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Abstract: The electrocatalytic characteristics of nanostructures are significantly affected by surface
structure. The strict regulation of structural characteristics is highly beneficial for the creation of
novel nanocatalysts with enhanced electrocatalytic performance. This work reports a nitrite elec-
trochemical sensor based on novel flower-like Pd-ZnO nanostructures. The Pd-ZnO nanocatalysts
were synthesized through a simple hydrothermal method, and their morphology and structure
were characterized via field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron
spectroscopy (XPS), and X-ray diffraction (XRD). Their electrocatalytical performance in the nitrite ox-
idation reaction was studied via cyclic voltammetry (CV) and the amperometric technique. Compared
to pure ZnO and Pd nanoparticles, the Pd-ZnO nanostructures exhibited enhanced electrochemical
performance in the nitrite oxidation reaction. In order to investigate the relationships between the
structures of Pd-ZnO nanocatalysts and the corresponding electrocatalytic performances, different
surface morphologies of Pd-ZnO nanocatalysts were fabricated by altering the solution pH. It was
found that the flower-like Pd-ZnO nanostructures possessed larger effective surface areas and faster
electron transfer rates, resulting in the highest electrocatalytic performance in the nitrite oxidation
reaction. The designed nitrite sensor based on flower-like Pd-ZnO displayed a wide concentration
linear range of 1 µM–2350 µM, a low detection limit of 0.2 µM (S/N of 3), and high sensitivity
of 151.9 µA mM−1 cm−2. Furthermore, the proposed sensor exhibited perfect selectivity, excellent
reproducibility, and long-time stability, as well as good performance in real sample detection.

Keywords: Pd-ZnO nanostructures; nitrite oxidation reaction; effect of surface structure; nitrite sensor

1. Introduction

As food additives, nitrite ions (NO2
−), which act as meat preservatives, coloring

agents, artificial flavor enhancers, and so on, usually exist in processed foods [1]. However,
the excessive adsorption of nitrite can pose a great threat to human health, because it
can cause the irreversible transformation of hemoglobin to methemoglobin and reduce
the ability of blood to transport oxygen [2,3]. The World Health Organization (WHO)
has reported that nitrite can damage the spleen, kidneys, and nervous system. Thus, to
guarantee public health, the nitrite levels in a wide variety of foods are strictly regulated
in many countries. For example, the maximum allowance of nitrite in dry-cured meat
products is 30 mg/kg in China and 50–250 mg/kg in the European Union. Therefore,
the development of an accurate, rapid, and economical method for the detection of the
concentration of nitrite is of great significance in food safety.

To date, diverse analytical methods have been applied for nitrite detection, such as
spectrophotometry [4], chromatography [5], chemiluminescence [6], and surface-enhanced
Raman scattering spectroscopy (SERS) [7]. However, most of these techniques involve com-
plicated processes and are time-consuming. Owing to their high accuracy, rapid response,
and simple operation, electrochemical methods are currently being developed for the de-
tection of nitrite [8–12]. Generally, electrochemical techniques result from either the anodic
oxidation or cathodic reduction of nitrite on the surfaces of different electrodes [13–18]. A
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limitation of the cathodic reduction of nitrite is interference from a few products, which
depends on the properties of the electrodes and electrocatalysts [19,20]. Compared with the
nitrite reduction reaction, the oxidation of nitrite is often favored since nitrate (NO3

−) is the
ultimate product, which is obtained without interference [13,15,21–23]. Bare glassy carbon
is also highly effective in the direct oxidation of nitrite. However, the electro-oxidation of
nitrite on unmodified electrodes always occurs at quite high potential, and the selectivity is
poor in the presence of other oxidizing products, thus decreasing the electrode’s sensitivity
and accuracy [14,21,24–26]. Therefore, it is essential to develop new electrode-modified
materials which have enriched active surface areas and can decrease the overpotential to
obtain excellent electrochemical performance for the oxidation of nitrite.

