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Abstract: Crystalline/crystalline blends of polymer have shown advantages in the preparation of
new polymeric materials. However, the regulation of co-crystallization in a blend is still full of
challenges due to the preferential self-crystallization driven by thermodynamics. Here, an inclusion
complex approach is proposed to facilitate the co-crystallization between crystalline polymers,
because the crystallization process displays a prominent kinetics advantage when polymer chains
are released from the inclusion complex. Poly(butylene succinate) (PBS), poly(butylene adipate)
(PBA) and urea are chosen to form co-inclusion complexes, where PBS and PBA chains play as
isolated guest molecules and urea molecules construct the host channel framework. The coalesced
PBS/PBA blends are obtained by fast removing the urea framework and systematically investigated
by differential scanning calorimetry, X-ray diffraction, proton nuclear magnetic resonance and Fourier
transformation infrared spectrometry. It is demonstrated that PBA chains are co-crystallized into PBS
extended-chain crystals in the coalesced blends, while such a phenomenon has not been detected
in simply co-solution-blended samples. Though PBA chains could not be totally accommodated in
the PBS extended-chain crystals, their co-crystallized content increases with the initial feeding ratio
of PBA. Consequently, the melting point of the PBS extended-chain crystal gradually declines from
134.3 ◦C to 124.2 ◦C with an increasing PBA content. The PBA chains playing as defects mainly induce
lattice expansion along the a-axis. In addition, when the co-crystals are soaked in tetrahydrofuran,
some of the PBA chains are extracted out, leading to damage to the correlative PBS extended-chain
crystals. This study shows that co-inclusion complexation with small molecules could be an effective
way to promote co-crystallization behavior in polymer blends.

Keywords: co-crystal; polyester; blend; inclusion complex; thermal property

1. Introduction

Blending is a popular way to regulate polymer properties and, thus, optimize ma-
terials with desired performance. Currently, a kind of common polymer blend is a crys-
talline/crystalline system, which consists of two components with different melting and
crystallization temperatures, leading to diversified crystallization behaviors and crys-
tal structures [1–3]. Meanwhile, the phase separation induced by the raising of mixing
free energy and self-crystallization usually occurs, which significantly hinders the co-
crystallization behavior in the blend. So, the manipulation of the property and performance
of the crystalline/crystalline polymer blends is still facing great difficulties and the achieve-
ment of co-crystallization in the blends is still a challenge.

To realize effective co-crystallization in the polymer blends, some strategies have been
proposed and verified. Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
and poly(3-hydroxybutyrate-co-3-hydroxypropionate) (PHBP) with the same crystalliz-
able poly(3-hydroxybutyrate) (PHB) composition were confirmed to successfully gain
co-crystallization [4], where PHBV chains could be incorporated into the thin PHBP crys-
tals. Blends of homopolymer and its block copolymer with other compositions could be
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used to obtain the co-crystal between them [5–7], such as a blend of polyethylene (PE) and
poly(vinyl cyclohexane)-b-polyethylene-b-poly(vinyl cyclohexane) (PVCH-PE-PVCH) [8]
and a blend of poly(ethylene oxide) (PEO) and poly(ethylene oxide)-b-polybutadiene (PEO-
PB) [9]. Additionally, pursuing the co-crystallization in a blend of isotopic polymers has
also been carried out. An isotopic blend system consisting of a hydrogenated polymer
and the deuterated counterpart could be employed to easily attain co-crystals in the whole
composition [10–13], for example, a blend of hydrogenated PE (H-PE) and deuterated PE
(D-PE) [14]. Even though the deuterated species shows a higher crystallization rate than the
hydrogenated species [15], the similar chain structures provide thermodynamic stability
and lead to the formation of co-crystals. Nevertheless, for the traditional all-hydrogenated
polymer blends, the differentiation between components is much more significant. Conse-
quently, co-crystallization is essentially difficult. Only limited cases of co-crystallization in
homopolymer blends have been reported. The blends of polyamide 6 (PA6) and polyamide
4,10 (PA410) could form co-crystals only when the content of PA6 was lower than 20% [16].
In the blends of poly(butylene succinate) (PBS) and poly(butylene fumarate) (PBF), isomor-
phism could only be found in PBF-rich blends [17]. Forming of co-crystal in a polymer
blend requires two aspects of good miscibility and kinetics advantage, which, however,
usually could not be met during the crystallization from melt or solution.

