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Abstract: Deoxyadenosine triphosphate (dATP) is an important biochemical molecule. In this paper,
the synthesis of dATP from deoxyadenosine monophosphate (dAMP), catalyzed by Saccharomyces cere-
visiae, was studied. By adding chemical effectors, an efficient ATP regeneration and coupling system
was constructed to achieve efficient synthesis of dATP. Factorial and response surface designs were
used to optimize process conditions. Optimal reaction conditions were as follows: dAMP 1.40 g/L,
glucose 40.97 g/L, MgCl2·6H2O 4.00 g/L, KCl 2.00 g/L, NaH2PO4 31.20 g/L, yeast 300.00 g/L,
ammonium chloride 0.67 g/L, acetaldehyde 11.64 mL/L, pH 7.0, temperature 29.6 ◦C. Under these
conditions, the substrate conversion was 93.80% and the concentration of dATP in the reaction system
was 2.10 g/L, which was 63.10% higher than before optimization, and the concentration of product
was 4 times higher than before optimization. The effects of glucose, acetaldehyde, and temperature
on the accumulation of dATP were analyzed.

Keywords: deoxyadenosine triphosphate; whole cell catalysis; Saccharomyces cerevisiae; optimization;
energy regeneration system; response surface analysis

1. Introduction

Deoxyadenosine triphosphate (dATP) is an essential precursor material for synthetic
DNA [1,2] and is widely used in genetic engineering, molecular biology, life sciences,
genetic medicine, etc. [3–5]. Currently, dATP is mainly produced commercially by chemical
methods. The reaction is carried out with tributylammonium salt and orthophosphoric acid
corresponding to deoxyadenosine monophosphate (dAMP) as substrates, dicyclohexyl-
carbodiimide (DCC) as the catalyst, and organic solvents such as pyridine or dimethyl-
formamide (DMF). The yield of dATP produced by the chemical method is 40~80% [6,7],
generates great environmental pollution and its cost is relatively high after reaction and
purifi-cation [8]. With the development of biotechnology, the biosynthesis of deoxynu-
cleoside triphosphate is more advantageous than the chemical method [9,10]. There are
usually two pathways for the biosynthesis of dATP. The first pathway consists of two−step
phosphorylation reaction, namely dAMP and dADP phosphorylation. That is, dAMP is
catalyzed by deoxynucleoside monophos-phate kinase to produce dADP, and dADP is
further catalyzed by pyruvate kinase to synthesize DATP. Both of phosphorylation pro-
cesses require the participation of ATP [11–14]. However, this pathway often requires
the addition of two enzymes and ATP as reaction raw materials, and the reaction cost is
very high; furthermore, the yield of dATP is still low, only about 60% [15–17]. Ding et al.
constructed intact nucleotide kinases and acetate kinase cells with the N-terminus of the ice
nucleation protein (INP-N-NMKases and INP-N-ACKase cells) using cell surface display
technology. The cells were used to synthesize dATP, and the yield can reach more than
90% [18]. The second pathway is to use nucleotide reductase for to remove the hydroxyl
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groups on the adenosine triphosphate substrate, thus generating the corresponding de-
oxyadenosine triphosphate. However, this enzyme has poor stability and is not suitable for
industrial production [19].

