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Abstract: Glutamic acid is a non-essential amino acid involved in multiple metabolic pathways. Of
high importance is its relationship with glutamine, an essential fuel for cancer cell development.
Compounds that can modify glutamine or glutamic acid behaviour in cancer cells have resulted
in attractive anticancer therapeutic alternatives. Based on this idea, we theoretically formulated
123 glutamic acid derivatives using Biovia Draw. Suitable candidates for our research were selected
among them. For this, online platforms and programs were used to describe specific properties and
their behaviour in the human organism. Nine compounds proved to have suitable or easy to optimise
properties. The selected compounds showed cytotoxicity against breast adenocarcinoma, lung cancer
cell lines, colon carcinoma, and T cells from acute leukaemia. Compound 2Ba5 exhibited the lowest
toxicity, and derivative 4Db6 exhibited the most intense bioactivity. Molecular docking studies were
also performed. The binding site of the 4Db6 compound in the glutamine synthetase structure was
determined, with the D subunit and cluster 1 being the most promising. In conclusion, glutamic acid
is an amino acid that can be manipulated very easily. Therefore, molecules derived from its structure
have great potential to become innovative drugs, and further research on these will be conducted.

Keywords: glutamic acid; glutamine; anti-tumour potential; anti-cancer effect; molecular docking;
computational methods

1. Introduction

Throughout history, cancer has been a major health problem. It has been shown that
there is a positive correlation between cancer incidence and age [1–3]. The individual
risk of cancer is also influenced by family history, genetic susceptibility or behaviour,
and exposure to carcinogenic factors [4]. Furthermore, the Krebs cycle and amino acids
are proven to significantly affect cancer metabolism. Thus, interfering with amino acid
metabolic pathways is an active area of study in cancer metabolism [5].

Amino acids are essential for cancer development because they can function as op-
portunistic fuel sources for cells [5]. Cancer cells use multiple strategies to obtain amino
acids [6]. Higher-grade cancer cells must be able to supply additional metabolites for bioen-
ergy and synthesise the necessary biosynthetic precursors of proteins, nucleic acids, and
membrane lipids to grow substantially [7]. In cancer cells, glutamine is the major amino
acid that serves as an anaplerosis metabolite and drives the tricarboxylic acid (TCA) cycle
to sustain mitochondrial ATP for energy production [5]. Glutamine is the most abundant
amino acid in plasma. The majority of circulating glutamine is produced in muscles and,
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additionally, in the lungs [8]. However, it has been observed that a reduced exogenous
supply of glutamine can impair malignant cells’ survival or tumorigenic potential [6].

Glutamine is a versatile biosynthetic substrate for carbon and nitrogen atoms to gener-
ate important precursors for macromolecule biosynthesis [9]. It is the nitrogen donor for the
biosynthesis of purines, pyrimidines, nicotinamide adenine dinucleotide, asparagine, and
hexosamines via its terminal amide group. A higher expression of enzymes that mediate
nucleotide synthesis from glutamine positively correlates with increased proliferation in
tumours [10]. Glutamine also drives the uptake of essential amino acids, helps recycle
excessive ammonia and glutamate, and activates the mammalian target of rapamycin
(mTOR) that is involved in gene transcription and intracellular signalling [8–10]. In this
regard, compounds that interfere with glutamine metabolism have shown therapeutic
potential in preclinical studies by disrupting these growth-promoting processes [9]. In
addition to providing building blocks for cell growth, glutamine metabolism plays a critical
role in maintaining cellular redox homeostasis, as glutamate is a precursor for glutathione
(GSH) [8,11]. GSH is used to maintain redox homeostasis within the cell and to protect it
from oxidative damage [12]. Because excessive free radicals lead to DNA damage, lipid
peroxidation, and protein denaturation, tumour cells mitigate the excess of free radicals
and maintain redox homeostasis principally by GSH synthesis [10]. In this regard, a process
called glutaminolysis, catalysed by mitochondrial glutaminase, plays an essential role in
the glutamine conversion to glutamate. Furthermore, it regulates reactive oxygen species
homeostasis by providing the precursors glutamate and cysteine for GSH synthesis [13,14].

Cancer cells rely on glutaminase activity to maintain a high ratio of glutamate to
α-ketoglutarate, which is essential for producing non-essential amino acids. This aspect
explains glutamine’s anaplerotic function [10]. Glutamate generates α-ketoglutarate and
fuels the TCA cycle through a transamination reaction. In the same way, transaminases,
such as aspartate aminotransferase, facilitate the interconversion of aspartic acid. All these
biochemical reactions maintain normal metabolism, allowing glutamate to be converted to
other amino acids if necessary. Thus, this enzyme is considered to play an essential role in
some types of cancer metabolism, such as in pancreatic cancer [5].