The inclusion complex is a specified host/guest supramolecular structure in which
polymer chains are isolatedly located as guest molecules in the channels of the host
molecule [18,19]. When the host frameworks are removed, the as-released polymer
chains will coalesce fast. Considering the indiscriminability between different poly-
mer chains in the frameworks, co-inclusion complexation has been frequently used as
a novel way to obtain polymer blends with particular characteristics [20]. Because of
the good dispersion of polymer chains in the co-inclusion complex and the kinetics ad-
vantage during coalescence, many temporary miscible polymer blends were achieved
even though they were immiscible in thermodynamics and could not be prepared via
common process, including poly(ε-caprolactone) (PCL)/poly(L-lactic acid) (PLLA) [21],
polycarbonate (PC)/poly(methyl methacrylate) (PMMA) [22], atactic poly(3-hydroxy bu-
tyrate) (aPHB)/PCL [23], poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephtha-
late) (PET) [24], PC/polystyrene (PS) [25], PC/PMMA/poly(vinyl acetate) (PVAc) [26] and
PC/PET [27]. These as-coalesced blends displayed a single glass transition temperature (Tg)
during the first heating measurement and recovered to two distinct Tgs in the follow-up
measurement.

In our previous study, the co-inclusion complex of PLLA and poly(D-lactic acid) with
thiourea was prepared, and it was found that the formation of stereocomplex crystals
of PLLA/PDLA was significantly promoted when the guest chains were released and
coalesced [28]. Thus, it is proposed that the formation of the co-crystal would be enhanced
in a crystalline/crystalline polymer blend if the co-inclusion complexation approach is
used. In this work, poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) were
chosen as the model crystalline homopolymers to form co-inclusion complexes with urea.
After washing away the urea, the PBS and PBA chains were released to coalesce, and the
thermal properties and crystal structures of the coalesced PBS/PBA blends (PBS as the
majority component) were systematically investigated. It is clearly demonstrated that the
PBA chains were promoted to accommodate the PBS crystalline structure and impacted the
properties of the crystal structure.

2. Results and Discussion

Conventional DSC investigation. A non-isothermal DSC measurement can reveal
the crystal information and crystallization behavior of components in the polymer blends.
As shown in Figure 1A for the simply-blended PBS/PBA group, neat PBS and neat PBA
display melt-crystallization temperatures (Tcs) at 80.9 ◦C and 25.0 ◦C, respectively. Thus,
the exothermic Tcs at around 80 ◦C in DSC curves ii–v were originated from the PBS
components in the simply-blended samples; and those Tcs, at around 19 ◦C in curves
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iii–v, were ascribed to the PBA components. The decline in Tc of PBA was due to the
crystallization confinement caused by the PBS crystals [29]. The crystallization behavior of
PBA in the 90/10 blend was too weak to be detected. The additional crystallization shoulder
at the high-temperature side in the 70/30 and 60/40 blends could be stemmed from the
fractionation crystallization of the PBA [2], indicating the reduction of confinement.
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Figure 1. DSC scans of PBS, PBA and their simply-blended samples during the melt-cooling
(A) and subsequent heating (B) processes at a constant rate of 10 ◦C/min, and (i)–(vi) indicate
PBS, PBS/PBA-90/10, PBS/PBA-80/20, PBS/PBA-70/30, PBS/PBA-60/40 and PBA, respectively.

During the subsequent heating process (Figure 1B), the PBS components exhibited
almost steady melting points (Tms) at about 114 ◦C, which was independent of the blend
composition and close to that of neat PBS (114.8 ◦C). The PBA components in the blends
displayed Tms within 50–60 ◦C, which were slightly lower than that of the neat PBA due to
the confinement effect. So, both PBS and PBA should, respectively, form their own crystals
in the blends. The crystal structure of PBS was hardly disturbed after being simply blended
with the minority PBA, which was further confirmed in the X-ray investigation section.