In order to overcome the above problems, the whole cell can be considered for dATP
biosynthesis. As shown in Figure 1, the synthetic pathway mainly consists of two parts: the
energy (ATP) regeneration pathway (glycolysis pathway, or EMP pathway) and the dATP
synthesis pathway. In whole cells, the glycolysis pathway exists as an ATP regeneration
system that can break down one molecule of glucose into two molecules of ethanol and
produce two molecules of ATP. The dATP synthesis system requires two molecules of
ATP for phosphorylation to produce one molecule of dATP. By coupling ATP regeneration
and utilization with dAMP phosphorylation, dATP can be effectively synthesized. There-
fore, the regeneration and coupling of ATP are prerequisites for the efficient synthesis of
dATP. At present, the efficiency of ATP generated by sugar through the EMP pathway is
very low, which can only maintain the general metabolism of cells. To increase the flux
of the EMP pathway and overexpress the phosphorylation level of substrate, the main
approaches are the use of genetic engineering technology or changing the metabolic flux
by using chemical effector substances [20–22]. The latter is more convenient and easier to
achieve. The EMP pathway is a multi-enzyme catalytic system in which some enzymes,
especially allosteric enzymes such as glucokinase (GK), phosphofructokinase (PFK), and
pyruvate kinase (PK), are the key enzymes. Each of these enzymes has its own regulatory
factors, in which magnesium ions and potassium ions have regulatory effects on one or
more of the above enzymes [23,24]. An appropriate concentration of ammonium ions can
increase the activity of phosphofructokinase, allowing the energy in glucose to be stored in
the form of fructose-1,6-diphosphate. During the subsequent phosphorylation of dAMP,
sufficient energy was provided for substrate-level phosphorylation, which was beneficial
for product synthesis [25]. In the EMP pathway, NAD+ participates in the reaction as a
proton-transporting coenzyme and reduces itself to NADH. This reaction is catalyzed by
glyceraldehyde-3-phosphate dehydrogenase and is the only redox reaction in the EMP
pathway. However, the intracellular redox cofactor pool is fixed, and there is a dynamic
balance between oxidation and reduction. For glycolysis to continue, the reduced NADH
must be reoxidized to the oxidized form (NAD+) through the regeneration pathway. With
a lack of oxygen or an oxidant factor, NAD+ will regenerate via the ethanol pathway, using
acetaldehyde as an electron acceptor [26]. Therefore, under the regulation of chemical
effector substances (Mg2+, K+, NH4

+, and acetaldehyde), the regeneration rate of ATP
can be increased, and when the rate matches that of the dATP synthesis system, efficient
biosynthesis of dATP can be realized.

In this paper, a new technique for the wholecell biosynthesis of dATP by Saccharomyces
cerevisiae is described. Magnesium chloride hexahydrate (MgCl2·6H2O), potassium chloride
(KCl), ammonium chloride (NH4Cl), and acetaldehyde were selected as effectors to regulate
the metabolic flux of the EMP pathway and establish an efficient ATP regeneration and
coupling system. Response surface analysis (RSA) and factorial experiments were used
to optimize the synthesis of dATP from dAMP catalyzed by Saccharomyces cerevisiae. As
a mathematical analysis method, RSA is often used to explore the influence of multiple
parameters on dependent variables. RSA can also be used to predict the value of the
dependent variable for specific parameters or obtain the optimal operating parameters
based on the expected value of the dependent variable. A central composite rotatable design
(CCRD)-type RSA, an ideal tool for process optimization [27,28], was used to optimize
the synthesizing process. The effects of glucose, acetaldehyde, and temperature on the
accumulation of dATP were also determined. Yeast whole cell catalysis technology can
overcome the problems of low substrate utilization efficiency, low product yield, and
high production costs in the synthesis process. At the same time, compared to enzymatic
methods, the use of whole cells results in better enzyme stability, greater adaptability to
organic solvents, and easier in situ regeneration of energy and coenzymes.
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Figure 1. The biosynthesis pathway of dATP by Saccharomyces cerevisiae.

2. Results and Discussion
2.1. Preliminary Synthesis of dATP

The curves of the yield of dATP and dADP versus time with and without the addition
of effectors are shown in Figure 2. When no effector was added to the reaction system, the
accumulation of dATP was detected after 4 h of reaction. The reaction efficiency was very
low, and the yield of dATP was only 2.20% after 8 h of reaction. dADP was detectable at 2 h
and remained basically the same after 4 h of reaction. The yield of dADP was 5.16% at 8 h.
The results indicated that ATP provided by the EMP pathway in yeast cells could not satisfy
dATP synthesis, and only a small amount of substrate dAMP could be converted to dADP
and dATP without effectors. When the effectors were added to the reaction system, dATP
could be detected after 2 h of reaction. The yield of dATP increased linearly from 2 h to 6 h.
The maximum yield of dATP was 30.7% at 7 h. According to the change in dADP, the yield
increased gradually in the first 5 h, but the increasing range was very slow. After 5 h, the
yield of dADP remained basically stable at about 14%. The addition of the effectors greatly
improved the regeneration efficiency of ATP in the EMP pathway, which was beneficial to
the phosphorylation level of dAMP. Through the regeneration and coupling of ATP, the
effective synthesis of dATP was realized. However, under these conditions, the yield of
dATP was still low, so it was necessary to optimize the synthesis conditions to improve the
yield and efficiency of the synthesis of dATP.