Glutamine synthetase (GS) is another critical enzyme involved in glutamine metabolism
is because it converts glutamate to glutamine. This biochemical reaction is essential as
glutamine is the body’s non-toxic form of ammonia transport. It has also been found that
GS activity is important for the proangiogenic, immunosuppressive, and pro-metastatic
function of M2-like macrophages [8]. The term “glutamine addiction” has been used to
describe the enhanced usage of glutamine in cancer in an anaplerotic sense [15]. However,
the inherent properties of tumour cells differ, as the specific mechanism that a tumour
cell chooses is dictated by tumour type, oncogene/tumour suppressor status, tumour
site, and stage of tumour development [9]. Some cancer types mainly depend on glu-
tamine metabolism for tumour cell survival and proliferation. For example, pancreas
cancer, lung cancer, colon cancer, glioblastoma, acute myeloid leukaemia, ovarian cancer
or triple-negative breast cancer, which do not express oestrogen, progesterone receptors
or human epidermal growth factor receptor 2, mainly depend on glutamine, in contrast
with other types of cancer [8,13,16]. Human liver cancer has also been found to be de-
pendent on extracellular glutamine [13]. Therefore, glutamine uptake and glutaminase
activity have been actively investigated as oncological targets [5]. Among the therapeutic
strategies, one is targeting glutamine metabolism in tumours [13,17,18]. To date, the best-
developed molecule is CB-839 (telaglenastat), which interferes with glutamine metabolism.
This molecule is a potent, non-competitive allosteric inhibitor of the mitochondrial en-
zyme glutaminase and the only one that is currently being used in Phase I clinical trials
in cancer patients [9,10,13]. CB-839 shows antiproliferative properties in triple-negative
breast cancer by reducing glutamine consumption, glutamate production, and levels of
TCA intermediates [13,15]. In addition, it exhibits significant efficacy in lung adenocar-
cinoma, chondrosarcoma and lymphoma cancer, but many liver cancer cell lines fail to
respond to CB-839 treatment [13]. Besides CB-839, the compounds 968 (5-[3-bromo-4-
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(dimethylamino)phenyl]-2,2-dimethyl-1,3,5,6-tetrahydrobenzo[a]phenanthridin-4-one) and
BPTES (Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulphide) are other glutami-
nase inhibitors used in preclinical studies [10,15,19] (Figure 1). BPTES led to GSH depletion,
making some lung cancer cells more sensitive to radiation treatment. At the same time,
compound 968 blocked oncogenic transformation in fibroblasts and reduced the growth of
cancer cells [11,15].
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Figure 1. The chemical structures of the glutaminase inhibitor compounds (a) CB-839, (b) 968, and
(c) BPTES.

Other potential therapeutic alternatives are glutamine mimics such as DON (6-diazo-
5-oxo-L-norleucine), JHU-083 (ethyl 2-(2-amino-4-methylpentanamido)-DON), azaserine,
and acivicin which are limited by their toxicity [10,15,20]. Similarly, the AOA (aminooxy-
acetic acid) compound, an aminotransferase inhibitor, and L-asparaginase produce glu-
tamine depletion [10]. EGCG (Epigallocatechin gallate) and R162 (2-allyl-1-hydroxy-9,10-
anthraquinone) are glutamate dehydrogenase inhibitors that block the transformation of
glutamic acid into α-ketoglutarate. For the moment, both of these are considered preclinical
compounds [5,10] (Figure 2).

Additional pathways involving amino acid transport suggest effective therapies. Tu-
mour cells achieve high intracellular concentrations of glutamine primarily through the
upregulation of glutamine transporters, including ASCT2 (alanine, serine, cysteine trans-
porter 2 or SLC1A5) [5]. Pharmacological blockade of SLC1A5 can be a successful alterna-
tive in some types of cancer. V-9302, an SLC1A5 antagonist (Figure 3), elicited a marked
anti-tumour response in preclinical tumour models [10,11]. It has blocked glutamine up-
take in a broad spectrum of solid tumours (such as colorectal cancer cell lines) and several
xenograft tumour models. This blocked glutamine uptake resulted in a profound alteration
of tumour cell growth and survival [9,21]. It has been observed that V-9302 was more
productive in inducing triple-negative breast cancer cell death in several human and mouse
cell culture models [16]. The combination of CB-839 and V-9302 was also successful because
of the dual inhibition of glutamine metabolism, resulting in a decrease in GSH levels and a
lethal increase in the levels of free radicals. This resulted in severe DNA damage, especially
in liver cancer cells [13].
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Another therapeutic strategy could be inhibiting glutamate carboxypeptidase II (GCPII).
This enzyme hydrolyses N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl
aspartate. NAAG is a neurotransmitter in the brain and a glutamate provider to GCPII-
positive cancers if other sources do not produce enough glutamate. Therefore, inhibitors of
GCPII can lead to cancer cell growth suppression by reducing glutamate concentrations [7].
Antagonists of metabotropic glutamate receptors are also promising anti-cancer alternatives
without significant side effects. Metabotropic glutamate receptors (mGluRs) are G-protein
coupled receptors (GPCRs) categorised into three groups based on their signal transduction
pathways and pharmacological profiles. They seem to be more attractive therapeutic targets
since they are not directly involved in excitotoxicity but intervene in modulating glutamate
activity [22,23].
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This article aims to identify new structural analogues of glutamic acid as potential can-
didates for anti-cancer therapy by computational methods. Several stages were followed:
(1) analysis of recently published scientific data regarding the role of glutamate and its
derivatives in the development of tumour cells; (2) identification of some new molecules
with biological potential, starting with the structure of glutamic acid and the creation of
a compound library; (3) conjugation of molecules of natural origin with glutamic acid
residues to reduce glutamic acid toxicity and/or potentiate the anti-cancer effect; (4) selec-
tion of compounds with biological action and minimal toxicity according to the structural,
physicochemical, pharmacokinetic, and pharmaco-toxicological properties determined by
in silico methods; (5) evaluation of anti-tumour potential of selected molecules and the
identification of possible mechanisms of action; (6) molecular dynamics simulation and
molecular docking study to identify the binding site of a ligand molecule (with biological
potential) on a known target.