The DSC curves of the as-prepared inclusion complex in Figure S1 just displayed an
endothermic Tm at around 143 ◦C each, which were the same as the previously reported Tms
of polyester/urea inclusion complexes [30]. There was not any melting trace of either PBS
or PBA crystals. Thus, all polyester chains were well accommodated in the urea channels
to form an inclusion complex, independent of the PBS/PBA ratio. After fast-washing the
inclusion complexes with deionized water, the coalesced blends of PBS/PBA were obtained.
Their thermal properties were investigated by DSC (Figure 2). The coalesced PBS crystals
showed a Tm at 134.0 ◦C, which was significantly higher than the raw PBS and could be
ascribed to the extended-chain crystals [30]. When some PBA was involved, the Tm of
the PBS crystal dropped gradually in the coalesced PBS/PBA-90/10 (132.8 ◦C) and the
coalesced PBS/PBA-80/20 (131.9 ◦C). With an increased content of PBA, the depression of
Tm became more obvious. The coalesced crystals of PBS/PBA-70/30 and PBS/PBA-60/40
even displayed Tms at 126.1 ◦C and 124.0 ◦C, respectively, together with an apparent
shoulder of 114 ◦C, which was assigned to the common lamellar crystals of PBS. That was,
the increase of PBA not only lowered the Tm of the PBS extended-chain crystals but also
led to the formation of lamellar crystals of PBS.
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indicate PBS, PBS/PBA-90/10, PBS/PBA-80/20, PBS/PBA-70/30 and PBS/PBA-60/40, respectively.

The DSC curves iii–v in Figure 2 all show a second lower Tm range of ~50–60 ◦C, which
can be assigned to the melting of the PBA crystals. However, curve ii does not, indicating
the absence of PBA crystals in the coalesced PBS/PBA-90/10 sample. Compared with the
simply-blended samples (cf. Figure 1B), the lower melting enthalpy (∆Hm) demonstrated
the remarkable depressing formation of the PBA crystal (Figure S2). There are two possible
reasons for the decrease in PBA crystal content in the coalesced samples. (1) The PBA
chains suffered stronger confinement from the surrounding PBS crystals, and (2) some PBA
chains were co-crystallized into the PBS crystals. In the former case, the space between the
PBS crystals was so small that the mobility of the PBA chains was restricted from forming
crystals after coalescence. When the feeding content of the PBA was more than 10 mol%,
the space between the crystals, after PBS coalescing, became larger, resulting in enough
space for some PBA to crystallize.

Considering the crystallization kinetics advantage of released chains from the inclusion
complex [31], the aggregation of the PBA chains for self-crystallization would be hindered.
However, such a kinetics-advanced process could also benefit the retention of PBA chains
in the PBS crystals, i.e., the formation of co-crystallization.

To confirm the above phenomena, the coalesced samples were repeatedly prepared
and investigated four times. The data of Tm and the ∆Hm were processed and plotted
in Figure 3. The Tm and normalized the ∆Hm of the PBS crystals respectively decreased
from 134.3 ◦C and 125.7 J/g to 124.2 ◦C and 111.3 J/g in the coalesced sample of PBS/PBA-
60/40, demonstrating that the increasing PBA chains were incorporated as defects in the
PBS crystals. In addition, the formation of lamellar crystals of PBS, corresponding to the
shoulder peak at ~114 ◦C, also contributed to the decrease in the ∆Hm.
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Crystalline structure analysis. X-ray diffractograms measured at room temperature
(i.e., 26 ◦C) of the simply-blended samples are shown in Figure 4A. The distinct diffraction
peaks at 2θ = 8.99◦, 10.04◦ and 10.38◦ originate from the (020), (021) and (110) planes of PBS,
respectively. The diffraction peak appearing at 2θ = 9.80◦, indicated by a black arrow in the
blends with a high PBA content, is ascribed to the (110) plane of PBA [2]. The positions
of all diffraction peaks are unchanged when varying the PBS/PBA ratio, revealing the
separate crystallization without co-crystallization.
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To eliminate the overlapping of the PBA diffraction signal on PBS, the diffractograms of
the simply-blended samples were measured at 70 ◦C (Figure 4B), at which temperature the
crystals of the PBA component had been melted. The diffraction peaks of the PBS all shifted
toward a low-2θ direction, resulting from the thermal expansion of the crystallographic
planes at 70 ◦C in comparison to 26 ◦C [32]. However, the positions of the diffraction
peaks of PBS still remain unchanged, with respect to the PBS/PBA ratio. Therefore, it was
further confirmed that the PBA chains were not incorporated into the PBS crystals in the
simply-blended samples.

Figure 5A shows the X-ray diffractograms of the coalesced blends measured at
26 ◦C. The apparent profiles seemed different from Figure 4A, which could be due to
the broadening effect of the diffraction peaks for samples with smaller crystallite sizes. The
shifting of peak position at 2θ = 10.04◦ in the profiles of the coalesced PBS/PBA-80/20,
PBS/PBA-70/30 and PBS/PBA-60/40 should be originated from the overlapping effect of
the PBA crystals.