2.2. Fractional Factorial Design to Identify Key Influences

Based on preliminary experiments and literature [29], the following ten factors were
determined for the experimental design: dAMP, glucose, MgCl2·6H2O, KCl, NaH2PO4,
yeast, NH4Cl, acetaldehyde, pH, and temperature. Parameter values and coding levels are
shown in Table 1. The experimental data and the predicted values are shown in Table 2,
which was analyzed with Design Expert version 13. The function of the coded levels of all
factors was obtained:

Y = 36.5 − 1.05x1 + 10.86x2 + 0.43x3 − 1.48x4 + 5.75x5 + 1.93x6 + 1.38x7 − 13.61x8 + 1.49x9 + 7.84x10 (1)
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Table 1. The values of the variables and the coding level.

Coding Level
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

dAMP (g/L) Glucose
(g/L)

MgCl2·6H2O
(g/L) KCl (g/L) NaH2PO4

(g/L) Yeast (g/L) NH4Cl (g/L) Acetaldehyde
(mL/L) pH T (◦C)

−1 0.80 30.00 1.00 1.33 26.00 250.00 0.33 6.70 6.5 28.0
+1 2.00 50.00 7.00 2.67 36.40 350.00 1.00 20.00 7.5 32.0

Table 2. Experimental design and results of fractional factorial design.

Run
Factors

Y (%) Y′ (%)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 41.68 41.25
2 1 −1 −1 −1 1 −1 1 1 −1 −1 9.87 7.54
3 −1 1 −1 −1 1 1 −1 1 −1 −1 33.71 32.48
4 1 1 −1 −1 −1 1 1 −1 1 1 70.64 67.50
5 −1 −1 1 −1 1 1 1 −1 −1 1 44.93 57.27
6 1 −1 1 −1 −1 1 −1 1 1 −1 5.90 0.98
7 −1 1 1 −1 −1 −1 1 1 1 −1 15.22 23.71
8 1 1 1 −1 1 −1 −1 −1 −1 1 79.03 70.25
9 −1 −1 −1 1 −1 1 1 1 −1 1 23.53 14.75

10 1 −1 −1 1 1 1 −1 −1 1 −1 27.40 35.89
11 −1 1 −1 1 1 −1 1 −1 1 −1 63.54 58.62
12 1 1 −1 1 −1 −1 −1 1 −1 1 15.83 27.72
13 −1 −1 1 1 1 −1 −1 1 1 1 26.59 23.45
14 1 −1 1 1 −1 −1 1 −1 −1 −1 22.39 21.16
15 −1 1 1 1 −1 1 −1 −1 −1 −1 48.42 46.09
16 1 1 1 1 1 1 1 1 1 1 50.13 49.70

Y: experimental data; Y′: predicted values.

The determination coefficient (R2) for the linear regression model of dATP production
was 0.905, indicating that the results of this analysis are -reliable. Furthermore, from the
results of the analysis (Table 3), it is seen that glucose, acetaldehyde, and temperature had
a significant effect on dATP production (p ≤ 0.05). When glucose and temperature were
near high-level values and acetaldehyde was near a low-level value, it was beneficial to
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improve the dATP yield. According to the trends of the three factors, other factors with
less influence were taken as fixed values (the average of level −1 and level 1) as follows:
x1 1.40, x3 4.00, x4 2.00, x5 31.20, x6 300.00, x7 0.67, x9 7.0. Response surface design with
glucose, acetaldehyde, and temperature as variables.

Table 3. Results of the regression analysis of the fractional factorial design.

Term
Regression Analysis

Coefficient F-Value p-Value

x1 −1.05 0.1299 0.7332
x2 10.86 13.7700 0.0138
x3 0.43 0.0215 0.8893
x4 −1.48 0.2539 0.6357
x5 5.75 3.8600 0.1066
x6 1.93 0.4370 0.5378
x7 1.38 0.2235 0.6563
x8 −13.61 21.6100 0.0056
x9 1.49 0.2591 0.6324
x10 7.84 7.1800 0.0439

2.3. Central Composite Design and Response Surface Methodology

According to the results of the fractional factorial design, glucose, acetaldehyde, and
temperature had significant effects, and a response surface design with three factors at five
levels was used to determine the optimal levels. The experimental design and results are
shown in Tables 4 and 5. The results of the regression analysis are shown in Table 6. The
fitted second-order polynomial had the following form:

Y = 91.19 + 0.97x1 − 22.03x1
2 − 6.02x2 − 17.65x2

2 − 5.05x3 − 24.58x3
2 − 1.27x1x2 − 6.53x1x3 + 15.50x2x3 (2)

where Y is the predicted response, and x1, x2, and x3 are coded values of glucose, acetalde-
hyde, and temperature concentrations, respectively.