2. Results and Discussion

The designed glutamic acid derivatives were classified by classes, groups, and sub-
groups (Table 1). Each one of the compounds received an ID code composed of the following
elements: first digit—class; capital letter—group; small letter—subgroup; last digit—the
compound’s number in the subgroup; small letter at the end (if applicable)—a derivative
of the lead-compound. The online software and test parameters that were used to obtain
and characterise the compounds are mentioned in Table S1 (Supplementary Materials).
The structures of all obtained compounds and their computational descriptors are given in
Table S2 (Supplementary Materials).
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Table 1. Classification of derivatives by classes, groups, and subgroups.

Class Group Subgroup

1
Compounds resulting from reactions
at the carboxyl group

A Esters a -
B Amides a -
C Acid chlorides a -
D Anhydrides a -

2
Compounds resulting from reactions
at the amino group

A Amides a -
B Alkylated glutamic acid derivatives a Azotyperites
C Alcohols resulting from diazotisation a -

3 Heterocyclic derivatives
A Thiazole derivatives

a Simple
b With cyclic anhydride

B 1,3 Oxazole derivatives
a Simple
b With cyclic anhydride

4 Other derivatives and their potential
mechanism of action

A Alkylating agents

a Azotyperites
b Nitrosoureas
c Methylhydrazine
d Alkyl sulphonates
e Platinum complexes

B Histone deacetylase inhibitors a -

C Ribonucleotide reductase inhibitors
a Hydroxyurea derivatives

b Cyclic compounds (based on the
structure of Trimidox)

D
Inhibitors of glutamate synthetase and/or
SLC25A mitochondrial transporters

a Methionine–sulfoximine
analogues

b Phosphinothricin analogues
c Biphosphonates

d

Various inhibitors starting from
different structures:
- d1. 2-Amino-4-hydroxy

aminobutyric acid
- d2. Alanosine
- d3. Oxetine
- d4. Tabtoxin and its

metabolite (m)

5

Natural substances with proven
anti-cancer effects (Table S11;
Supplementary Materials) conjugated
with glutamic acid molecules

A Colchicine derivatives a Spindle inhibitors
B Neferine derivatives a -
C 7-Hydroxycinuciferine derivatives a -
D Lycorine derivatives a -
E Derivatives of 5,6-dehydrolycorine a -

2.1. Algorithm for Designing Glutamic Acid Derivatives and Studies Underlying Their
Development

The derivatives included in the first two classes were designed based on the spe-
cific chemical properties of amino acids resulting from reactions at the carboxyl and
amino functional groups. Blocking these essential functional groups in the amino acid’s
structure could bring significant changes in terms of its biochemical metabolism; conse-
quently, derivatives with potential pharmaceutical effects are sought [24–27]. The follow-
ing classes of compounds comprise structures containing pharmacophores responsible
for the anti-cancer effect: thiazole derivatives, 1,3-oxazole derivatives [28–30], alkylating
agents [28,31–35], inhibitors of histone deacetylase [36–39], ribonucleotide reductase [40–42],
glutamate synthetase inhibitors, and mitochondrial transporters of the SLC25A fam-
ily [43–60]. Compounds belonging to these classes have been intensively studied [7,61].

Based on data published about histone deacetylase, compounds from class 4B were
designed [39,42,62–65]. Class 4Cb compounds are based on the structure of Trimidox, an
RR inhibitor [40]. Class 4D compounds, inhibitors of GS, and mitochondrial transporters
for glutamate are based on Lukasz Berlicki’s (2008) work [66]. The derivative possessing
the 4Dd4.m ID code is a metabolite with potential GS inhibitory effect resulting from the
hydrolysis of compounds related to tabtoxin (dipeptide) prodrugs: 4Dd4.1, 4Dd4.2 and
4Dd4.3 [67–70]. Compounds containing sulphur pharmacophores (4Ad1-3, 4Da1-11) are
based on the study conducted by Urlich L. (2019) [71].
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Based on the information about plant-derived substances with proven anti-cancer
effect, we have structurally created compounds of group 5A–E: colchicine derivatives, nefer-
ine derivatives, 7-hydroxynuciferine derivatives, lycorine derivatives, 5,6-dehydroglycorine
derivatives, and natural compounds conjugated with glutamic acid residues [28,72–89]. In
addition, the hypothesis that conjugation with a single molecule of glutamic acid could
bring benefits compared with the basic compounds of natural origin is being tested through
computational studies.