Nanoscale noble metals, due to their large specific surface areas and distinctive physic-
ochemical properties, usually act as electrocatalysts for the construction of electrochemical
sensors [27,28]. However, the morphologies of noble metal nanocatalysts change during
catalytic reactions, which can lead to the agglomeration of nanocatalysts and dramatic
decreases in their activity and selectivity. The use of supported nanoscale noble metals has
been demonstrated to be the most efficient method to reduce the agglomeration of noble
metal nanoparticles and maintain or enhance their activity and stability [23–26,29,30]. In
recent years, nanostructured zinc oxide (ZnO) has been used as a catalyst support due to
its lower cost, nontoxicity, and easy-to-prepare morphology. Moreover, ZnO nanostructure
supports can induce strong metal–support interaction, which provides the opportunities
for adjusting materials’ properties to produce specific sites which affect their catalytic
performance [22,31–34].

In this work, ZnO-supported Pd nanocomposites (Pd-ZnO) were fabricated and used
for the construction of a nitrite electrochemical sensor. Because of the combination of
the excellent catalytic activity of Pd nanoparticles (Pd NPs) and the large active surface
area of ZnO supports, the Pd-ZnO nanocatalysts exhibited higher electrocatalytic activity
toward the nitrite. Moreover, it has been reported that the surface structure of nanocatalysts
has great influence on their electrocatalytic activities [32,35]. Therefore, different surface
structures of Pd-ZnO nanocatalysts were synthesized by altering the solution pH, and their
electrocatalytic performance was investigated. Furthermore, the designed sensor exhibited
excellent performance for the detection of nitrite and was used for detection in real samples
(sausage and pickles). These results indicated that the constructed nitrite sensor has the
potential to be used for the detection of nitrite in food products and other real samples.

2. Results and Discussion
2.1. Synthesis and Characterization of Pd-ZnO Nanocatalysts

The ZnO, Pd, and Pd-ZnO nanocatalysts were fabricated through a simple hydrother-
mal method with Pd(acac)2 and Zn(acac)2 as the precursors and PVP and DMF as the
stabilizing agent and the reduction agent, respectively. To explore the role of DMF in the
formation of composites, we carried out control experiments without DMF. With sufficient
DMF, as the reaction proceeded, the color of the mixture changed from ivory to gray-black,
and after washing and drying, a black solid product was obtained. On the contrary, without
DMF, we discovered that the mixture remained ivory, and there was no black solid product
obtained; we therefore concluded that DMF was the reduction agent.

Figure 1 shows typical SEM images of ZnO, Pd, and Pd-ZnO nanostructures. It can
be seen from Figure 1 that the ZnO (Figure 1a), Pd (Figure 1c), and Pd-ZnO (Figure 1e)
nanostructures were fabricated at a large scale and are well dispersed. Moreover, the
fabricated ZnO nanocatalysts had flower-like structures with sizes of 700-800 nm (Figure 1b).
However, when the precursor was Pd(acac)2 alone, the prepared Pd nanostructures were
small spherical nanoparticles (Figure 1d). When the reaction was performed in the presence
of Pd(acac)2 and Zn(acac)2, the resulting Pd-ZnO nanocomposites also exhibited flower-like
structures like the ZnO nanostructures (Figure 1f). Figure 1g shows an HAADF-STEM
image of flowerlike Pd-ZnO nanocomposites, on which elemental mapping analysis was
carried out. Figure 1h–j show the energy-dispersive X-ray spectroscopy (EDS) elemental
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mapping images of Zn, O, and Pd, respectively. The elemental mapping analysis clearly
revealed that the support was mainly composed of Zn and O, and Pd NPs on the surface of
ZnO were uniformly dispersed.
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Figure 1. Typical SEM images of ZnO (a,b), Pd (c,d), and Pd-ZnO (e,f) nanostructures. (g) HAADF-
STEM image of the Pd-ZnO nanocomposites, and (h–j) energy-dispersive X-ray (EDX) maps of Zn
(h), O (i), and Pd (j), respectively.

