∆Go values, indicating the
sorption’s spontaneity and exothermic nature. Also, the negative ∆Ho values corroborate
that V@TiO2 removed the Rh-B dye via a physisorption process [73–77].
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3.3. Rh-B Dye Adsorption Mechanism

Several variables, such as the functional group of adsorbents, the pH of a solution, the
surface charge on the particles, the porosity, and the nature of the adsorbate, can affect the
adsorption process. Rh-B dye was adsorbed on the V@TiO2 nanocomposite surface in this
study. Point zero charges (surface charge) and FTIR (functional groups) that existed on the
V@TiO2 sorbent could explain the likely mechanism of the adsorption process. Hydrogen
bonding and electrostatic interactions might have contributed to the adsorption of the Rh-B
dye (Figure 10a). In Figure 10a of the FTIR spectrum, the absorption peak at 2309 cm−1 due
to C–N stretching vibrations that appeared after the adsorption of Rh-B dye demonstrates
its role in the adsorption of dye molecules. Due to the presence of C–H and C=C functional
groups in the spectra of adsorbed Rh-B dye, the absorption band between 1539.58 and
1448 cm−1 was observed. The narrow peak between 1000 and 900 cm−1 is attributable
to the C–H bond, which indicates their participation in the elimination of Rh-B dye. A
prominent broad peak at 521 cm−1, which shifted lower to 472 cm−1, correlates to V@TiO2
nanocomposite stretching; FTIR of the dye-loaded V@TiO2 nanocomposite revealed a
considerable drop in the peak, indicating its significance in the elimination of Rh-B dye
from an aqueous solution.
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Figure 10. (a) FTIR spectra of the V@TiO2 nanocomposite and Rh-B @ V@TiO2 nanocomposite; (b) the
suggested removal mechanism of Rh-B dye by the V@TiO2 nanocomposite.

The pHpzc study determined that the pHpzc exists at a pH of 4.2, above which the
surface of V@TiO2 is negatively charged, which may increase the sorption by withdraw-
ing the positive N+–(CH3)2 group on Rh-B (Figure 10a); this hypothesis indicates high
participation of electrostatic attractions in Rh-B removal by V@TiO2. Furthermore, the
adsorption of Rh-B dye on the surface of the V@TiO2 sorbent is also the result of interactions
involving H-H bonding and dipole-dipole interactions. In addition, the isothermal studies
demonstrate that the multilayer adsorption of the Rh-B molecules is physical sorption; this
result is in line with the ∆Ho values less than 80 kJmol−1. Figure 10b depicts the subsequent
adsorption of Rh-B dye molecules onto the V@TiO2 sorbent. Rh-B dye is attracted to the
nanocomposites via hydrogen bonds and electrostatic interactions.

3.4. V@TiO2 Nanomaterials Regeneration

The regeneration of V@TiO2 nanomaterials was studied by removing the Rh-B dye
using absolute ethanol. During the regeneration process, ethanol was used as the desorption
agent (Figure 11). The rapid discoloration of absolute ethanol filtrate confirmed Rh-B dye
desorption from the V@TiO2 sorbent. The sorbent was re-immersed in a freshly produced
Rh-B dye solution with the same concentration and volume (5 mg/L, 75 mL). A total of five
repetitions of this step were performed. Figure 11 illustrates the effectiveness of Rh-B dye



Molecules 2023, 28, 176 12 of 16

desorption by ethanol from the V@TiO2 sorbent. The efficacy of the V@TiO2 nanocomposite
to remove dyes decreased with each desorption cycle.
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4. Conclusions

Nanostructured V@TiO2 is synthesized from metal oxide using ultrasonic synthesis
techniques. A study of the adsorption properties of Rh-B dye on V@TiO2 was conducted.
According to XRD, the V@TiO2 nanomaterials had a crystal size of 33.83 nm. In aqueous
media, the nanosorbent of V@TiO2 was demonstrated to be capable of eliminating Rh-
B dye molecules with a maximum adsorption capacity of 158.8 mg/g. Furthermore,
the thermodynamic analysis showed that such reactions were highly spontaneous and
endothermic. The Langmuir technique emphasized the adsorption monolayer. As a result,
the adsorption kinetic could be fitted with a pseudo-first-order reaction model. Additionally,
100% ethanol was chosen as the best selective desorption eluent for reusing the adsorbent.
Hence, the regeneration of V@TiO2 sorbent is a cost-effective method for treating effluents
from the textile industry.
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