The in silico determination of (1) physicochemical and structural parameters, which
implies the determination of heavy atoms (HA), heavy aromatic atoms (HAA), fraction
Csp3, rotatable bonds (RB), H-bond acceptors, H-bond donors, molar refractivity (MR),
and total polar surface area (TPSA); (2) protonation (acidic pKa, basic pKa, pKa score,
isoelectric point (pI), and microspecies); and (3) electric charge (molar polarisability), is
detailed in Table S3 (Supplementary Materials). Water solubility was computed using
AquaSol [90], Chemicalize [91], and SwissADME [92], and the results are detailed in
Table S4 (Supplementary Materials). Lipophilicity and partition coefficients are presented in
Table S5 (Supplementary Materials). Toxicity studies were performed in silico by applying
the Cramer rules, and the Kroess and Verhaar scheme (Table S6; Supplementary Materials).
Other toxicity parameters were also determined, such as carcinogenicity (genotoxic and non-
genotoxic) and mutagenicity, skin and eye irritation/corrosion, effect on the reproductive
system, biodegradability, and protein and DNA binding alerts, which were evaluated using
Toxtree and OSIRIS [93,94]. Results are listed in Tables S7 and S8 (Supplementary Materials).

Pharmacokinetic properties were evaluated for each compound in terms of permeabil-
ity (gastrointestinal absorption, blood–brain barrier permeability) and interactions with
P-gp. In addition, we assessed the enzyme inhibitory effect on some isoforms of cytochrome
P450 (Table S9; Supplementary Materials). Based on the previously calculated properties,
we evaluated whether these compounds meet the “drug-likeness” criteria according to the
Lipinski, Ghose, Veber, Egan, and Muegge rules. The number of rules violated by each
molecule is shown in Table S10 (Supplementary Materials), along with the bioavailability
score, drug-likeness score, lead-likeness score, and synthetic accessibility score.

Compounds that were too reactive, toxic, or did not have the suitable properties
to become lead compounds were removed. Therefore, the screening was performed
in several steps according to the rules of Lipinski [91,95–97], Veber [95], Ghose [97,98],
Egan [99], and Muegge [100] (Table 2), the “overall drug-likeness” score [94,101,102], lead-
likeness [103,104], CNSMPO [105], SA [103,106–109], and by toxicity criteria [93,94,110–123]
and pharmacokinetic properties [103,124–130].

Table 2. The characteristics of Lipinski, Ghose, Veber, Egan, and Muegge drug-likeness rules accord-
ing to SwissAdme [92].

Drug-Likeness Rules

Lipinski Ghose Veber Egan Muegge

MW ≤ 500 Da
MlogP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

160 ≤MW ≤ 480 Da
−0.4 ≤WlogP ≤ 5.6
40 ≤MR ≤ 130
20 ≤ atoms ≤ 70

RB ≤ 10
TPSA ≤ 140

WlogP ≤ 5.88
TPSA ≤ 131.6

200 ≤MW ≤ 600 Da
−2 ≤ XlogP ≤ 5
TPSA ≤ 150
No. of rings ≤ 7
No. of carbon atoms > 4
No. of heteroatoms > 1
No. of RB ≤ 15
H-bond acceptors ≤ 10
H-bond donors ≤ 5

SA is the synthetic accessibility score, which varies from one to ten. It is a parameter
used to estimate the ease of synthesising a drug-like molecule: 1 representing being
very easy to synthesise and 10 very difficult. This parameter was considered during
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the abovementioned stages because the subsequent synthesis of the proposed structures
will depend heavily on it [92].

2.2. The Elimination of Reactive and Toxic Compounds

The elimination of reactive and toxic compounds was carried out in several steps,
as follows:

• Step 1. In the first stage, compounds belonging to at least two toxicity classes are
eliminated, as the risk of them causing severe adverse reactions is high.

• Step 2. This step involves the removal of compounds that do not follow Lipinski and
Veber’s rules, and which have a CNS MPO score less than 4, as well as compounds
with low solubility and/or an inhibitory effect on cytochrome P450 and/or gp-P
enzymes.

• Step 3. Compounds with medium toxicity, which fall into Class III (Cramer rules) and
are positive for at least one toxicity criterion, are eliminated if the overall drug-likeness
score does not exceed 0.90.

• Step 4. Compounds that have violated all Ghose’s rule criteria (four out of four) and
belong to Cramer class III or II or overlap with the violation of at least one Muegge
rule are eliminated.

• Step 5. Compounds that have violated at least three Ghose criteria and at least two
Muegge rules and belong to Cramer class III are eliminated.

• Step 6. Removal of Cramer Class III compounds that violate at least one Ghose and
Muegge rule, having an SA score below 2.

