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Abstract: The newly FDA-approved drug, Axitinib, is an effective therapy against RTKs, but it
possesses severe adverse effects like hypertension, stomatitis, and dose-dependent toxicity. In order
to ameliorate Axitinib’s downsides, the current study is expedited to search for energetically stable
and optimized pharmacophore features of 14 curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-
1,6-diene-3,5-dione) derivatives. The rationale behind the selection of curcumin derivatives is their
reported anti-angiogenic and anti-cancer properties. Furthermore, they possessed a low molecular
weight and a low toxicity profile. In the current investigation, the pharmacophore model-based drug
design, facilitates the filtering of curcumin derivatives as VEGFR2 interfacial inhibitors. Initially,
the Axitinib scaffold was used to build a pharmacophore query model against which curcumin
derivatives were screened. Then, top hits from pharmacophore virtual screening were subjected to
in-depth computational studies such as molecular docking, density functional theory (DFT) studies,
molecular dynamics (MD) simulations, and ADMET property prediction. The findings of the current
investigation revealed the substantial chemical reactivity of the compounds. Specifically, compounds
S8, S11, and S14 produced potential molecular interactions against all four selected protein kinases.
Docking scores of −41.48 and −29.88 kJ/mol for compounds S8 against VEGFR1 and VEGFR3,
respectively, were excellent. Whereas compounds S11 and S14 demonstrated the highest inhibitory
potential against ERBB and VEGFR2, with docking scores of −37.92 and −38.5 kJ/mol against
ERBB and −41.2 and −46.5 kJ/mol against VEGFR-2, respectively. The results of the molecular
docking studies were further correlated with the molecular dynamics simulation studies. Moreover,
HYDE energy was calculated through SeeSAR analysis, and the safety profile of the compounds was
predicted through ADME studies.

Keywords: pharmacophore; VEGFR; DFTs; molecular docking; molecular dynamic simulations

1. Introduction

Curcumin, the biomolecule obtained from turmeric (Curcuma longa, 1.5–3% wt.), has
pleiotropic properties, including chemo-sensitizing, anti-oxidant, chemo-protective, anti-
inflammatory, anti-proliferative, hepato-protective, anti-metastatic, and anti-cancer prop-
erties. Curcumin affects most signaling pathways due to its complicated chemistry and
molecular structure. Any imbalance in signaling pathways may lead to metastasis [1].
Among the most common types of cancer, colorectal cancer (CRC) is one of the leading
cancers, accounting for approximately 10% of cancer incidence and mortality in both males
and females [2]. Every year, numerous people are diagnosed with, and die of, colorectal
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cancer; by 2014, the number of people who died after being diagnosed with cancer had
reached 14.5 million, and the number will be expected to increase to nearly 19 million by
2024 [3]. The CRC is either metastatic or locally advanced, and surgical resection is unlikely
to be curative. For most patients, chemotherapy can enhance survival and is the only mode
of treatment [4–6].

There has been much interest in several novel therapeutic approaches for cancer treat-
ment that target the molecular pathways that regulate tumor cell growth or survival. Poten-
tial anti-neoplastic treatment targets, such as epidermal growth factor receptor (EGF-R) and
vascular endothelial growth factor receptor (VEGF-R), have been investigated [7]. EGF-R
and VEGF-R are examples of receptor tyrosine kinases (RTKs), which are trans-membrane
proteins with an extracellular ligand-binding domain and an intracellular tyrosine kinase
catalytic domain. After binding to their catalytic site, most RTKs form dimers and un-
dergo autophosphorylation of intracellular tyrosine residues [7,8]. Numerous cellular
signaling pathways that promote cell growth, survival, and angiogenesis are triggered
in response to RTK activation. The emergence of genetic makeup changes is a mediator
in the development of colorectal or renal cancer disease. The accumulation of specific
growth-inducing factors, such as hypoxia-inducing factors, is caused by mutation or gene
silencing (HIF-alpha). These built-up substances function as transcriptional agents that
move into the nucleus and trigger the synthesis of growth factors like platelet-derived and
epithelial growth factors. These elements begin encouraging metastasis, cell growth, prolif-
eration, and angiogenesis. It is also hypothesized that cancer cells circumvent usual growth
constraints by inappropriately activating RTKs by mutation, overexpression, or ectopic
ligand production, which is a typical feature of human tumor genesis and progression [9].
In light of this, RTK signal transduction control has emerged as a primary focus of oncology
medication development, and several agents have been developed that primarily target the
VEGFR signaling pathways.

Potential tyrosine kinase agents such as Axitinib, 5-fluorouracil (5-FU), irinotecan, and
oxaliplatin possessed potential inhibition activity against VEGFR 1–3. Other agents that
operate by blocking the tyrosine kinase domain of epidermal growth factor receptor (EGFR)
utilizing monoclonal antibodies, such as cetuximab or panitumumab, are also available for
the treatment of CRC [10,11]. Similarly, drugs that block VEGF receptor activation prevent
the induction of metastasis. Several anti-angiogenic agents that target VEGF, including
mAbs, TKIs, and decoy compounds (e.g., VEGF Trap), have been entered into clinical prac-
tice or are under clinical investigation [12]. Among all these tyrosine agents, only Axitinib
is the latest FDA-approved drug integrated into international therapeutic guidelines for
treating VEGFR-associated malignancies [13]. Axitinib is an indole derivative that has
demonstrated potent and selective activity against multiple cancer cell lines, including
renal, colorectal, thyroid, and non-small cell lung cancer disease [14]. Axitinib competi-
tively binds to the ATP binding site of tyrosine kinase and inhibits phosphorylation [15].
In addition, it was reported that Axitinib blocked several growth factors in nano molar
ranges, including platelet-derived growth factors, but it remained more selective toward
RTKs [15]. However, the use of Axitinib and other kinase inhibitors is associated with
certain disadvantages, such as the development of tolerance [16], toxicity, pharmacokinetic
instability, and side effects. In particular, Axitinib developed dose-limiting toxicities (stom-
atitis and hypertension) and severe adverse effects such as myalgia, fatigue, gout, diarrhea,
and hypertension [17].

Moreover, cross-tolerance and combination therapy trial data are insufficient to sup-
port the treatment therapy’s safety in many individuals [17]. Therefore, there is a strong
rationale for designing selective inhibitors of both targets to eradicate cancer with the least
resistance and side effects. Furthermore, these findings encourage us to develop alternative
scaffolds for treating RTKs associated with cancer malignancies [11,12,18]. Among the
various types of natural analogues, curcumin derivatives are considered important pharma-
ceutical agents, possessing anti-angiogenic and anticancer properties [19]. In addition, they
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are considered promising chemotherapeutic treatment strategies due to their low molecular
weight and lack of toxicity against normal cells [20].