In order to investigate the properties of the catalyst surfaces, XPS analysis was carried
out to explore the distribution and chemical states in the Pd-ZnO nanostructures. The
surveyed XPS spectrum of the Pd-ZnO nanostructures is displayed in Figure 2A. The peaks
of Zn, O, and Pd confirm that the Pd NPs were successfully anchored on the surfaces of
the ZnO nanostructures. The core level Zn 2p XPS spectrum of the Pd-ZnO nanostructures
shows two binding energy peaks at 1021.8 eV and 1044.9 eV (Figure 2B), which generally
corresponded to Zn 2p3/2 and Zn 2p1/2, respectively [33]. The binding energy difference
between the Zn 2p3/2 and Zn 2p1/2 peaks was about 23 eV, demonstrating the presence
of Zn2+ in the Pd-ZnO nanostructures [36,37]. The 3d core level XPS spectrum consisted
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of two peaks for metallic palladium at 335.0 eV (Pd 3d5/2) and 340.2 eV (Pd3d3/2), with
two more small peaks at 336.4 eV and 341.5 eV, which were attributed to the existence of
Pd2+ [14,33]. The relative intensities of those components (Pd0 and Pd2+) indicated that Pd
in the Pd-ZnO nanocatalysts was predominately Pd0, which could provide more suitable
sites for nitrite oxidation than Pd2+ [38].
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Figure 2. The survey XPS spectrum (panel A), the XPS spectra of Zn 2p (panel B), and Pd 3d (panel C) of
Pd-ZnO nanostructures. Panel D shows the typical XRD patterns of ZnO, Pd, and Pd-ZnO nanostructures.

The crystal structures of the ZnO, Pd, and Pd-ZnO nanostructures were confirmed
via XRD measurements (Figure 2D). The patterns of the Pd-ZnO nanostructures exhibited
all of the major peaks of ZnO at 31.7◦ (100), 34.4◦ (002), 36.2◦ (101), 47.5◦ (102), 56.6◦ (110),
62.8◦ (103), 68.0◦ (112), and 69.1◦ (201) [32]. The peak at ca. 40.3◦ came from the pattern
of Pd (111), and the little shift in the peak compared with pure metallic Pd was probably
caused by the interaction between metallic Pd and ZnO [37]. The XRD patterns of ZnO
nanostructures could be indexed to typical wurtzite structures (JCPDS 36-1451), the XRD
patterns of Pd could be indexed to typical face-centered-cubic (fcc) structures of Pd (JCPDS
46-1043), and no other crystalline structures were detected.

To examine the electrochemical properties of the ZnO, Pd, and Pd-ZnO nanocatalysts,
electrochemical characterizations of the modified electrodes were performed via cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in Fe(CN)6

3−/4−

solution (Figure S1). Figure S1A depicts the typical CVs of ZnO/GCE (curve a), Pd/GCE
(curve b), and Pd-ZnO/GCE (curve c). A pair of well-defined redox peaks could be
observed at each modified electrode. However, compared with ZnO/GCE and Pd/GCE,
Pd-ZnO/GCE showed a higher peak current and a lower peak separation (∆Ep) (curve c),
which demonstrated the effective increase in the electron transfer rate of the Fe(CN)6

3−/4−

redox reaction due to the presence of Pd NPs on the Pd-ZnO/GCE [2,39]. On the other
hand, the increased current in the Pd-ZnO/GCE was due to the presence of ZnO, the
development of an effective surface area, and a higher level of attraction of Fe(CN)6

3−/4−

on the electrode surface [31]. The EIS technique is a helpful tool to probe electron transfer
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kinetics. Figure S1B exhibits the Nyquist plots of different modified electrodes using the
Fe(CN)6

3−/4− redox probe. As can be seen, the semicircle diameter of Pd-ZnO/GCE (curve
c) was smaller than that of ZnO/GCE (curve a) and Pd/GCE (curve b), which implies that
the Pd-ZnO nanocomposites exhibited the fastest electrochemical reaction kinetics.

2.2. Electrocatalytic Properties of Pd-ZnO /GCE

The electrochemical responses of NO2
- at ZnO/GCE, Pd/GCE, and Pd-ZnO/GCE

were investigated in PBS solution (pH 7.0), and their electrocatalytic performances were
compared. As shown in Figure 3, no distinct peaks appeared in blank PBS (curve a in panel
A, B, and C). Upon the addition of nitrite (0.5 mM), obvious anodic peaks attributed to the
oxidation of nitrite appeared at ca. 0.88 V for ZnO/GCE (panel A), ca. 0.86 V for Pd/GCE
(panel B), and ca. 0.78 V for Pd-ZnO/GCE (panel C). Moreover, the nitrite oxidation
peak potential at Pd-ZnO/GCE (0.78 V) was more negative than that of other electrode
materials, such as RGO/MnFe2O4/polyaniline at 0.86 V [39], AuNPs/CP at 0.80 V [3], and
CDs-Au-N at 0.83 V [25], suggesting the significantly high catalytic activity and selectively
of the Pd-ZnO nanostructures toward nitrite oxidation. Furthermore, the peak current
of the nitrite oxidation was in the order of Pd-ZnO/GCE > Pd/GCE > ZnO/GCE. The
highest electrocatalytic performance of the Pd-ZnO nanocatalyst could be ascribed to the
combination of two factors: one is the excellent electrocatalytic activity of Pd NPs, and
the other is the large electrochemical active surface area of the ZnO support, which could
promote the absorption of more nitrite ions and thus enhance the current response [31].
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Figure 3. Cyclic voltammograms of ZnO/GCE (A), Pd/GCE (B), and Pd-ZnO/GCE (C) in the absence
(curve a) and presence (curve b) of 0.5 mM nitrite in PBS (pH 7.0). The scan rate is 50 mV/s.