• Step 7. Elimination of Class III Cramer compounds that violate at least one Ghose and
Muegge rule, regardless of the SA score achieved.

• Step 8. Removal of compounds that violate at least one Ghose and Muegge rule with a
low GI absorption value.

• Step 9. Compounds that violate at least one Ghose and Muegge rule with an SA score
below 4, regardless of Cramer toxicity class, are eliminated.

• Step 10. Elimination of Cramer Class III compounds that violate at least two Muegge
criteria and have an SA score below 3 and/or overall drug-likeness score below 0.5.

Only nine compounds proved to have suitable properties or properties that can be
easily optimised, representing 7.3% of the total. These selected compounds are presented
in Table 3, along with their geometrical and isomer-conformation properties.

Table 3. Structures of the nine “lead” compounds and their geometrical and isomer-conformation
properties [105].

No. ID Code Chemical Structure
Geometric Isomers Isomerism Conformations

Asymmetric Atoms Chiral Centres Tautomers Stereoisomers Emin (kcal/mol)

1 1Aa7
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Table 3. Cont.

No. ID Code Chemical Structure
Geometric Isomers Isomerism Conformations

Asymmetric Atoms Chiral Centres Tautomers Stereoisomers Emin (kcal/mol)
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2.3. Characterisation of the “Lead” Compounds

The “lead” compounds were characterised by chemical structure, geometric isomers,
isomerism, and conformations using the MarvinSketch platform [105] (Table 3). The
platform automatically generated the conformations, and their number was limited to ten.
The energy was calculated using force field methods, and the conformer with the lowest
energy, i.e., having the highest stability, was chosen.

The main pathways of metabolism, bioactivity, action on cancer cells, mechanisms of
action and possible adverse effects, and acute toxicity in rodents were further evaluated
by in silico methods. For this, we used Toxtree [22] to assess the metabolism of the nine
compounds (primary, secondary, tertiary, and quaternary sites of metabolism) and also
SmartCyp and SOMP to determine the most reactive atom (involved in interactions with
CYP3A4, CYP2D6, and CYP2C9) (Tables 4 and 5). The algorithm used by the Smartcyp
online platform requires a reactivity descriptor (E) and an accessibility descriptor (A). “E”
estimates the energy required for a CYP to react at this position, and “A” is the relative
topological distance of an atom from the centre of the molecule. The score is calculated for
each atom according to the equation Score = E − 8*A − 0.04*SASA (where SASA is the
solvent-accessible surface area). A lower score corresponds to an increased probability of
being a site of metabolism [131].

Table 4. Compound metabolism assessed using Toxtree [93].

No. ID Code Primary Sites of Metabolism Secondary Sites of Metabolism Tertiary Sites of Metabolism Quaternary Sites of Metabolism

1 1Aa7 N-dealkylation Amine hydroxylation Aliphatic hydroxylation O-dealkylation
2 1Aa8 N-dealkylation Amine hydroxylation Aliphatic hydroxylation O-dealkylation
3 2Ba2 N-dealkylation N-oxidation N-dealkylation Aliphatic hydroxylation
4 2Ba5 N-dealkylation N-dealkylation N-oxidation Aliphatic hydroxylation
5 2Ba6 N-dealkylation None N-dealkylation N-oxidation
6 3Aa3 N-dealkylation Amine hydroxylation Aromatic hydroxylation Aliphatic hydroxylation
7 3Aa5 N-dealkylation Amine hydroxylation Aliphatic hydroxylation Aromatic hydroxylation
8 4Da11 N-dealkylation None Amine hydroxylation Aliphatic hydroxylation
9 4Db6 N-dealkylation None Amine hydroxylation Aliphatic hydroxylation

Table 5. Compound metabolism assessed using SmartCyp [131] and SOMP [132].

No. ID Code
3A4 2D6 2C9

The Most Reactive Atom Score The Most Reactive Atom Score The Most Reactive Atom Score

1 1Aa7 C8 34.7 C1 93.7 C2 86.3
2 1Aa8 C6 36.7 C1 107.1 C2 86.4
3 2Ba2 C1 30.9 C1 85.8 C1 50.7
4 2Ba5 C2 33.2 C2 93.7 C2 57.8
5 2Ba6 C4 32.2 C4 92.7 C4 56.8
6 3Aa3 C2 34.7 C10 74.6 C10 67.9
7 3Aa5 C2 36.8 C13 88 C13 67.9
8 4Da11 C7 35.3 N3 85.8 N3 64.1
9 4Db6 C7 34.5 C7 100.1 C7 75.2
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The bioactivity of the nine selected compounds was characterised using the following
parameters: G protein-coupled receptor ligand, ion channel modulator, kinase inhibitor,
nuclear receptor ligand, protease inhibitor, and enzyme inhibitor (Table 6). In addition, the
most probable molecular targets and their identification data were determined using the
SWISSTarget predictor (Table 7) [133].

Table 6. Bioactivity assessed using Molinspiration [134].