Furthermore, they have been reported for their role in growth suppression and apop-
tosis induction in various cancer cell lines (in vitro), i.e., inhibition of vascular endothelial
cell (VEC) proliferation. Moreover, their anti-tumor capabilities have also been identified
via in-vivo approaches, i.e., in vivo capillary tube formation and growth [21]. Based on
these properties, curcumin analogues remain the lead molecules for the design of analogs
with similar safety profiles, increased activity, and better pharmacokinetic profiles [22].

The current study aims to evaluate the curcumin derivatives as the inhibitors of ERBB,
VEGFR1, VEGFR3 and VEGFR2 using various in silico approaches. The current study has
utilized Axitinib as a parent scaffold for generating a pharmacophore query model against
which a library of curcumin derivatives was screened via pharmacophore-based virtual
screening, which could generate energetically optimized pharmacophores for lead discov-
ery. The top-ranked hits retrieved via pharmacophore-based virtual screening were further
subjected to advanced in-silico approaches. Initially, DFT calculations were performed
to understand the electronic properties of all compounds, and optimized structures were
obtained for molecular docking studies. Energy-based docking studies were then used to
determine the ligand’s approximate/plausible positions within the receptor active site and
the binding affinities. In addition to the docking studies, molecular dynamic simulation
was performed to identify the stability of the docked complex.

Moreover, a similarity search was performed for Axitinib and curcumin derivatives
using Tanimoto and Dice similarity coefficients. The results will serve as a new direction for
analyzing curcumin derivatives for treating RTKs associated cancer malignancies. Figure 1
depicts the curcumin analogues and Axitinib.
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Figure 1. Curcumin analogues and FDA-approved Axitinib [19]. 
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2. Results and Discussion
2.1. Preparation of Chemical Database

The curcumin derivatives were selected on the basis of their broad range of biologi-
cal activities. The curcumin derivatives were previously reported as potential anticancer
agents against various cancer cell lines, including melanoma RPMI 7951, human breast
cancer, MDA-MB-231, and human umbilical vein endothelial cells, HUVEC [15]. A total of
14 curcumin derivatives were screened against multiple cell lines, and the chemical struc-
tures of each derivative were retrieved from the PubChem database. All these derivatives
were retrieved in SDF format from the PubChem database and subjected to a preliminary
energy minimization process before being converted to the desired format for further in-
silico investigations. The IUPAC naming of all retrieved curcumin derivatives is provided
in Table 1.

Table 1. Binding energies of all derivatives against VEGFR1, VEGFR2, VEGFR3 and ERBB tyrosine kinase.

Compound IUPAC Formula
ERBB

Binding Energies
(kJ/mol)

VEGFR2
Binding Energies

(kJ/mol)

VEGFR3
Binding Energies

(kJ/mol)

VEGFR1
Binding Energies

(kJ/mol)

S1
1E,6E)-1,7-bis(4-hydroxy-3-

methoxyphenyl)hepta-1,6-diene-
3,5-dione

−27.65 −33.4 −22.8 −34.16

S2 (2E,6E)-2,6-bis(4-hydroxy-3-
methoxybenzylidene)cyclohexanone −26.32 −29.56 −24.76 −35.28

S3
(1E,4E)-1,5-bis(3,4-

dimethoxyphenyl)penta-1,4-dien-
3-one

25.74 −32.67 −17.6 −35.1

S4
(1E,4E)-1,5-bis(2-

methoxyphenyl)penta-1,4-dien-
3-one

−25.51 −28.20 −22.92 −32.44

S5
(1E,4E)-1,5-bis(3-

hydroxyphenyl)penta-1,4-dien-
3-one

−23.79 −26.9 −22.68 −34.96

S6
(1E,4E)-1,5-bis(2-

fluorophenyl)penta-1,4-dien-
3-one

−24.64 −32.4 −19.08 −31.2

S7
(1E,4E)-1,5-bis(2-

hydroxyphenyl)penta-1,4-dien-
3-one

−26.54 −37.5 −21.72 −30.5

S8
(1E,4E)-1,5-bis(2-

hydroxyphenyl)penta-1,4-dien-
3-one

−25.87 −32.7 −29.88 −41.48

S9
(3E,5E)-3,5-bis(2-

hydroxybenzylidene)dihydro-
2H-pyran-4(3H)-one

−27.37 −36.3 −29.24 −40.84

S10
(3E,5E)-3,5-bis(2-

fluorobenzylidene)dihydro-2H-
pyran-4(3H)-one

−25.87 −37.2 −22.36 −15.2

S11
(3E,5E)-3,5-bis(2-

hydroxybenzylidene)-1-
methylpiperidin-4-one

−37.92 −43.2 −28.04 −36.2

S12
(3E,5E)-3,5-bis(2-

fluorobenzylidene)-1-(1-hydroxy-
2-oxopropyl)piperidin-4-one

−31.68 −38.78 −26.1 −32.68

S13
(1E,4E)-1,5-bis(4-

hydroxyphenyl)penta-1,4-dien-
3-one

−29.41 −33.95 −20.52 −32.8

S14
((1E,4E)-3-oxopenta-1,4-diene-1,5-

diyl)bis(2,1-phenylene)
diacetate

−38.5 −46.5 −22.24 −35.2

Irinotecan
(reference)

4,11-diethyl-4-hydroxy-3,14-
dioxo-3,4,12,14-tetrahydro-1H-

pyrano [3’,4’:6,7]indolizino
[1,2-b]quinolin-9-yl

[1,4’-bipiperidine]-1’-carboxylate

−28.4 −40.24 −38.32 −41.21
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2.2. Generation of Pharmacophore Model

The single protein–ligand complex can be used to define chemical features based on
intermolecular interactions observed with the complex. In the present study, VEGFR-2 in
complex with standard Axitinib was retrieved from the Protein Data Bank (PDB ID 4AG8)
and subjected to pharmacophore model building. The interactions produced by Axitinib
laid the foundation for the generation of pharmacophore features. The database consisting
of 14 curcumin derivatives was screened against generated features, and the best-fitted
compound was prioritized as a hit molecule. Based on intermolecular interactions, a total
of seven features were generated, i.e., two hydrogen bond acceptors (blue sphere), two
hydrogen bond donors (purple sphere), and three hydrophobic (orange spheres), as shown
in Figure 2. In addition, four hydrogen bond features were observed, i.e., two hydrogen
bond donor producing interactions with GLU885 and GLU917 and two hydrogen bond
acceptor features involving CYS919 and LEU840 residues in bonding.
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2.3. Pharmacophore-Based Virtual Screening