To eliminate the overlapping effect from the PBA crystals, diffractograms of the
coalesced blends were measured at 70 ◦C (Figure 5B). It was found that the peak positions
of the (020) and (021) planes did not change after some PBA chains were incorporated into
the PBS crystals (seen in the DSC investigation section). However, the diffraction peak
shape of the (110) plane changed much obviously. To check whether the location of the (110)
plane shifted or not, the 2nd derivatives of the diffractograms were figured out (Figure 6).
The peak location of the (110) plane in the 2nd derivatives shifted from 2θ = 10.38◦ to 10.36◦,
revealing that the lattice expansion of the PBS crystals was along the [110] direction after it
co-crystallized with the PBA. In combination with the unchanged positions of the (020) and
(021) planes in all coalesced blends, it was reasonable to suggest that the co-crystallized
PBA chains displayed as defects in the PBS crystals and contributed mainly to the lattice
expansion along the a-axis.
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Figure 6. The 2nd derivatives of Wide angle X-ray diffractograms of coalesced PBS/PBA samples
at 70 ◦C. (i)–(v) indicate PBS, PBS/PBA-90/10, PBS/PBA-80/20, PBS/PBA-70/30 and PBS/PBA-
60/40, respectively.

Soaking investigation. THF is a good solvent for PBA but a bad solvent for PBS. So,
the coalesced blends were soaked in THF long enough (e.g., 24 h) to remove the PBA
components as much as possible, the remaining structures were separated and dried in a
vacuum oven at room temperature for 48 h for further measurement. The 1H NMR spectra
of the remaining structures were employed to detect the chemical compositions. As shown
in Figure 7, the characteristic nuclear magnetic resonance peak of the PBA at a chemical
shift of 2.33 ppm still existed [33]. The mole ratios of the PBA/PBS in the THF-soaked
blends were calculated based on the integrated areas of the two peaks at 2.33 ppm and
2.63 ppm, which increased with the initial feeding content of PBA, though much lower
(Table 1). Consequently, the PBA chains were certainly confirmed to co-crystallize with PBS
in the coalesced blends.
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Figure 7. The chemical structures of PBA and PBS (A) and the 1H-NMR spectra of coalesced
PBS/PBA-90/10 (B), PBS/PBA-80/20 (C), PBS/PBA-70/30 (D) and PBS/PBA-60/40 (E).

Table 1. The mole ratios of PBA/PBS in the coalesced blends before and after THF soaking treatment.

Feeding (before) 1H-NMR (after)

10/90 3.4/96.6
20/80 3.7/96.3
30/70 4.0/96.0
40/60 6.1/93.9

The DSC investigation of the coalesced PBS/PBA blends after soaking was also carried
out. As shown in Figure 8, no endothermic trace of PBA was detected and the melting
signal of the PBS lamellar crystals at ~114 ◦C became much more apparent in comparison
with the as-coalesced samples (cf. Figure 2). So, the lamellar crystals of PBS increased
after the THF soaking treatment. To quantitatively evaluate the change of PBS lamellar
crystal, the Lorentz peak decoupling process was used to fit the DSC curve to obtain the
separate enthalpy (∆Hm,l), as shown in Figure S3. The values of the ∆Hm,l are tabulated
in Table 2. It was clear that the ∆Hm,l increased after soaking, for example, the ∆Hm,l of
the coalesced-PBS/PBA-60/40 was raised by ~32% (from 23.8 J/g to 31.5 J/g). The only
plausible explanation for the increasing PBS lamellar crystal is that some PBS extended-
chain crystals were destroyed and re-crystallized into lamellar crystals when part of the
PBA chains, accommodated in the PBS extended-chain crystals, were extracted out during
soaking in THF.

Table 2. PBS lamellar crystals proportion and Tm of co-crystals of coalesced PBS/PBA blends before
and after being soaked in THF.

PBS/PBA
PBS Lamellar Crystal Proportion (%) Tm of Co-Crystal (◦C)

before after before after

90/10 10.9 12.3 132.8 132.9
80/20 18.0 21.9 131.9 132.2
70/30 21.8 23.1 126.1 129.4
60/40 23.8 31.5 124.0 128.4
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Figure 8. DSC heating curves of coalesced PBS/PBA samples at a rate of 10 ◦C/min after being
soaked in THF. (i)–(iv) indicate PBS/PBA-90/10, PBS/PBA-80/20, PBS/PBA-70/30 and PBS/PBA-
60/40, respectively.