Table 4. Levels of the factors tested in the central composite design.

Factors
Levels of Factors

−1.618 −1 0 1 1.618

x1 (glucose, g/L) 23.2 30 40 50 56.8
x2 (acetaldehyde, mL/L) 2.2 6.7 13.4 20 24.5

x3 (temperature, ◦C) 26.6 28 30 32 33.4

The determination coefficient (R2) for the equation was 0.897. First-order partial
derivatives of Y for x1, x2, and x3 were obtained, and the values were set to zero, respectively.
Combining the above equations to solve them, the values of x1, x2, and x3 were 40.97, 11.64,
and 29.62, respectively. The model predicted a maximum response of 92.47% under these
conditions. Also, the 3D response surface curves were then plotted to present the effect of
two factors while the other factor was held at zero (Figures 3–5). The optimized reaction
conditions were obtained by combining the previous values of other parameters: dAMP was
1.40 g/L, glucose was 40.97 g/L, MgCl2·6H2O was 4.00 g/L, KCl was 2.00 g/L, NaH2PO4
was 31.20 g/L, yeast was 300.00 g/L, NH4Cl was 0.67 g/L, acetaldehyde was 11.64 mL/L,
pH was 7.0, and the temperature was 29.6 ◦C. The experiments were conducted under these
conditions, and the final concentration of dATP was 2.10 g/L with an actual yield of 93.80%
(Figure 6). The concentration of dATP was four times higher than the pre-optimization
concentration (0.52 g/L). The yield of dATP increased by 63.10% compared to the starting
yield of 30.70%. The above results indicate that the dATP yield and concentration were
greatly improved after optimization, which reduced the unit product cost. It also indicates
that the optimization using FFD and RSA is more credible and effective.
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Table 5. Experimental design and results of the RSM.

Run x1 x2 x3 Y (%) Y′ (%)

1 1 −1 1 23.24 24.09
2 0 0 0 90.18 91.19
3 −1 −1 1 19.55 29.18
4 −1 1 −1 11.33 21.00
5 0 0 0 89.64 91.19
6 0 −1.618 0 54.65 51.38
7 −1.618 0 0 86.46 68.19
8 −1 −1 −1 56.03 62.52
9 0 0 1.618 24.73 13.17

10 0 1.618 0 42.74 31.13
11 −1 1 1 36.19 49.65
12 1 1 −1 27.52 28.40
13 0 0 −1.618 33.47 30.16
14 1 −1 −1 75.90 72.95
15 1.618 0 0 66.73 70.13
16 1 1 1 37.50 41.53

Y: experimental data; Y′: predicted values.

Table 6. Regression results of the central composite design.

Term
Regression Analysis

Coefficient F-Value p-Value

x1 0.97 0.0254 0.8787
x2 −6.02 2.7600 0.1476
x3 −5.05 1.9500 0.2125
x1

2 −22.03 0.0256 0.8781
x2

2 −17.65 0.6731 0.4433
x3

2 −24.58 10.7200 0.0169
x1x2 −1.27 3.1400 0.1270
x1x3 −6.53 16.1100 0.0070
x2x3 15.50 31.2400 0.0014
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2.4. Effect of Glucose on dATP Synthesis

The phosphorylation of dAMP requires the glycolysis pathway to provide ATP, and
glucose is the only energy donor in this conversion system. If the glucose concentration is
too low, the reaction energy is insufficient, and not enough ATP can be produced, resulting
in a decrease in the conversion rate. If the glucose concentration is too high, a large
amount of ATP is required for glucose phosphorylation at the initial stage of the reaction,
and the sugar phosphate compounds (glucose 6-phosphate, fructose 6-phosphate, and
fructose 1,6-diphosphate) accumulate [30], while the ATP used for dAMP phosphorylation
is insufficient [31]. In addition, excessive glucose 6-phosphate has feedback inhibition on
hexokinase, which slows glucose phosphorylation and then affects the rate of glycolysis,
thus reducing the conversion rate. Through optimization, 40.97 g/L glucose was selected
as the optimal concentration.
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2.5. Effect of Acetaldehyde on dATP Synthesis