2.3. Effects of Surface Structure

To investigate the effect of nanocatalysts’ structures on their electrocatalytic properties,
different surface morphologies of Pd-ZnO nanocatalyst were fabricated by altering the
solution pH, which could be adjusted by adding different volume of NaOH, and the
electrocatalytic activities of Pd-ZnO nanocatalysts with different structures were studied.
Typical SEM images are shown in Figure 4. Panel a and b show the SEM images of the
synthesized piece-like Pd-ZnO nanocomposites, which were created without NaOH, and
the pH of the reaction solution was ca. 6. The diameter and thickness of the piece-like
Pd-ZnO was ca. 15 nm and ca. 8 nm, respectively, and the surface of the Pd-ZnO was
smooth, which implies that the surface area of this type of nanocatalyst was small. When
500 µL of 0.25 M NaOH solution was added, the pH of the reaction solution was increased
to 7, and tube-like Pd-ZnO nanocomposites were synthesized (Figure 4c). The length of
these tubes varied from 400 to 500 nm, with diameters from 50 to 100 nm (Figure 4d). When
the volume of NaOH solution increased to 1000 µL, the pH of the reaction solution was
increased to 8; the tubes tended to become slim rods, and many long and thin branches
overlapped together. Finally, flower-like Pd-ZnO were obtained (Figure 4e,f). At the NaOH
volume of 2000 µL and pH ≈ 9, the branches of the flower-like Pd-ZnO became slighter
and more branchy, which meant they could exhibit larger active surface areas (Figure 4g,h).
If the NaOH volume further increased to 2500 µL and the reaction pH value exceeded 10,
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the flower-like Pd-ZnO nanostructures were destroyed, and the nanocatalysts appeared
as disorder structures, which were composed of small nanosheets (Figure 4i and j) and
implied a decrease in the active surface area.
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In order to understand the effect of pH on the morphologies of the nanocomposites,
we explain the synthetic mechanism below. First, without using NaOH, the precursor of
the zinc source was first decomposed to Zn2+, and a large amount of Zn2+ was generated
into an oversaturated state, followed by the nucleation and growth of ZnO. Therefore,
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Zn2+ was the “growing unit” for ZnO nanocrystals under the low-alkalinity condition
(pH ≈ 6), which finally led to the formation of piece-like shapes. When the NaOH solution
(500 µL, 0.25 M) was added to the reaction solution (pH ≈ 7), OH− initially reacted with
Zn2+ and formed Zn(OH)2, and during hydrolysis at 140 ◦C, the Zn(OH)2 colloid partially
dissolved into Zn2+ and OH-, cresting the ZnO nuclei. The other Zn(OH)2 further reacted
with OH− and formed [Zn(OH)4]2−. Thus, [Zn(OH)4]2− grew along the (002) direction of
the ZnO crystal nuclei and formed tube-like Pd-ZnO nanocomposites. As the concentration
of OH− (pH 8–9) increased, more [Zn(OH)4]2− were formed and grew along the (002)
direction of the ZnO crystals, many slim and long ZnO nanorods formed and overlapped
together, and the flower-like composites were generated. At pH ≈ 10, owing to the high
concentration of OH−, excessive negatively charged [Zn(OH)4]2− were formed, and the
growth in other directions became comparatively faster than that in the (002) direction;
thus, the nanocatalysts appeared to have disorder structures.

Furthermore, the specific surface areas of these Pd-ZnO nanocatalysts were fur-
ther characterized via nitrogen adsorption analyses. As can be seen from the nitrogen
adsorption–desorption isotherm plots (Figure S2), these Pd-ZnO composites exhibited
different specific surface areas (16–45 m2 g−1), and the flower-like Pd-ZnO exhibited the
highest specific surface area and thus enhanced the electrocatalytic activity.