After the generation of a pharmacophore query model, the curcumin database was
screened against Axitinib’s predefined chemical features. It was observed that compounds
S11 and S14 showed the best-fit chemical features. The compound S11 showed five
pharmacophore features AADRR (one donor, two acceptors, and two aromatics) with
an RMSD value of 0.54 angstrom. Similarly, another best-fit compound, S14, showed
five chemical features AAARR (three donors and two aromatics) with RMSD values less
than 0.9 angstroms. Both these compounds involved important molecular interactions
with amino acid residues at the active site. Figure 3 illustrates the generation of the
pharmacophore query model on the basis of molecular interactions between Axitinib
and VEGFR2. A total of seven pharmacophoric features were generated, against which
compound S11 and S14 were found to be the best matches both with five features. For each
compound the cut off value was set to a minimum of four. Any compound with less than
four pharmacophoric features was omitted from the hit candidates. The generated and
matched chemical features are shown in Figure 3.
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2.4. Similarity Index

Implementing the similarity principle is essential for evaluating a query compound’s
biological and chemical properties and a target dataset. In the present study, Axitinib was
utilized as a query molecule, and top hits obtained from pharmacophore-based virtual
screening were considered the test dataset. Initially, MACCS and Morgan fingerprints [23]
were generated for each molecule in the query and test dataset. Afterward, two similarity
coefficients, i.e., Tanimoto and Dice coefficients, were applied using the open-source RDKIT
library on both generated fingerprints. The rationale behind generating two different types
of fingerprints and implementing similarity coefficients was to enhance the reliability and
accuracy of generated outputs. As a result, it was observed that compound S11 showed a
slightly higher similarity index with Axitinib, whereas S14 was slightly lower in similarity
index. The exact values are given in Table 2.

Table 2. Similarity index values.

Compound Tanimoto
MACCS

Tanimoto
Morgan Dice MACCS Dice Morgan

S11 0.300 0.271 0.461 0.426
S14 0.215 0.251 0.354 0.401

Axitinib 1.000 1.000 1.000 1.000

2.5. Density Function Theory (DFTs)

The structural geometries of curcumin derivatives were optimized to steepest decent
gradient and frequency calculations were performed using DFT/B3LYP functional correla-
tion and 3-21G as a basis set. In order to perform DFT calculations of curcumin derivatives,
all the structure files were converted to the desired format using the Gauss View 6 program
after specifying the calculation parameters. All compounds’ geometry was optimized in
the gas phase.

The dipole moment and optimization energy of all candidate compounds were deter-
mined to understand the extent of reactivity and stability. Additional descriptors such as elec-
tronegativity (χ=−1/2(ELUMO + EHOMO), chemical hardness (η= 1/2(ELUMO− EHOMO),
softness (S = 1/2η), electron donating power (ω− = (3I + A)2/16(I − A)), electron accepting
power (ω+ = (I + 3A)2/16(I − A)), and electrophilicity index (ω = µ/2η) were determined
using ionization potential and electron affinity values. The various descriptor values, dipole
moment, and optimization energies for all the compounds are given in Table 3.
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Table 3. Optimization, Energy Polarizability and Dipole Moment of Compounds in the
Gaseous Phase.

Compounds Optimization Energy (Hatree) Polarizability (α.u) Dipole Moment (Debye)

S1 −1256.586 257.490 6.373
S2 −1220.906 289.801 6.587
S3 −1182.989 285.627 4.918
S4 −955.207 233.085 3.816
S5 −877.013 204.518 4.692
S6 −924.814 193.712 2.963
S7 −877.024 215.917 1.545
S8 −993.128 239.791 1.551
S9 −1028.810 233.923 0.569

S10 −1076.612 222.898 4.450
S11 −1048.146 241.779 1.991
S12 −1322.551 259.230 4.842
S13 −877.021 228.199 5.811
S14 −1180.671 264.307 1.225

The hardness of any compound is associated with its ability to react with molecules
in its vicinity. Therefore, any molecule with a high hardness value is considered the least
reactive and more stable. The density functional theory calculations were performed for all
the compounds, and according to the results, compound S5 showed the highest hardness
value, making it resistant to being attacked by other molecules. In the same way, S2 was
found to be the most reactive because of it had the lowest hardness value of S2. As the
electronegativity of a compound is its ability to accept an electron from the environment,
the DFT results indicated that all compounds showed almost similar electronegativity, but
S5 was found to be more prone to ionization from the environment and showed a slightly
high electronegativity. The electrophilicity index of all compounds was also calculated,
showing derivative S5 to be the most electron-loving among all the compounds. The value
of all the compounds for these descriptors is given in Table 4.

Table 4. Global reactive descriptors for curcumin analogs.

Compound Hardness (η) Softness (S) Electronegativity (X) Chemical Potential (µ) Electrophilicity Index (ω)

S1 0.071 0.285 1.138 −1.138 9.107
S2 0.069 0.276 1.105 −1.105 8.838
S3 0.064 0.256 1.023 −1.023 8.186
S4 0.072 0.289 1.156 −1.156 9.248
S5 0.073 0.290 1.160 −1.160 9.282
S6 0.076 0.303 1.212 −1.212 9.696
S7 0.071 7.04 0.142 −0.142 0.142
S8 0.070 7.14 0.130 −0.130 0.121
S9 0.070 7.14 0.140 −0.140 0.140

S10 0.075 6.67 0.155 −0.155 0.160
S11 0.068 7.35 0.132 −0.132 0.128
S12 0.067 7.46 0.147 −0.147 0.161
S13 0.069 7.25 0.142 −0.142 0.146
S14 0.073 6.90 0.155 −0.155 0.165

The results of frontier molecular orbitals energy, i.e., EHOMO and ELUMO, and their
energy gap (ELUMO-EHOMO) also indicated that most of the compounds showed equal
energy difference and were found to be stable. The values are given in Table 4. The results
of other reactivity descriptors, i.e., electron-donating power and electron-accepting power,
indicated that the extent of reactivity was also consistent with the results of other global
reactivity descriptors. The value for all the compounds is given in Table 5.
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Table 5. Various global descriptors and their calculated values for selected compounds.