In addition, the Tm of the PBS extended-chain crystal increased by 0.1–4.4 ◦C after
soaking (seen in Table 2), which meant that some of the extended-chain crystals with lower
melting temperatures (e.g., containing a more defective PBA chain) had been damaged. The
released PBS chains crystallized in the lamellar crystals and the released PBA chains were
washed by the THF. The higher increasing degree of Tm of the PBS extended-chain crystals
indicated the increased removal of the less stable extended-chain crystals, corresponding
to the formation of extra PBS lamellar crystals. Considering the damage of PBS/PBA
co-crystals during the soaking in THF, it is necessary to emphasize that the PBA content co-
crystallized in as-coalesced PBS extended-chain crystals should be higher than the results
shown in Table 1.

Methylamine Etching Experiment. Methylamine (MA) is active with polyesters and
has the ability to clip the polyester chain structure because it can attack the carbonyl carbon
atoms in the polyester chain. MA molecules convert the ester bond into an amide bond,
thereby severing the molecular chain [34]. So, MA has been frequently used to remove the
amorphous region for a better investigation of the crystalline structure and the properties
of polyester [35,36]. Here, the coalesced PBS/PBA blends were etched with MA vapor at
room temperature for an optimized time of 48 h. With such a long etching time, no separate
PBA was left. The residual samples were washed, dried and then characterized by FTIR.
As shown in Figure 9, the etched PBS showed a characteristic stretching vibration band
of the crystalline carbonyl group (C=O) at 1719 cm–1. The absence of an amorphous C=O
signal demonstrated that the sample had been etched sufficiently.

The spectrum of the coalesced PBS/PBA-90/10 after etching was almost the same as
the etched PBS (Figure 9A) but showed slightly stronger absorption at the high-wavenumber
side shoulder of the band. With the increase of the initial feeding ratio of the PBA, the
signal of the shoulder became more apparent (Figure 9B–D). To obtain details, the differ-
ential spectra between the etched PBS/PBA and etched PBS were calculated. It was clear
that a band at ~1736 cm–1 grew with the initial PBA content, which was close to that of
C=O stretching vibrations of the amorphous PBA at 1735 cm–1. It was impossible for the
existence of a free amorphous PBA after the MA etching. So, the remaining PBA could
only locate the PBS crystalline structure, that is, the PBA chains were co-crystallized with
the PBS. The slight shift of the PBA band might be due to the change in the surrounding
chemical environment from the amorphous PBA (for the neat sample) to the crystalline
PBS (for the coalesced sample).
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Figure 9. FTIR spectra of the coalesced PBS and PBS/PBA samples in the wavenumber range of
1780–1680 cm–1 after being etched by methylamine vapor for 48 h and corresponding differential
spectra (grey dash line) between etched PBS (black dash dot lines) and PBS/PBA samples (blue solid
lines). The blue solid lines in (A–D) indicate PBS/PBA-90/10, PBS/PBA-80/20, PBS/PBA-70/30
and PBS/PBA-60/40 after etching, respectively. The spectrum of amorphous PBA (green dot line) is
inserted in (D) for comparison.

3. Experimental

Materials. The Poly(butylene succinate) (PBS) was supplied by Xinjiang Blue Ridge
Tunhe Sci.& Tech. Co. in Changji City, China and the Poly(butylene adipate) (PBA) was
prepared through a two-step reaction of esterification and polycondensation in a melt state
in the laboratory. Chloroform (AR grade), methanol (AR grade), tetrahydrofuran (THF, AR
grade), hexafluoroisopropanol (HFIP, AR grade) and methylamine (40% aqueous solution)
were all purchased from Shanghai Aladdin Reagent Co. in Shanghai City, China.

Both PBS and PBA were purified through a general procedure before being used.
Polyester was first dissolved in chloroform to form a 5 wt% solution, then the solution
was centrifuged at a rate of 10,000× g rpm for 20 min to remove any impurity. The
clear solution was separated and precipitated with an excess amount of cold methanol,
and the precipitates were collected and dried in a vacuum oven at 50 ◦C for 24 h. The
viscosity-average molecular weights (Mη) of PBS are determined as 89.0 kg/mol and the
number-average molecular weights (Mn) of PBA are determined as 38.0 kg/mol.