There are two ways to regenerate NAD+ in yeast cells [32]. In the case of high dissolved
oxygen, NAD+ is regenerated via the electron transport chain (ETC) of mitochondria, with
oxygen acting as the final electron acceptor. Under low-dissolved oxygen or anaerobic
conditions, NAD+ can be regenerated by using the ethanol pathway and acetaldehyde as
an exogenous electron acceptor. Exogenous acetaldehyde can oxidize NADH to NAD+

under the action of ethanol dehydrogenase, while acetaldehyde can be reduced to the
same amount of ethanol, which accelerates the regeneration of NAD+, maintains the ratio
NADH/NAD+ in cells, and restores the redox balance of cells [33]. Acetaldehyde can trans-
fer the NADH oxidation pathway to the ethanol fermentation pathway, thereby increasing
the flux of the glycolysis pathway and promoting the phosphorylation of dAMP to dATP.
Intracellular NADH excess inhibits the reaction catalyzed by 3-phosphate glyceraldehyde
dehydrogenase, which oxidizes 3-phosphate glyceraldehyde to 1,3-diphosphoglyceric acid.
This reaction is the first step of the sugar fermentation interpretation reaction and is also
the metabolic entry port for substrate-level phosphorylation. The addition of acetaldehyde
can increase the concentration of NAD+, reverse this effect, and then accelerate the regen-
eration of ATP [34,35]. With an increase in the concentration of acetaldehyde, the yield
of dATP increased. Acetaldehyde, as an exogenous electron acceptor, also has a certain
cytotoxicity, which can form complexes with proteins [36], hinder protein function, and
lead to a decrease in dATP yield. After optimization, 11.64 mL/L of acetaldehyde was
selected as the final concentration.

2.6. Effect of Temperature on dATP Synthesis

Temperature has two effects on the enzymatic reaction rate. First, when the tem-
perature increases, the reaction speed increases, which is similar to the general chemical
reaction. On the other hand, when the temperature rises to a certain extent, the enzyme
begins to denature. This means that the reaction speed of the enzyme is reduced due to
the decrease in active enzymes. The optimum temperature of the enzymatic reaction is the
result of the equilibrium between these two processes. Below the optimum temperature,
the former effect plays a dominant role; that is, the conversion rate increases with the
increase in temperature. When the temperature is higher than the optimal temperature, the
latter effect plays a dominant role, so the enzyme activity is rapidly lost, the reaction rate
decreases rapidly, and the yield of dATP decreases. By optimization, 29.6 ◦C is selected as
the experimental temperature.
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3. Materials and Methods
3.1. Strain and Medium

Saccharomyces cerevisiae As2.398, preserved in the laboratory of Henan University of
Science and Technology, was used for the production of dATP from dAMP in this study. The
growth medium contained 5% glucose, 0.5% peptone, 0.2% yeast extract, 0.2% NH4H2PO4,
0.1% MgSO4·7H2O, 0.2% NH4SO4, and 0.2% KH2PO4 at an initial pH of 5.8. The culture
medium was kept at 30 ◦C for 72 h.

3.2. Preparation of Cells

The yeast cells were harvested aseptically using the vacuum filtration method at 4 ◦C
and washed twice with deionized water. The wet cells were frozen and stored at −20 ◦C.

3.3. dATP Synthesis Process

Reaction components such as yeast, glucose, and inorganic salts were accurately
weighed into a 500 mL Erlenmeyer flask and diluted to 300 mL with distilled water. The
reactions were carried out in an air-insulated condition with shaking in a thermostat-
controlled water bath at 120 r/min for 7 h. All experiments were carried out in triplicate.

The reaction conditions without the addition of effectors were as follows: dAMP,
1.40 g/L; glucose, 30.00 g/L; NaH2PO4, 31.20 g/L; yeast cell, 250.00 g/L; pH, 7.0; tempera-
ture, 30.0 ◦C.