Codes EHOMO
(eV)

ELUMO
(eV)

∆Egap
(eV)

Potential
Ionization

I(eV)

Affinity
A(eV)

Electron
Donating

Power (ω−)

Electron
Accepting

Power (ω+)

Electrophilicity
(∆ω±)

S1 −0.21 −0.06 0.142 0.21 0.06 3.11 8.41 11.53
S2 −0.20 −0.06 0.138 0.20 0.06 3.02 8.17 11.19
S3 −0.19 −0.06 0.128 0.19 0.06 2.82 7.68 10.51
S4 −0.22 −0.07 0.145 0.22 0.07 3.19 8.66 11.85
S5 −0.22 −0.07 0.145 0.22 0.07 3.21 8.74 11.95
S6 −0.24 −0.08 0.152 0.24 0.08 3.38 9.28 12.67
S7 −0.213 −0.071 0.142 0.213 0.071 0.222 0.080 0.302
S8 −0.20 −0.06 0.140 0.20 0.06 0.194 0.064 0.259
S9 −0.21 −0.07 0.140 0.21 0.07 0.219 0.079 0.298

S10 −0.23 −0.08 0.150 0.23 0.08 0.247 0.092 0.339

Ionization energy, along with the electron affinity of compounds, is another approach
to understanding the stability and reactivity of a compound. The compounds with higher
ionization energy values are least prone to lose electrons and have greater stability. It is
also evident from the results that S14 has the highest value of ionization energy which
speaks to its inert nature and reliable stability. The same HOMO and LUMO energy, along
with energy gap and optimization energy, is given in the tables for all the compounds. For
example, from the results of DFT studies, the optimized structure, HOMO, and LUMO,
along with their respective energy gap of the highly potent compounds, i.e., S1, S11,
and S14, is given in Figure 4. It was notable that HOMO orbitals were localized around
the phenyl ring of compound S1, whereas LUMO orbitals were delocalized around the
acetate part of the compound. The energy gap between LUMO and HOMO orbitals was
0.142 eV for S1. In terms of compound S11, the HOMO orbitals were localized around the
piperidine moiety, representing the electron-donating behavior of the piperidine moiety of
the compound. The LUMO orbitals, on the other hand, were delocalized over the majority
of the compound. The LUMO/HOMO energy gap for compound S11 was at a minimum
of 0.136 eV, representing the high chemical reactivity of the compound. The FMOs analysis
of compound S14 revealed that the whole compound was involved in electron-accepting
and electron-donating properties, which corresponds to its high chemical reactivity profile.
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2.6. Filtration for Drug-Likeness and Virtual Screening

The calculated pharmacokinetics of all the compounds showed that Lipinski’s rule
of five (RO5); which represents the drug-likeness of the chemical, is not violated by any
derivative. Due to appropriate water solubility, lipophilicity and permeability, almost all of
the compounds showed excellent absorption. The high bioavailability of the compounds
was confirmed by the number of rotatable bonds and polar surface area. The compounds’
toxicity profiles were also investigated. According to the projected results, all derivatives are
non-carcinogenic and have no influence on immunotoxicity, mutagenicity, or cytotoxicity.
The ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of the
most powerful derivative were calculated to determine its appropriateness as a therapeutic
molecule. The physicochemical properties were molecular weight, density, number of
hydrogen bond acceptors (nHA), number of hydrogen bond donors (nHD), topological
polar surface area (TPSA), log of aqueous solubility (LogS), log of the octanol–water
partition coefficient (LogP), and logP at physiological concentrations (LogD) (Table 6).

Table 6. Various physicochemical properties of selected compounds.

Physicochemical Properties

Molecular Weight Density nHA nHD TPSA LogS LogP LogD

S1 368.13 0.966 6 2 93.06 −3.921 2.742 2.82
S2 366.15 0.954 5 2 75.99 −4.475 3.441 3.437
S3 354.15 0.945 5 0 53.99 −5.442 3.118 3.271
S4 294.13 0.911 3 0 35.53 −5.88 3.808 3.775
S5 266.09 0.924 3 2 57.53 −4.003 3.08 3.248
S6 270.09 0.955 1 0 17.07 −6.046 3.937 3.963
S7 266.09 0.924 3 2 57.53 −4.003 3.08 3.248
S8 306.13 0.924 3 2 57.53 −4.2 4.425 3.717
S9 308.1 0.954 4 2 66.76 −3.678 3.233 3.156
S10 312.1 0.983 2 0 26.3 −5.847 3.904 3.815
S11 321.14 0.938 4 2 60.77 −3.052 3.521 3.108
S12 383.13 0.991 4 1 57.61 −4.067 3.052 3.437
S13 266.09 0.924 3 2 57.53 −3.277 3.201 3.397
S14 350.12 0.947 5 0 69.67 −5.518 3.123 2.829

Hydrogen bonding is an important chemical parameter in the determination of thermo-
dynamic properties of a compound. Total Polar Surface Area (TPSA) has a significant role
in the estimation of polarity which is a major factor contributing toward penetration and
permeation. According to the ADMET profile, the compound S1 showed the highest value
of TPSA i.e., 93.6. Another parameter i.e., Log S, if a compound is sufficiently lipophilic
and it has an ineffective range of aqueous solubility (Log S) then its permeation through
membranes will be hindered, as is the case with S6 which was found to be −6.046. The
value of all other compounds is given in Table 4. The molecular weights of all derivatives
lie within the optimal range (<500), except S12 and in the same way nHA, nHD and TPSA
values of all compounds were found to be within the permitted range, whereas derivative
S6 has minimum total polar surface area and S2 has maximum polar surface area.

The compounds S2, S9 and S11 have acceptable values (−1 to −5.6) of log S with
good aqueous solubility, while remaining derivatives showed deviation from the reference
values. The compound S2 exhibited an acceptable log p value while other compounds
were found to be borderline with slightly higher values of log P. The log D value of all
derivatives is found in-correlation with log p results as given in Table 7.



Molecules 2023, 28, 4044 10 of 24

Table 7. Absorption and distribution properties of selected compounds.

Absorption and Distribution Properties

Volume of
Distribution

(vd)

Human
Intestinal

Absorption (hia)
Caco-2

Permeability

Blood Brain
Barrier (bbb)
and Blood-

Placenta
Barrier (bpb)

Plasma
Protein

Binding (ppb)
pgp-Inhibitor

p-Glycoprotein
Substrate

(pgp-Substrate)
MDCK

Permeability

S1 2.52 0.008 −4.668 0.218 99.08% 0.087 0.001 1.3 × 10−5

S2 2.442 0.006 −4.584 0.176 99.53% 0.008 0.001 1.3 × 10−5

S3 2.398 0.006 −4.604 0.185 99.73% 0.057 0.003 1.2 × 10−5

S4 2.505 0.006 −4.589 0.165 99.52% 0.069 0.002 1.2 × 10−5

S5 2.243 0.006 −4.581 0.187 96.94% 0.004 0.004 1.3 × 10−5

S6 2.155 0.005 −4.513 0.172 98.12% 0.045 0.004 1.2 × 10−5

S7 2.179 0.005 −4.508 0.161 100% 0.056 0.005 1.2 × 10−5

S8 2.817 0.005 −4.548 0.159 99.99% 0.007 0.002 1.3 × 10−5

S9 2.418 0.006 −4.611 0.16 100% 0.015 0.008 1.2 × 10−5

S10 1.701 0.005 −4.557 0.13 100% 0.33 0.015 1.1 × 10−5

S11 2.964 0.005 −4.539 0.167 99.86% 0.057 0.001 1.3 × 10−5

S12 2.846 0.006 −4.542 0.166 99.94% 0.341 0.002 1.2 × 10−5

S13 2.629 0.005 −4.513 0.077 99.89% 0.717 0.001 1.3 × 10−5

S14 2.854 0.006 −4.539 0.545 100% 0.627 0.001 1.2 × 10−5

The absorption and distribution profile of all the compounds showed efficient HIA,
COCA 2 permeability and MDCK Permeability which represented their potential to pen-
etrate/permeate through cell membranes. Except S11, all the derivatives had efficient
potential to cross BBB and showed CNS effects. As far as its interaction with P glycoprotein
was concerned, excluding S3, all other derivatives were found to have good PGP substrate
properties while S1, S5 and S7 derivatives showed maximum PGP inhibitions whereas
derivative S11 also showed moderate PGP inhibition activity, which proved its capability
to permeate as shown in Table 8.