No. ID Code GPCR Ligand Ion Channel Modulator Kinase Inhibitor Nuclear Receptor ligand Protease Inhibitor Enzyme Inhibitor

1 1Aa7 −0.42 0.17 −1.01 −0.86 −0.2 0.09
2 1Aa8 −0.41 0.13 −1 −0.84 −0.21 0.09
3 2Ba2 −0.11 0.18 −1.01 −0.9 −0.28 0.19
4 2Ba5 −0.02 0.11 −0.89 −0.55 −0.15 0.14
5 2Ba6 −0.02 0.15 −0.96 −0.68 −0.24 0.11
6 3Aa3 −0.1 0.23 * −0.38 −0.94 0.27 * 0.7 **
7 3Aa5 −0.21 0 −0.28 −0.67 0.33 * 0.43 *
8 4Da11 −0.69 −0.26 −1.36 −0.93 −0.44 0.27 *
9 4Db6 0.12 0.83 ** −0.65 −1.06 0.67 ** 0.87 **

* values above 0.2. ** values above 0.5.

Table 7. Bioactivity assessed using the SWISSTarget predictor (most probable molecular targets and
their identification data) [133].

No. ID Code Target Common Name Uniprot ID Target Class Probability

1 1Aa7 Kynureninase KYNU Q16719 Enzyme 0.141787

2 1Aa8

Aminopeptidase A ENPEP Q07075 Protease 0.125076
Kynurenine
3-monooxygenase KMO O15229 Oxidoreductase 0.125076

Glutamate receptor
ionotropic, AMPA 1 GRIA1 P42261 Ligand-gated ion

channel 0.125076

3 2Ba2

Metabotropic
glutamate receptor 3 GRM3 Q14832 Family C G

protein-coupled receptor 0.150098

Metabotropic
glutamate receptor 6 GRM6 O15303 Family C G

protein-coupled receptor 0.150098

Metabotropic
glutamate receptor 2 GRM2 Q14416 Family C G

protein-coupled receptor 0.150098

4 2Ba5

Glutamate receptor
ionotropic kainate 1 GRIK1 P39086 Ligand-gated ion

channel 0.031227

Glutamate receptor
ionotropic AMPA 1 GRIA1 P42261 Ligand-gated ion

channel 0.031227

Adenosine A3
receptor ADORA3 P0DMS8 Family A G

protein-coupled receptor 0.031227

5 2Ba6

Glutamate receptor
ionotropic kainate 1 GRIK1 P39086 Ligand-gated ion

channel 0.08057

Glutamate receptor
ionotropic AMPA 1 GRIA1 P42261 Ligand-gated ion

channel 0.08057

Adenosine A3
receptor ADORA3 P0DMS8 Family A G

protein-coupled receptor 0.08057

6 3Aa3
Kynurenine
3-monooxygenase KMO O15229 Oxidoreductase 0.04147

Kynureninase KYNU Q16719 Enzyme 0.04147

7 3Aa5

Caspase-3 CASP3 P42574 Protease 0.031227
Lysine-specific
demethylase 2A KDM2A Q9Y2K7 Eraser 0.031227

Histone lysine
demethylase PHF8 PHF8 Q9UPP1 Eraser 0.031227
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Table 7. Cont.

No. ID Code Target Common Name Uniprot ID Target Class Probability

8 4Da11

Fructose-1,6-
bisphosphatase FBP1 P09467 Enzyme 0.053518

G protein-coupled
receptor 44 PTGDR2 Q9Y5Y4 Family A G

protein-coupled receptor 0.053518

9 4Db6

Glutamate receptor
ionotropic kainate 1 GRIK1 P39086 Ligand-gated ion

channel 0.08057

Glutamate receptor
ionotropic AMPA 1 GRIA1 P42261 Ligand-gated ion

channel 0.08057

Glutamate receptor
ionotropic kainate 5 GRIK5 Q16478 Ligand-gated ion

channel 0.08057

Regarding the interpretation of the results from Table 6, a larger score value correlates
with a higher probability for the particular molecule to be active. More explicitly, if the
bioactivity score is more than 0.0, the compound is considered active; if the score is between
−0.5 and 0.0, it exhibits moderate activity; if the bioactivity score is less than −0.5, then it
is inactive [134].

The anticarcinogenic effect of the nine compounds was assessed using CLC-Pred soft-
ware [135], predicting the most probable cell lines for which compounds exhibit cytotoxicity
(Table 8).

Table 8. Anticarcinogenic effect: most probable cell lines for which compounds exhibit cytotoxicity.
Probability “to be active” (Pa) > Probability “to be inactive” (Pi) [135,136].