Then, the effects of nanocatalysts’ morphologies on the electrocatalytic activities were
studied via CVs (Figure S3). As exhibited in Figure S3, Pd-ZnO nanocatalysts with different
morphologies exhibited different electrocatalytic characteristics for nitrite oxidation. The
catalytic current increased with increase in the NaOH volume added, and the maximum
value was attained at the NaOH volume of 2000 µL (curve a–d). Moreover, the anodic
peak potentials of different Pd-ZnO nanocatalysts were different, and the flower-like Pd-
ZnO nanocatalysts exhibited the most negative peak potential. The results indicated that
the morphologies of Pd-ZnO play a crucial role in their electrocatalytic activities. This
phenomenon could be ascribed to the significant differences between the electrochemically
active areas in Pd-ZnO fabricated with different NaOH volumes. The flower-like Pd-
ZnO nanostructures with more slender branches, which were synthesized in 2000 µL of
NaOH, exhibited the largest active surface areas and were most favorable for mass transfer.
Thus, the flower-like Pd-ZnO nanostructures with more slender branches were chosen for
further investigation.

2.4. Effect of Scan Rate

To understand the kinetics mechanism of the modified electrode reaction, we studied
the relation between the peak potential, the peak current of nitrite oxidation, and different
scan rates. Figure S4A exhibits the typical CVs of the Pd-ZnO/GCE in PBS (pH 7.0)
containing 0.5 mM nitrite at different scan rates (10–500 mV s−1). As shown in Figure S4B,
the peak current (ip) increased proportionally with the square root of scan rate (v1/2).
Thus, the oxidation of nitrite on the surface of the modified electrode was predominantly
a diffusion-controlled process [17]. Figure S3C shows that the peak potential (Ep) had
a proportional relationship with the natural logarithm of scan rate (ln v), which can be
expressed as Ep = 0.7061 + 0.034 lnv (R2 = 0.9982). For an irreversible electrode process, the
Ep could be determined by the Laviron equation:

Ep = E0′ +

(
RT
αnF

)
ln
(

RTκ0

αnF

)
+

(
RT
αnF

)
lnv (1)

where E0′ is the standard electrode potential (V), α is the electron transfer coefficient, κ0 is
the heterogeneous electron transfer rate constant (s−1), and the other terms have their usual
conventional meanings. The number of transfer electrons (n) in nitrite electrochemical
oxidation was calculated to be about 2. Therefore, the nitrite oxidation at the modified
electrode surface was a two-electron transfer process, which was consistent with the
reported literature [23,26].
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2.5. Effect of the Solution pH

The effect of the solution’s pH on the electrochemical response of nitrite in Pd-
ZnO/GCE was recorded in the pH range from 4.0 to 9.0. As shown in Figure S5A, the peak
potential remained nearly unchanged with the variation in the solution’s pH; however,
the peak current showed significant variation with the variation in the solution’s pH. The
variation in the peak current with the pH is plotted and shown in Figure S5B. It can be seen
that the anodic peak current was enhanced with the pH value from 4.0 to 7.0 and reached a
maximum at pH 7.0, and a further increase led to a decrease in the oxidation peak current.
A similar phenomenon was also obtained in other studies in the literature [13,21,39], which
may be ascribed to the following reasons: (1) NO2

− are instable when the pH is small,
which could be shown as the following equation [10–12]:

2H+ + 3NO−2 � 2NO + NO−3 + H2O (2)

(2) The electrooxidation of NO2
− is a proton-dependent process, and due to the lack of pro-

tons, the nitrite oxidation reaction become more difficult at a higher pH (>7.0) [14,15]. Therefore,
pH 7.0 was chosen as a supporting electrolyte for further electrochemical experiments.