Preparation of polyester/urea inclusion complex. The solution for electrospinning
was obtained by dissolving the PBS and PBA with different mole ratios and the urea
together in HFIP with a total polyester concentration of 5% (w/v). The mole ratios of the
urea to the repeated units of PBS and PBA were 0.83:0.17 and 0.85:0.15, respectively [30].
The electrospinneret was connected to a positive power of 15 kV and the receiver was
connected to a negative voltage of −1.5 kV. The inner diameter of the spinneret was
0.6 mm and the distance between the spinneret and receiver was optimally chosen as
18 cm. The as-electrospun PBS/PBA/urea nanofiber mats were heated to 120 ◦C at a rate of
10 ◦C/min and held for 1 min to obtain their inclusion complexes.
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Coalescence of polyester from inclusion complex. The inclusion complex samples
were soaked in a large amount of deionized water and stirred at room temperature for 24 h
to remove the urea. Then the coalesced PBS/PBA samples were dried in a vacuum oven at
room temperature for 48 h before use.

Simply-blended PBS/PBA. The controlled samples for comparison were obtained
through a solution-mixing process. The PBS and PBA were dissolved in HFIP at a con-
centration of 5% (w/v) with different proportions. The solutions were stirred at room
temperature for 48 h, and then the solvent was evaporated to obtain the simply-blended
PBS/PBA samples.

Differential scanning calorimeter (DSC) measurement. The thermal properties of the
samples were measured on a NETZSCH 204F1 differential scanning calorimeter (DSC)
equipped with an intercooler system under a nitrogen atmosphere. The instrument was
calibrated with indium standard before measurement and operated with a constant flow
(40 mL/min) of ultrapure nitrogen gas. All the samples were encapsulated in aluminum
DSC pans, and each sample weighed about 5.0 mg.

Fourier transformation infrared spectrometer (FTIR) measurement. The samples were
ground into a fine powder, together with potassium bromide, in a mortar and placed
into a powder tablet machine to form tablets. Spectra were recorded on a Bruker Hy-
perion spectrometer by averaging signals over 32 scans in the wavenumber range of
4000−800 cm−1.

Wide angle X-ray diffractometer (WAXD) measurement. Profiles of the polyester
samples were in-situ measured on a Rigaku 007HF diffractometer using a Mo Kα radiation
source (λ = 0.7093 Å). The samples were raised to the target temperature at a rate of
10 ◦C/min and held for 3 min before testing. Data were collected in the 2θ interval from 5◦

to 25◦ with a scanning rate of 2◦/min and a scanning step of 0.01◦.
Proton nuclear magnetic resonance (1H NMR) measurement. The 1H NMR spectra of

samples were measured on JNM-ECA 600M with chloroform-d (CDCl3) as the solvent and
tetramethylsilane (TMS) as the standard.

4. Conclusions

In this study, crystalline/crystalline polymer blends of PBS/PBA were fabricated
through an approach of co-inclusion complexation with urea molecules and investigated
using DSC, WAXD, NMR and FTIR. It is demonstrated that the PBA chains were co-
crystallized into PBS extended-chain crystals in the coalesced blends and the co-crystallized
content increases with the initial blending ratio of the PBA. The PBA chains playing as
defects mainly induced lattice expansion along the a-axis and the melting point of the PBS
extended-chain crystal gradually declined from 134.3 ◦C to 124.2 ◦C with increasing the
PBA content. In addition, when the co-crystals were soaked in tetrahydrofuran, some of the
PBA chains were extracted out, leading to the damage of the correlative PBS extended-chain
crystals. This study shows that co-inclusion complexation with small molecules could be
an effective way to promote co-crystallization in polymer blends.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28104091/s1, Figure S1: DSC heating curves of PBS/PBA/
urea-IC at a rate of 10 ◦C/min. (i)–(v) indicate PBS, PBS/PBA-90/10, PBS/PBA-80/20, PBS/PBA-
70/30 and PBS/PBA-60/40, respectively; Figure S2: DSC heating curves of simply-blended PBS/PBA
(dash lines) and coalesced PBS/PBA (solid lines) blends after being cooled to −30 ◦C form 90 ◦C
(A) and the corresponding enthalpy values and their ratios (B). (i)–(iii) indicate PBS/PBA-80/20,
PBS/PBA-70/30 and PBS/PBA-60/40, respectively; Figure S3: Lorentz peak decoupling of DSC
curves coalesced PBS/PBA blends before (A) and after (B) being soaked in THF. The enthalpy of
PBS lamellar crystals is shadowed with blue. (i)–(iv) indicate the PBS/PBA-90/10, PBS/PBA-80/20,
PBS/PBA-70/30 and PBS/PBA-60/40 samples, respectively.
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