Table 8. Metabolism and excretion values of selected compounds.

Metabolism Excretion

Codes CYP1A2
Inhibitor

CYP2C19
Inhibitor

CYP2C9
Inhibitor

CYP2D6
Inhibitor

CYP3A4
Inhibitor

CL
(mL/min)

T1/2
(Hours)

S1 0.593 0.287 0.661 0.037 0.674 13.839 0.948
S2 0.851 0.823 0.689 0.421 0.6 7.792 0.89
S3 0.511 0.478 0.148 0.009 0.474 10.232 0.785
S4 0.978 0.904 0.626 0.256 0.883 7.828 0.431
S5 0.987 0.421 0.447 0.64 0.939 12.32 0.912
S6 0.98 0.742 0.512 0.366 0.254 5.519 0.106
S7 0.987 0.421 0.447 0.64 0.939 12.32 0.912
S8 0.963 0.958 0.894 0.947 0.477 5.072 0.657
S9 0.945 0.884 0.867 0.554 0.282 6.894 0.835
S10 0.919 0.946 0.837 0.03 0.055 6.738 0.056
S11 0.703 0.741 0.433 0.944 0.062 17.699 0.799
S12 0.435 0.868 0.759 0.159 0.054 12.063 0.169
S13 0.829 0.636 0.432 0.195 0.558 13.675 0.937
S14 0.976 0.94 0.857 0.498 0.206 1.413 0.813

The metabolism of any drug is an important parameter to understand its behavior
in the body. All derivatives showed CYP inhibition activity of varying degrees. All
compounds had a moderate rate of renal clearance while S2, S5 and S7 were present with
relatively higher rates, and S11 had the highest value of renal clearance shown in Table 9.



Molecules 2023, 28, 4044 11 of 24

Table 9. Medicinal properties and toxicity profile of selected compounds.

Medicinal Properties Toxicity

Synthetic
Accessibility Score

Lipinski
Rule

AMES
Toxicity Carcinogenicity Eye

Corrosion
Eye

Irritation
Respiratory

Toxicity

S1 2.426 Accepted 0.234 0.706 0.007 0.792 0.951
S2 2.408 Accepted 0.103 0.78 0.004 0.303 0.905
S3 2.095 Accepted 0.19 0.828 0.02 0.404 0.516
S4 2.048 Accepted 0.187 0.636 0.581 0.988 0.688
S5 2.269 Accepted 0.083 0.517 0.767 0.99 0.917
S6 2.143 Accepted 0.049 0.708 0.651 0.98 0.622
S7 2.269 Accepted 0.083 0.517 0.767 0.99 0.917
S8 2.394 Accepted 0.638 0.347 0.011 0.952 0.514
S9 2.605 Accepted 0.913 0.272 0.013 0.936 0.633
S10 2.512 Accepted 0.911 0.887 0.004 0.216 0.666
S11 2.555 Accepted 0.724 0.239 0.004 0.018 0.861
S12 3.264 Accepted 0.55 0.608 0.003 0.008 0.713
S13 2.148 Accepted 0.131 0.463 0.051 0.978 0.947
S14 2.345 Accepted 0.632 0.44 0.857 0.988 0.801

Any compound with a high level of toxicity cannot be used as a drug and in this
regard assessment of mutagenic potential is crucial in the development of drug. The results
of toxicity parameters indicated that S9, S10, S11 and S14 have excellent safety profiles in
terms of mutagenicity, but S8 was moderately mutagenic and all other derivatives were
toxic. The compounds S1, S2, S3, S6 and S10 did not show any carcinogenic potential and
were found to be safe. Their safety indicated their appropriateness for drug development
as they do not pose a carcinogenic threat in humans. The compounds S4, S5, S7 and S8
were moderately carcinogenic. Only S5 and S7 derivatives were not corrosive to the eye,
compounds S4, S5, S6, S7, S8 and S9 showed non-irritant behavior to the cornea, which
justified their ocular safety. S6 was found to be moderately eye corrosive, whereas S1, S2
and S3 were found to be moderately irritant. Moreover, S1, S2, S5, S7 and S11 did not
have respiratory toxicity the rest were moderately toxic (Table 10).

Table 10. Various toxicological parameters of selected compounds.

TOX21 Pathway

Compound NR-AR NR-AR-LBD NR-ER Antioxidant Response Element

S1 0.807 0.787 0.6 0.891
S2 0.772 0.121 0.926 0.977
S3 0.381 0.906 0.892 0.91
S4 0.429 0.954 0.964 0.933
S5 0.484 0.973 0.975 0.967
S6 0.005 0.935 0.625 0.84
S7 0.484 0.973 0.975 0.967
S8 0.515 0.439 0.932 0.982
S9 0.141 0.636 0.908 0.974

S10 0.001 0.925 0.447 0.956
S11 0.073 0.049 0.422 0.969
S12 0.002 0.685 0.113 0.953
S13 0.788 0.9 0.981 0.971
S14 0.103 0.963 0.751 0.921

Compounds S1 and S2 did not activate the androgen receptor while S3, S4, S5, S7,
and S8 derivatives showed moderate activity while others may activate androgen receptors.
Only S1 and S11 possessed activity for the ligand binding domain (LBD), S8 and S9 had
moderate potential while the rest of the derivatives had no activity. The compounds S2, S6,
S10 and S11 showed moderate activity for estrogen receptors but the rest of the compounds
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had no activity at all, and none of the compounds under study showed any evidence of
antioxidant potential.