No. ID Code Pa Pi Cell Line Cell Line (Full Name) Tissue Tumour Type

1 1Aa7 0.694 0.004 NCI-H1299 Non-small cell lung carcinoma Lung Carcinoma
2 1Aa8 0.541 0.004 NCI-H1299 Non-small cell lung carcinoma Lung Carcinoma

3 2Ba2 0.458 0.023 MDA-MB-453 Breast adenocarcinoma Breast Adenocarcinoma
4 2Ba5 0.451 0.008 Jurkat Acute leukaemia T-cells Blood Leukaemia
5 2Ba6 0.438 0.039 MDA-MB-453 Breast adenocarcinoma Breast Adenocarcinoma

6 3Aa3
0.717 0.004 DMS-114 Lung carcinoma Lung Carcinoma
0.527 0.005 RKO Colon carcinoma Colon Carcinoma

7 3Aa5
0.728 0.004 DMS-114 Lung carcinoma Lung Carcinoma
0.543 0.005 RKO Colon carcinoma Colon Carcinoma

8 4Da11 0.595 0.01 DMS-114 Lung carcinoma Lung Carcinoma
9 4Db6 0.657 0.012 HCT-116 Colon carcinoma Colon Carcinoma

Possible mechanisms of action and adverse/toxic effects, lethal doses (LD50) in acute
toxicity determined in rodents (intraperitoneal, intravenous, oral, and subcutaneous ad-
ministration), and the classification of chemical compounds according to the OECD Project
were also determined by in silico methods (Tables 9–11) [135–138].

Based on the results of the bioactivity assessment by Molinspiration [134] (Table 6),
molecular dynamics and docking studies were performed on compound 4Db6 and the
bacterial GS enzyme from Salmonella typhimurium (Figure S1; Supplementary Materials)
[43,66,139–141]. The Protein Data Bank (PDB) code for GS is 1lgr [142,143].
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Table 9. Mechanisms of action and adverse/toxic effects (Pa > Pi) [137].

No. ID Code
Mechanism of Action Toxic Effects

Pa Pi Activity Pa Pi Activity

1 1Aa7

0.965 0.001 Arginine 2-monooxygenase
inhibitor 0.982 0.004 Respiratory toxicity

0.962 0.002 Protein-disulphide reductase
(GSH) inhibitor 0.952 0.004 Euphoria

0.961 0.002 Methylenetetrahydrofolate
reductase (NADPH) inhibitor 0.904 0.008 Weakness

0.952 0.001 Levanase inhibitor 0.892 0.007 Pure red cell aplasia

0.951 0.002 Acylcarnitine hydrolase
inhibitor 0.885 0.007 Muscle weakness

2 1Aa8

0.969 0.001 Protein-disulphide reductase
(GSH) inhibitor 0.976 0.005 Toxic, respiratory

failure

0.961 0.002 Methylenetetrahydrofolate
reductase (NADPH) inhibitor 0.932 0.005 Euphoria

0.956 0.001 Arginine 2-monooxygenase
inhibitor 0.900 0.004 Apnoea

0.953 0.001 Levanase inhibitor 0.900 0.008 Weakness
0.949 0.001 Aspartate kinase inhibitor 0.871 0.009 Neurotoxic

3 2Ba2

0.956 0.001 Methylamine-glutamate
N-methyltransferase inhibitor 0.925 0.006 Euphoria

0.952 0.002 Acylcarnitine hydrolase
inhibitor 0.919 0.015 Toxic, respiratory

failure
0.915 0.003 NADPH peroxidase inhibitor 0.870 0.011 Pure red cell aplasia

0.906 0.004 Anaphylatoxin receptor
antagonist 0.860 0.003 Skin irritation,

corrosive

0.906 0.006 Methylenetetrahydrofolate
reductase (NADPH) inhibitor 0.851 0.019 Shivering

4 2Ba5

0.945 0.002 Acylcarnitine hydrolase
inhibitor 0.958 0.009 Toxic, respiratory

failure

0.941 0.001 Methylamine-glutamate
N-methyltransferase inhibitor 0.935 0.005 Euphoria

0.920 0.002 Dimethylargininase inhibitor 0.920 0.004 Pure red cell aplasia
0.909 0.002 Aminoacylase inhibitor 0.901 0.006 Shivering

0.905 0.004 Gluconate 2-dehydrogenase
(acceptor) inhibitor 0.888 0.003 Skin irritation,

corrosive

5 2Ba6

0.946 0.002 Acylcarnitine hydrolase
inhibitor 0.962 0.009 Toxic, respiratory

failure

0.943 0.001 Methylamine-glutamate
N-methyltransferase inhibitor 0.954 0.004 Euphoria

0.900 0.001 Flavin-containing
monooxygenase inhibitor 0.918 0.002 Skin irritation,

corrosive
0.889 0.007 Phobic disorders treatment 0.894 0.007 Pure red cell aplasia

0.884 0.003 Dimethylargininase inhibitor 0.876 0.006 Postural (orthostatic)
hypotension

6 3Aa3

0.866 0.003 Glutamine-phenylpyruvate
transaminase inhibitor 0.766 0.020 Respiratory failure

0.853 0.005 Monodehydroascorbate
reductase (NADH) inhibitor 0.731 0.035 Ulcer, aphthous

0.800 0.009 Arginine 2-monooxygenase
inhibitor 0.686 0.009 Anaemia, sideroblastic

0.803 0.018 Methylenetetrahydrofolate
reductase (NADPH) inhibitor 0.707 0.041 Pure red cell aplasia

0.793 0.013 NADPH peroxidase inhibitor 0.667 0.033 Stomatitis
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Table 9. Cont.