2.6. Electrochemical Detection of Nitrite

To assess the electrochemical determination of nitrite in Pd-ZnO-modified electrodes,
the amperometric technique was applied. Figure 5A presents the typical amperometric
response of Pd-ZnO/GCE towards successive injections of nitrite into 0.1 M PBS at 0.78 V.
As can be seen, after the addition of nitrite, a rapid increase in the oxidation current was
observed and reached the steady-state value within 3 s, suggesting the modified electrode
displays a rapid response toward nitrite oxidation, which is desirable for the real-time
analysis of real samples. Moreover, Figure 5B shows the corresponding calibration plot
generated from Figure 5A. It clearly exhibited a good linear relationship between the
oxidation current and the nitrite concentrations from 1 µM to 2350 µM with a correlation
coefficient of 0.9994, sensitivity of approximately 151.9 µA mM−1 cm−2, and the detection
limit of ca. 0.2 µM with a signal/noise ratio (S/N) of 3. These analytical performances of
the Pd-ZnO-modified electrode are superior or comparable to those previously reported in
other studies (Table 1).
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Figure 5. (A) Typical amperometric response of the Pd-ZnO/GCE at 0.78 V with the successive
addition of nitrite in 0.1 M PBS (pH = 7.0). (B) Calibration curve of amperometric current versus the
concentration of nitrite.
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Table 1. Comparison of the performance of the Pd-ZnO-modified electrode with other nitrite sensors
based on different modified electrodes.

Electrode Linear Range
(µM) Detection Limit (µM) Ref

rGO-MoS2-PEDOT 1–1000 0.059 [16]
Poly(3ABA) 10–140 0.15 [17]

PMo11V/PDDA-rGO 0.125–1160 0.0028 [21]
f-ZnO@rFGO 100–3000 33 [22]
Pt-RGO/GCE 0.25–90 0.1 [23]

CDs-Au-N 0.1–2000 0.06 [25]
ERGO/AuNPs 1–6000 0.13 [26]

AuPd 2–4200 0.67 [27]
AuNPs/CP 1–100 0.093 [30]

CuOx/ERGO 0.1–100 0.072 [35]
NrGO 0.5–5000 0.2 [40]

Pd-ZnO 1–2350 0.2 This work

The selectivity capability plays a key role in estimating the performance of a developed
sensor, because various types of interference may co-exist in practical samples. In order to
investigate the selectivity of the developed sensor, the amperometric responses of some
possible interferents, including some inorganic ions (e.g., Na+, K+, Ca2+, NO3

−, and CO3
2−)

and some electroactive materials (e.g., glucose, uric acid (UA), and ascorbic acid (AA))
along with 0.5 mM nitrite were recorded at different applied potentials and are exhibited in
Figure 6A. The concentrations of interferent species were 10-fold that of nitrite. It can be
seen that these inorganic ions had no obvious impact on the detection of nitrite. However,
for some electroactive materials, especially glucose, there were obvious signals at lower
potentials (25% at 0.6 V and 18% at 0.7 V). However, the interference at the applied potential
(0.78V) was below 5%, indicating that the fabricated nitrite sensor had the biggest current
response at 0.78 V, and the sensor was highly selective toward the detection of nitrite in the
presence of these co-existent species.
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Figure 6. (A) The selectivity profile of the sensor in 0.1 M PBS at different potentials with 0.5 mM
nitrite and other interferents. (B) Amperometric responses for 0.5 mM nitrite recorded with five
different Pd-ZnO/GCE prepared using the same procedures. (C) Stability of the sensor stored under
ambient conditions over two months using 0.1 M PBS at 0.78 V with 0.5 mM nitrite (I/I0).

2.7. Reproducibility and Stability

To further evaluate the reproducibility of the Pd-ZnO/GCE-based sensor, five Pd-ZnO-
modified electrodes were prepared under identical conditions to analyze the amperometric
response of 0.5 mM nitrite. As shown in Figure 6B, the relative standard deviation (RSD)
was 3.98%, demonstrating that the Pd-ZnO/GCE sensing platform possesses excellent
reproducibility for nitrite detection.
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Furthermore, the storage stability of a sensor is one of the critical parameters in
practical application. The stability of the sensor was tested by recording the amperometric
response toward 0.5 mM nitrite. The results were shown in Figure 6C; after 60 days of
storage in ambient conditions, the current response of the sensor remained 92.3% of its
initial response, implying that the sensor had excellent long-term stability.

2.8. Real Samples Analysis

The practical applications of the fabricated sensor were also evaluated; the modified
electrode was used for the detection of the concentration of nitrite in real samples (sausage
and pickles). In addition, to confirm the accuracy of the developed sensor, the optical
method was used for the measurement of nitrite in the same samples. It is shown that
the results detected by the developed sensor were consistent with those obtained using
the optical method (Table 2). Recovery testing was performed to verify the validity of the
proposed method. The recovery values were between 92.36% and 108.56%. These results
suggested that the developed nitrite sensor is suitable for the detection of nitrite in food
products and other real samples.