The reaction conditions with the addition of effectors were as follows: dAMP, 1.40 g/L;
glucose, 30.00 g/L; MgCl2·6H2O, 2.00 g/L; KCl, 1.33 g/L; NaH2PO4, 31.20 g/L; yeast cell,
250.00 g/L; NH4Cl, 1.00 g/L; acetaldehyde, 6.70 mL/L; pH, 7.0; temperature, 30.0 ◦C.

The precise compositions and reaction conditions of optimized experiments are de-
scribed in the Section 2.

3.4. Analytic Method

The reaction aliquots were centrifuged at 10,000× g for 10 min, and the supernatant
was used to determine dAMP, dADP, and dATP. High-performance liquid chromatography
(HPLC, Agilent 1100 system with UV detector) was performed using a Lichrospher C18
column (4.6 mm× 300 mm, 5 µm), methanol 0.05 mol/L of dipotassium phosphate solution
(3:97, v/v) as the mobile phase, and a flow rate of 1.0 mL/min at room temperature. The
detection wavelength was 254 nm. The retention times for dAMP, dADP, and dATP were
6.118 min, 8.871 min, and 14.079 min, respectively.

3.5. Fractional Factorial Design (FFD)

Ten factors, such as dAMP, glucose, MgCl2·6H2O, KCl, NaH2PO4, yeast, ammonium
chloride, acetaldehyde, pH, and temperature, were selected as the investigation objectives.
If the whole factor design was used, there would be 10 factors and 2 levels of the 210

designs, which required many experiments and was difficult to realize. Compared with the
full-factor design, FFD can greatly reduce the number of experiments without losing the
main information and can estimate the main effect and partial interaction of factors. In the
experimental system of this study, a FFD of ten factors and two levels is selected. Each has
two levels and is coded by (−1, +1) (Table 1). The experiments are carried out according
to the corresponding experimental table, with a total of 16 experiments (Table 2). Based
on the analysis of the results of the factorial design, the relatively important influencing
factors are determined.

The first-order model used to fit the results of fractional factorial design was represented as:

Y = β0 + ∑βixi (3)

where Y is the predicted response; β0 is the intercept; βi is the linear coefficient; and xi is
the coded independent factor.
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3.6. Response Surface Analysis

Response surface analysis (RSA) is a mathematical and statistical method for in-
vestigating the optimal conditions corresponding to the maximum response value of a
factor interaction in a multifactorial system [37–39]. Although based on the principles of
orthogonal design, it is more effective than the previously promoted “orthogonal experi-
mental method”.

In this study, the three independent factors were studied in one block, and a set of
16 experiments was performed in a random order with six axial points, eight factorial
points, and two center points. After regression fitting, the influence of each experimental
factor on the response value can be expressed by the following functions:

Y = β0 + ∑βixi + ∑βiix
2
i + ∑βijxixj (4)

where Y is the predicted response, β0 is the intercept, xi and xj are the coded independent factors,
βi is the linear coefficient, βii is the quadratic coefficient, and βij is the interaction coefficient.

Design Expert version 13 (STATEASE Inc., Minneapolis, MN, USA) was used for
experimental designs and regression analysis of the experimental data obtained.

4. Conclusions

In this study, a whole cell method for the biocatalytic synthesis of dATP in Saccha-
romyces cerevisiae has been designed, establishing a regeneration and energetic coupling
system capable of efficient dATP biosynthesis. A multinomial quadratic mathematical
model of the dATP biosynthesis was established by the statistical method. Through the
factorial experiments and the optimization of the response surface, optimal conditions
affecting the biosynthesis of dATP by Saccharomyces cerevisiae were obtained, and the biosyn-
thesis of dATP was predicted using the model equation. Under optimal conditions, the
yield and concentration of dATP reached 93.80% and 2.10 g/L, respectively. The yield was
63.10% greater than the level before optimization, and the concentration increased nearly
fourfold. As an important substrate for DNA synthesis, the establishment of the dATP
biosynthesis system provides a powerful means for gene cloning, protein engineering,
biomedical research, and development and is of far-reaching significance. Compared with
other methods reported in the literature, the method in this study does not require complex
genetically engineered bacteria construction and protein expression and has the advantages
of simple operation, low cost, and high efficiency. Moreover, this method would allow
the production of other active substances that need ATP as energy, such as S-adenosyl-
L-methionine (SAM), glutathione, penicillin and its derivatives, poly-amino acids, and
polysaccharides, which have a broad application prospect.
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