2.7. Molecular Docking Discussion
2.7.1. Binding Interactions of ERBB

The Molecular Operating Environment (MOE) and AutoDock 4.2 were used to inves-
tigate the binding interactions of selected compounds with targeted proteins i.e., ERBB,
VEGFR1, VEGFR-2 and VEGFR3. The MOE software predicted poses that were reliable
and validated on the basis of RMSD values between native poses and regenerated poses,
which motivate us to incorporate binding energies and docking conformations obtained
through the MOE software. Multiple protein kinases were selected in order to evaluate
the inhibitory potential and selectivity of curcumin derivatives against multiple protein
kinases. It was observed that compound S14 had demonstrated the highest selectivity
and inhibitory potential against VEGFR2 and ERBB whereas compound S8 was effective
against VEGFR1 and VEGFR3. The binding energies of curcumin derivatives against all
four targeted proteins are provided in Table 10, whereas the predicted inhibitory constant
value (ki) is provided in a Supplementary File (Table S1). In the main manuscript, the
binding interactions analysis of top ranked conformations of curcumin derivatives against
VEGRF2 and ERBB tyrosine kinase is elaborated, whereas binding interactions analysis
of top ranked curcumin derivatives (S8) against VEGFR1 and VEGFR3 is provided in the
Supplementary File (Figures S1–S10).

The docked conformation of curcumin derivatives exhibited potential molecular inter-
actions against all targeted proteins. Briefly, Compound S11 and S14 were top ranked hits
identified through molecular docking and MD simulations studies. The binding energies
of curcumin derivatives were better than the standard drug irinotecan. Initially, irinotecan
was docked with ERBB and the VEGFR2 protein. The following amino acid residues were
involved in the formation of the complex with the standard drug (ERBB tyrosine kinase):
LYS273, ASP833, VAL704, ARG819, and LEU777. The major binding interactions of the
reference compound, i.e., irinotecan, with the targeted protein (ERBB tyrosine kinase), were
comprised of strong hydrogen bonds. Hydrogen bond interactions were discovered be-
tween the carboxylate group attached to irinotecan’s bipiperidine ring and LYS723, ASP833.
The pink amino acid residues were hydrophilic groups, while the green hydrophobic amino
acid residue (VAL724) formed a Pi-sigma interaction.

The compounds S11 and S14 were involved in different molecular interactions with
the following amino acid residues: PHE834, ALA832, ASP833, LEU771, LEU776, VAL753,
LEU822, and LEU696, CYS721 for S12, and THR768, LYS723, VAL704, CYS721, ASP833,
VAL700, and ARG819 for S14, respectively. The bonding and non-bonding interactions
of S11 and S14 within the active pocket of the ERBB protein included the conventional
hydrogen bond, the carbon–hydrogen bond, Van der Waals forces, and a weak pi-alkyl
bond. The binding interactions revealed that the two strong hydrogen bonds were formed
with VAL 753 and LEU 771. In addition, various carbon–hydrogen bonds were formed with
ALA832, ASP833. Further non-bonding interactions, included Pi–Pi T-shaped interactions
with PHE834. In the same way, the binding interactions of S14 involved two hydrogen
bonds between the acyl group and ASP833, VAL700. The pi–sigma, pi–sulfur, and pi–alkyl
bonds, along with Van der Waals forces, were formed between S14 and LYS723, VAL704,
CYS721 and ARG819. The binding interactions of the reference drug and compounds S11
and S14 are shown in Figure 5.
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pocket of ERBB tyrosine kinase.

2.7.2. Molecular Interactions with VEGFR2

The docked conformation of standard irinotecan and curcumin derivatives revealed
substantial molecular interactions with ERBB and VEGFR2. From the analysis of docking
interactions, it was revealed that the two hydroxyl groups of S11 formed two strong
hydrogen bonds with GLU 885 and HIS 1026, and all other interactions were weak pi–
cations, pi–sulfur, and pi–sigma bonds. The bonding and non-bonding interactions of the
most potent derivative, i.e., S14, involved the following amino acids: VAL848; VAL916;
ALA866; HIS1026; LEU1019; LEU889; ALA866; PHE1047; LYS868; ILE892. The strongest
hydrogen bond among the bonding interactions was established between the oxygen atom
of the acyl group and LYS 868, whereas the second hydrogen bond was created between
the carbon atom and PHE 1047. In addition to these bonds, various pi–alkyl, pi–sigma, and
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Van der Waals forces were also present. The binding interactions of the reference drug and
compounds S11 and S14 are shown in Figure 6.
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2.8. Molecular Dynamics Simulations
2.8.1. MD Simulation Studies of VEGFR2 and Compound S14

The molecular dynamics simulations were performed for evaluation of steadfastness
of protein–ligand complex under accelerated conditions. The top ranked conformations
against each enzyme i.e., VEGFR2 and ERBB were retrieved and subjected to evaluation
of stability patterns. The analytical metrics including RMSD, RMSF, contact map analysis,
interaction timeline and radius of gyration were utilized for interpretation of protein–ligand
complex integrity and stability.
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The MD simulation studies on the VEGFR2-S14 complex revealed stability patterns
for both the apo protein and liganded protein. Concisely, it was notable that the apo
protein was extremely stable with an average RMSD of 1.74 angstroms. The RMSD pattern
for the apo protein became stable and equilibrated after 10 ns of simulations. In terms of
stability pattern of liganded protein, it was observed that liganded protein exhibited modest
fluctuations with an average RMSD value of 2.3 angstroms. The slight rearrangement was
observed during the initial phase of simulations but after 15 ns, RMSD of liganded protein
attained equilibrium and became stable. Moreover, it was notable that ligand remained
sufficiently attached to amino acid residues of the active site and produced contacts with
shorter bond lengths. The data demonstrate the protein and its associated complex had
excellent stability in aqueous media. Figure 7 illustrates the RMSD pattern for the apo and
liganded protein.
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red trajectory is for the protein–ligand complex.

The RMSF analysis of liganded protein was conducted for the determination of residue
wide fluctuations. The amino acid residues of the VEGFR2 protein exhibited minor varia-
tions, especially residues belonging to alpha helix and beta strand were significantly stable.
This was expected as both these portions of proteins are rigid and exhibit compactness.
The most importantly the amino acid residues of active site (140–170) were in contact with
S14 and exhibited fewer fluctuations. The average RMSF value of the targeted protein
was 0.8 angstroms. In addition, amino acid residues belonging to N and C terminals were
slightly less compact with higher fluctuations. Figure 8 shows the RMSF value for each
residue of the VEGF2 protein.