Table 2. Determination of nitrite concentration in sausage and pickles (n = 3).

Samples Electrochemical
Method (mg/kg)

Optical Method
(mg/kg) RSD (%) Recovery (%)

Sausage
14.36 14.12 3.58 92.36
25.74 26.26 3.97 105.78
15.68 15.97 4.13 93.46

Pickles
8.79 8.23 4.56 108.56

12.33 11.98 3.98 105.38
16.98 17.06 3.45 97.88

3. Experimental Section
3.1. Chemical and Materials

Palladium acetylacetonate (Pd(acac)2) and zinc acetylacetonate (Zn(acac)2) were
purchased from Alfa Aesar. Sodium hydroxide (NaOH), polyvinylpyrrolidone (PVP,
Mw ≈ 30,000), N,N-dimethylformamide (DMF), and sodium nitrite were all purchased
from Sinopharm Chemical Reagent Co. Shanghai, China. All the chemicals were of analyti-
cal grade and used as received.

3.2. Synthesis of Pd-ZnO Nanocomposites

The Pd-ZnO nanocomposites were synthesized through a simple hydrothermal method [32].
Pd(acac)2 and Zn(acac)2 were used as precursors, and PVP and DMF were used as the
stabilizing agent and reduction agent, respectively. Typically, 1.5 mg of Pd(acac)2, 60 mg
of Zn(acac)2, and 100 mg of PVP were dispersed into a DMF/H2O solution (10 mL: 2 mL)
under vigorous stirring. In order to adjust the pH of the solution, 2000 µL of NaOH solution
(0.25 M) was added into the DMF/H2O solution. Then, the resulting solution was placed
into a Teflon-lined container and heated at 140 ◦C for 2 h. After the Teflon-lined container
cooled down naturally at room temperature, the obtained powder materials were collected
via centrifugation at 10,000 rpm and washed several times with ethanol. Finally, the
products were dried at 60 ◦C in vacuum for further use. In order to study the role of DMF,
the same Pd(acac)2, Zn(acac)2, and PVP were dispersed into H2O solution (12 mL) under
vigorous stirring, and the other procedures were the same as those above. To investigate the
role of ZnO and Pd in the electrocatalytic performance of Pd-ZnO nanocatalysts, the Pd and
ZnO nanostructures were also synthesized by using similar procedures as those above. In
order to study the effect of the nanocatalysts’ morphologies on the electrocatalytic activities,
we also fabricated Pd-ZnO with different surface structures by altering the volume of
NaOH, and the volume was 0, 500, 1000, 2000, and 2500 µL.
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3.3. Apparatus and Procedures

Scanning electron microscopy (SEM) images were recorded with a field-emission
scanning electron microscope (FESEM, HITACHI S-4800, Hitachi, Japan ). High-angle an-
nular dark field–scanning transmission electron microscopy (HAADF-STEM) and energy-
dispersive X-ray spectroscopy (EDS) maps were created using an FEI Tecanai F20 mi-
croscope equipped with an Oxford energy-dispersive X-ray analysis system. The X-ray
photoelectron spectroscopy (XPS) was carried out on an ESCALAB 250 XPS spectrometer
(VG Scientifics) using the monochromatic Al Kα line at 1486.6 eV. The binding energies were
calibrated with respect to the C1s peak at 284.6 eV, and the peak fit analysis was performed
using the XPS PEAK program (version 4.0). The X-ray diffraction (XRD) patterns were
collected on a Rigaku/Max-3A X-ray diffractometer with Cu Kα radiation (λ = 0.1542 nm).

3.4. Electrochemical Measurements

A conventional three-electrode system was used for the electrochemical measurements.
A glassy carbon electrode (GCE) modified with different nanostructures was used as a
working electrode, a saturated calomel electrode (SCE) as a reference electrode, and a coiled
Pt wire as a counter electrode. For the GCE cleaning, the electrode surface was polished
with slurries of 0.3 and 0.05 µm alumina sequentially until a mirror surface was achieved.
Then, the electrode was rinsed thoroughly with double-distilled water. Under the typical
procedure, about 2 mg of the Pd, ZnO, and Pd-ZnO nanostructures was dispersed in 1 mL
of deionized water and sonicated. Then, 8 µL of as-prepared suspension was drop casted
on the surface of the GCE and dried at ambient temperature.