Multiple important molecular interactions were produced by S14 with amino acid
residues of the active site. Specifically, amino acid residues VAL848, ILE888, Leu889, ILE892,
VAL898, Val899, VAL914, VAL916, LEU1019, ILE1044 and PHE1047 were engaged in
hydrophobic interactions. Significant interaction times were observed with LYS868, VAL916
and PHE1047 with interaction times of 60%, 90% and 70%, respectively. Furthermore, two
hydrogen bonds exist between ASP1046 and CYS1045, respectively. The interaction fraction
of ASP1046 was 60% and 10% for CYS1045. Multiple water bridges were also produced
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during simulation studies. The contact map histograms and contact map timeline are
illustrated in Figure 9.
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2.8.2. MD Simulations Analysis of the ERBB–S14 Complex

To study the complex’s molecular dynamics and stability, the ERBB protein’s docked
complex with the best pose of S14 was simulated in an aqueous environment for a 50ns
trajectory under periodic boundary conditions. The sole protein and its complex were
considered an initial point for MD simulation studies. The RMSD value was calculated
for the C alpha atoms and protein–ligand complex (ERBB–S14) in order to investigate the
stability pattern during simulated trajectory. The RMSD pattern of protein and its complex
is presented in Figure 10. The RMSD pattern for c alpha atoms of protein became stable
and equilibrated after 5 ns of simulation. Initial fluctuations were observed in C and N
terminal residues of ERBB which became stable and equilibrated after 5 ns. The average
RMSD value for C alpha atoms was 1.8 angstroms. In contrast, the protein–ligand complex
was exhibiting slight rearrangement inside the active pocket of the targeted protein. The
protein–ligand complex trajectory was stable and equilibrated after 30 ns of simulation but
after that the ligand exhibited rearrangements and produced new contacts with active site
residues. These rearrangements lasted for 10 ns, and after that the ligand again became
stable and the trajectory became equilibrated toward the end of the simulations. On the
basis of these findings, it could be deduced that S14 could be an effective inhibitor of
VEGFR2, whereas there was modest inhibitory potential observed against ERBB. Figure 10
shows the evolution of the RMSD pattern for protein and protein-S14 complex.
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Figure 10. Root mean square deviation (RMSD) of ERBB, and the EGFR–S14 complex as a function
of time. The blue colored trajectory indicates the evolution of RMSD for C alpha atoms, whereas the
red trajectory represents the protein–ligand complex.

The perturbation of each amino acid residue was evaluated through RMSF analysis
over a 50 ns simulated trajectory. Most of the residues were perturbed below 2 angstroms
except amino acid residues ranges from 10–30 and 152 to 160. These residues exhibited
fluctuations up to 4 angstroms. In addition, it was notable that important residues were in
significant contact with S14 indicating the compactness of amino acid residues belonging
to the active site. The average RMSF value for liganded ERBB protein was 1.1 angstroms.
The root mean square fluctuation of liganded protein is illustrated in Figure 11.
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The contact map analysis and buried surface area was also computed through MD
simulations. The important molecular interactions were included hydrophobic and hydro-
gen bonding interactions. The amino acid residues involved in hydrogen bonding was
LYS723 and ARG619 with interaction fraction of 30% and 10% respectively. These residues
were buried by S14 for majority of simulated trajectory. In addition, VAL704, LYS723,
ARG619 and VAL836 were engaged in hydrophobic interactions. The interaction fraction of
following residues was as follows; 20%, 25%, 10% and 10% respectively. Furthermore, water
bridges were also contributing toward stability of protein ligand complex. The contact map
histogram and contact timeline is illustrated in Figure 12.
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2.8.3. The MMGBSA Free Energy Calculations

The molecular docking provide initial binding energy which provide an estimate of
binding affinity between protein and ligand. However, molecular docking is not robust
technique in estimating binding free energies. For efficient prediction of binding affinity,
MMGBSA analysis were performed which take into account all electrostatic, hydrophilic
and hydrophobic interactions and provide cumulative binding free energy [24]. The both
complexes were subjected to MMGBSA analysis and provided in Table 11.

Table 11. MMGBSA free binding energies calculations.

Complex ∆Gbind
(kcal/mol)

∆E H-bond
(kcal/mol)

∆E vdW
(kcal/mol)

∆E coulomb
(kcal/mol)

VEGFR2-S14 −65.4 −2.1 −44.21 −10.76

ERBB–S14 −45.32 −1.4 −28.54 −8.22

The following chemical equation was used to calculate free binding energy calculations [24];

∆Gbind = ∆GSA +∆GSOL + ∆Emm

2.9. SeeSAR Analysis

SeeSAR analysis with the most potent derivative was confirmed for ERBB and VEGFR
by using SeeSAR by BiosolveIT [25], which visually depicts binding affinity. The HYDE
value was calculated, indicating that the green coronas around the atom represent the
atoms involved in positively developing the binding affinity; the higher the contribution,
the larger the corona size. In the same way, the red-colored coronas around atoms indicated
the unfavorable contributions towards binding affinity, and atoms with no significant
involvement are not colored. Figure 13 shows the SeeSAR visualization of the most potent
inhibitors. Although, as evident from the results, most of the atoms in the molecule
contribute favorably to overall binding (indicated by green-colored coronas) in both of the
proteins, only two different structural elements are not contributing favorably (indicated
by red-colored coronas) because of high desolvation energy.
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3. Materials and Methods
3.1. Generation of Pharmacophore Model

The current study developed a pharmacophore model for a protein–ligand complex
using the pharmacophore query editor wizard of the Molecular Operating Environment
(MOE) [26]. The binding interactions of the protein–ligand complex provide initial points
for generating chemical features, which were utilized for developing pharmacophore
models. MOE makes use of several built-in pharmacophore features, including a hydrogen
acceptor (Acc), an anionic atom, a hydrophobic center, an aromatic center (Ar), a cationic
atom, and a hydrogen bond donor (Don) [27]. In the current layout, only important
chemical features, i.e., hydrogen bond acceptor, hydrogen bond donor, and hydrophobic
interactions, were used to develop the pharmacophore model. The PDB ID 4AG8 was
used to retrieve the crystal structure of VEGFR-2 in complex with Axitinib (N-methyl-2-
[[3-[(E)-2-pyridin-2-ylethenyl]-1H-indazol-6-yl]sulfanyl]benzamide). The crystallographic
complex was utilized for the generation of pharmacophore features. Axitinib produced
strong interactions with amino acid residues of VEGFR-2. Important amino acid residues
and pharmacophore features of Axitinib are shown in Figure 14.
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It is crucial to validate the created pharmacophore model by screening the decoy
molecules and known inhibitors of the targeted protein. The PubChem database retrieved
ten known inhibitors of the targeted proteins and tested them against the created pharma-
cophore model.

3.2. Pharmacophore-Based Virtual Screening

Following the generation of a pharmacophore query model, a total of 14 curcumin
derivatives were subjected to screening against the developed model. Only those deriva-
tives that satisfied the pharmacophore features criteria were considered hit molecules.
These models are essential for discovering novel molecules and are also crucial for anti-
target modeling to avoid any adverse effects. In order to validate the generated pharma-
cophore model, a test dataset comprised of ten reported inhibitors of VEGFR2 (including
sorafenib) and ten decoy molecules was constructed and virtually screened against the
constructed pharmacophore model. The validated model was then subjected to pharma-
cophore based screening of curcumin derivatives. The Pharmacophore-based screening is
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superior to docking when structural information about the target protein or ligand’s active
conformation is present. Finally, the hit molecules obtained via pharmacophore-based
virtual screening were processed further for detailed in-silico investigation.

3.3. Density Functional Theory (DFTs)

The geometric parameters and structural geometries of curcumin derivatives were
evaluated/optimized through density functional theory calculations. The density func-
tional theory (DFTs) calculations were performed using the Guassian09W program [28].
The accurate assumptions and structural convergence were achieved through B3LYP func-
tional correlation, and 3-21G as a basis set [29]. The 3-21G was opted as a basis set which
offered multiple functions including s and p functions for accurate prediction of electronic
properties of compounds. Moreover, 3-21G is commonly employed for fast and accurate
assumptions on electron density of compounds. Using the proposed approach, the com-
prehensive reactivity profile of each compound was evaluated through various matrices
including frontier molecular orbitals (FMO) analysis, global and local reactivity descriptor
and electrostatic potential map. The resultant output files were analyzed through Guass
View 6 [30].

3.4. Filtration for Drug-Likeness and Virtual Screening

The safety profile of a drug candidate is paramount in determining the fate of drug
discovery and the drug development process. A drug that needs to be administered in
the human body must have sufficient absorption, distribution, metabolism, and excre-
tion properties. The in-silico ADMET is a crucial step in the drug discovery process that
determines the safety and toxic profile of a drug candidate. The comprehensive phar-
macokinetic and safety profiles of selected derivatives were determined via an in-silico
approach. The online web server tool, ADMET Lab 2.0, was utilized to predict various
physicochemical properties, i.e., ADMET (absorption, distribution, metabolism, excretion,
and toxicity) properties [31].

3.5. Molecular Docking Studies

The molecular docking studies were performed on the optimized structures of cur-
cumin derivatives obtained from DFT studies. Molecular Operating Environment (MOE)
and AutoDock 4.0 were used to perform molecular docking experiments [26,32,33]. The
two docking programs were employed in order to enhance the accuracy of the docking
protocol. Both software packages were evaluated for their dependability and ability to
regenerate docked conformations, and the program that performed best was chosen for
additional molecular docking research. The re-docking of all the compounds was carried
out using MOE because of its high reliability. For molecular docking studies, two steps
are mandatory, i.e., ligand and protein preparations. Each ligand underwent a superficial
energy minimization process to begin the docking process using ChemDraw 3D software.
Following that, the atomic charges and the potential energy were added. Additionally,
various properties of the ligands were measured using the MMFF94x force field [30], and
the ligand library was then saved in the required format (MDB). The targeted protein
structures were downloaded from the RCSB protein data bank (www.rcsb.com accessed on
1 September 2022) with PDB IDs: 3LMG (ERBB tyrosine kinase), 3HNG (VEGFR1 kinase),
4BSJ (VEGFR3 kinase) and 4AG8 (VEGFR2 kinase) [34]. The first step in protein preparation
is adding polar hydrogen atoms to the active sites, followed by potential energy fixation.
The protein active pocket is then identified using MOE’s built-in site finder, followed by
chain type selection. Finally, the two critical components (ligand and protein) are ready
to commence the docking process. For each ligand, 30 poses were generated to identify
the most stable configuration of the complex. The current study has utilized the London
dG scoring function to analyze the interaction efficiency and adjusted it twice using tri-
angular matcher methods. At the end of the process, important docking interaction data,
i.e., receptor interactions, associated amino-acid residues, binding energy, and type of

www.rcsb.com
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interactions, were recorded [25]. The Biovia Discovery Studio Visualizer (2020) and the
MOE’s inbuilt visualization tool were used to analyze all docking results. The docking
results were validated based on the RMSD value, i.e., any pose with low binding energy
and an RMSD value of less than 2.0 was considered the best pose.

3.6. Molecular Dynamics Simulation Studies

The molecular dynamic study of the best-docked conformation was performed using
Desmond software on a CUDA-accelerated GPU system having a 16 core processor and
64 GB Ram memory. A maestro graphical user interface was used to visualize the results of
MD simulations [25]. MD simulations were done to determine how binding works and
how stable the protein–ligand complex is under fast conditions. Using the OPLS3 forcefield,
the best-docked protein–ligand complexes were chosen, and topology files were made for
both the protein and the ligand [35]. By adding NaCl charges at a standard concentration
of 0.15 M, the system was brought back to a neutral state. The energy gradient was made
as steep as possible to eliminate any close contact between atoms. The system was brought
into balance in the NVT ensemble for 500,000 steps, then in the NPT ensemble for another
500,000 steps. After that, the simulation was run for 50 ns with periodic boundaries [36].
The PME method [37] was used to figure out the binding energy, Van der Waals forces, and
electrostatic interactions. The SeeSAR analysis was also presented in the current study to
evaluate the binding affinities of protein–ligand complexes [38].

3.7. Compound Similarity Index

The present work also focused on determining the similarity index between FDA-
approved Axitinib and top hits obtained via pharmacophore-based virtual screening. Simi-
larity index and structural activity relationship drug design approaches are based on the
assumption that molecules with high similarity index compounds have similar properties
and similar biological activities. In this context, the current study has investigated the
similarity index between Axitinib with known biological activity against a set of curcumin
derivatives. The similarity index was quantified using two different similarity coefficients,
i.e., the Tanimoto and Dice index [39].

4. Conclusions

Comprehensive in-silico investigations on previously reported anti-cancer derivatives
were performed in the current study to discover potent hits of ERBB and VEGFR-2. Initially,
pharmacophore-based virtual screening was conducted. Afterward, the optimization and
frequency calculations of selected compounds were carried out using DFT studies, and the
optimized structures were further subjected to molecular docking studies. The molecular
dynamic simulations were conducted further to support the findings of molecular docking.
The compounds S11 and S14 were identified as potent ERBB and VEGFR2 inhibitors
whereas compound S8 was predicted as a potential inhibitor of VEGFR1 and VEGFR3. The
ADMET properties, MD simulations, and SeeSAR analysis confirmed the study’s findings,
demonstrating that the selected compounds can be used for further experimental validation.
Based on these findings, it is concluded that curcumin derivatives have a strong inhibitory
potential against VEGFR1, VEGFR3, VEGFR2 and the ERBB protein, and that they can be
used to treat cancer and its associated malignancies. As the current study is based on pure
computational investigations, further in-vitro and in-vivo studies are recommended to
develop safe and effective inhibitors of cancer proteins.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28104044/s1, Figure S1–S5: 3D and 2D interaction of S1–S14
within the active pocket of VEGFR-1 tyrosine kinase; Figure S6–S10: 3D and 2D interaction of
S1–S14 within the active pocket of VEGFR-3 tyrosine kinase; Table S1: Predicted inhibitory con-
stant (ki) [40,41].
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