The electrochemical properties of the modified electrode were studied in 0.1 M KCl so-
lution containing 5 mM K3[Fe(CN)6]/ K4[Fe(CN)6]. The cyclic voltammetry (CV) responses
were recorded within the potential window −0.1 V to 0.5 V at a scan rate of 50 mV/s.
Electrochemical impedance spectroscopy (EIS) was investigated with the frequency range
of 10−2–105 Hz, with an operating potential of 0.17 V. The electrocatalytic characteristics of
the Pd-ZnO/GCE toward the oxidation of nitrite were measured in a phosphate-buffered
solution (PBS, 0.1 mol/L, pH 7.0).

3.5. Pretreatment of Real Samples

Samples of sausage and pickles were obtained from a local supermarket and pretreated
as follows: the samples were firstly homogenized with a motor-driven tissue grinder. Then,
2.0 g of homogenate was added to 80 mL of deionized water, and the sample solution was
subjected to ultrasonication extraction for 30 min. Then, the abovementioned samples were
heated in a water bath at 75 ◦C for 5 min and cooled to room temperature to make the
protein precipitate. Then, the mixture was diluted with deionized water to 100 mL and
centrifuged for 15 min at 10000 rpm. Finally, the supernatant was further filtered using a
0.22 µm membrane filter. The resultant filtrate was used as analytes for the optical method
and electrochemical measurements.

The visible spectrophotometry was used as a reference method to measure nitrite in
real samples. The measurement protocols were based on the national standards of China
(GB5009.33-2016).

4. Conclusions

This work proposed a nitrite electrochemical sensor based on Pd-ZnO nanostructures.
The Pd-ZnO nanocatalysts exhibited excellent electrocatalytic activities toward nitrite
oxidation reaction, which was due to the high catalytic activity of the Pd NPs and the large
active surface area of the ZnO support. Moreover, by tuning the solution pH, different
surface morphologies of Pd-ZnO were fabricated and displayed different electrocatalytic
activity levels, which could be ascribed to different electroactive surface areas of Pd-
ZnO with different structures. Furthermore, the sensor based on a flower-like Pd-ZnO
nanostructure had superior qualities, such as a wide linear range, high sensitivity, and a
low detection limit, which were superior or comparable to those reported in other studies.
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Moreover, the Pd-ZnO sensing platform showed good selectivity, reproducibility, and
stability for nitrite detection, which can used for real sample detection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28010099/s1, Figure S1: Cyclic voltammetry curves (A) and Niquist plots of
EIS (B) of ZnO (curve a), Pd (curve b), and Pd-ZnO (curve c) modified electrode in 0.1 M KCl
solution containing 5 mM Fe(CN)6

3-/4- redox probe. Figure S2: Nitrogen adsorption-desorption
isotherm plots of different Pd-ZnO nanostructures fabricated at different pH. The pH of the reaction
solution was about 6 (curve a), 7 (curve b), 8 (curve c), 9 (curve d) and 10 (curve e), respectively.
Figure S3: Cyclic voltammograms of different Pd-ZnO nanostructures fabricated at different pH in
PBS containing 0.5 mM nitrite. The pH of the reaction solution was about 6 (curve a), 7 (curve b),
8 (curve c), 9 (curve d) and 10 (curve e), respectively. The scan rate is 50 mV/s. Figure S4: (A) Cyclic
voltammograms of Pd-ZnO/GCE in PBS (pH 7.0) containing 0.5 mM nitrite at different scan rates:
the scan rate is 10 (a), 20 (b), 30 (c), 50 (d), 100 (e), 200 (f), 300 (g), 400 (h), 500 mV/s (i), respectively.
(B) The linear relationship between the oxidation peak current (ip) and the square root of scan rate
(v1/2). (C) The linear relationship between the oxidation peak potential (Ep) and the natural logarithm
of scan rate (ln v). Figure S5: (A) Cyclic voltammograms of Pd-ZnO/GCE in various pH solution
containing 0.5 mM nitrite at scan rate of 50 mV/s, pH values from 4–9, respectively. (B) Effect of pH
on the oxidation peak current of 0.5 mM nitrite at the Pd-ZnO/GCE.
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