No. ID Code
Mechanism of Action Toxic Effects

Pa Pi Activity Pa Pi Activity

7 3Aa5

0.797 0.014 Acylcarnitine hydrolase
inhibitor 0.764 0.022 Stomatitis

0.787 0.005 Glutamine-phenylpyruvate
transaminase inhibitor 0.719 0.026 Respiratory failure

0.794 0.019 Methylenetetrahydrofolate
reductase (NADPH) inhibitor 0.702 0.020 Asthma

0.734 0.002 Pyrimidine-deoxynucleoside
2′-dioxygenase inhibitor 0.689 0.015 Respiratory

impairment
0.736 0.021 NADPH peroxidase inhibitor 0.655 0.020 Haematuria

8 4Da11

0.932 0.004 Angiogenesis inhibitor 0.496 0.074 Haematemesis

0.930 0.004 Anti-inflammatory 0.439 0.038 Thrombocytopoiesis
inhibitor

0.923 0.004 Glutamate-5-semialdehyde
dehydrogenase inhibitor 0.436 0.078 Interstitial nephritis

0.869 0.001 CDK1/cyclin B inhibitor 0.463 0.109 Occult bleeding
0.865 0.002 Macular degeneration treatment 0.450 0.105 Nephritis

9 4Db6

0.957 0.002 Glutamate-5-semialdehyde
dehydrogenase inhibitor 0.651 0.023 Ototoxicity

0.952 0.000 Sphingosine 1-phosphate
receptor 5 antagonist 0.520 0.069 Bronchoconstriction

0.793 0.002 GABA C receptor antagonist 0.343 0.158 Sneezing

0.782 0.003 Ornithine cyclodeaminase
inhibitor 0.280 0.097 Demyelination

0.701 0.003 Bone formation stimulant 0.319 0.159 Fibrosis, interstitial

Table 10. Acute toxicity in rodents when administered intraperitoneally, intravenously, orally, and
subcutaneously: LD50 in mg/kg [138].

No. ID Code Rat IP LD50 (mg/kg) Rat IV LD50 (mg/kg) Rat Oral LD50 (mg/kg) Rat SC LD50 (mg/kg)

1 1Aa7 2593.000 in AD 1256.000 in AD 5859.000 in AD 6254.000 in AD
2 1Aa8 3059.000 in AD 1268.000 in AD 4228.000 in AD 4014.000 in AD
3 2Ba2 1069.000 in AD 1017.000 in AD 1978.000 in AD 1027.000 in AD
4 2Ba5 436.000 in AD 865.000 in AD 1861.000 in AD 1026.000 out of AD
5 2Ba6 375.200 in AD 613.100 in AD 1198.000 in AD 505.500 in AD
6 3Aa3 418.900 in AD 643.600 in AD 3172.000 in AD 2290.000 in AD
7 3Aa5 585.600 in AD 464.800 in AD 2623.000 out of AD 1923.000 in AD
8 4Da11 551.700 out of AD 580.800 in AD 3362.000 in AD 298.500 in AD
9 4Db6 298.100 out of AD 180.400 in AD 1456.000 out of AD 76.460 in AD

The molecular dynamics simulation study was carried out using the UCSF Chimera
1.15 software [144,145]. Before the actual dynamics simulation, the chemical structure was
processed according to the protocol established in the literature: hydrogen atoms were
inserted, the protonation status corresponding to glutamic acid was used, and Gasteiger
partial charges were assigned. The study was performed in water as solvent (SPCBOX,
cube size 3 Å) with a density of 1024 g/cm3 to simulate physiological conditions. In the
neutralisation phase, we added Na/Cl counterions. The next step was the minimisation
phase, whereby the system’s energy would tend towards 0.



Molecules 2023, 28, 4123 15 of 28

Table 11. Acute toxicity in rodents. Classification of Chemicals according to the OECD Project [138].

No. ID Code Rat IP LD50 Classification Rat IV LD50 Classification Rat Oral LD50 Classification Rat SC LD50 Classification

1 1Aa7 Non-Toxic in AD Non-Toxic in AD Non-Toxic in AD Non-Toxic in AD
2 1Aa8 Non-Toxic in AD Non-Toxic in AD Class 5 in AD Non-Toxic in AD
3 2Ba2 Class 5 in AD Non-Toxic in AD Class 4 in AD Class 5 in AD
4 2Ba5 Class 4 in AD Non-Toxic in AD Class 4 in AD Class 5 out of AD
5 2Ba6 Class 4 in AD Class 5 in AD Class 4 in AD Class 4 in AD
6 3Aa3 Class 4 in AD Class 5 in AD Class 5 in AD Class 5 in AD
7 3Aa5 Class 5 in AD Class 5 in AD Class 5 out of AD Class 5 in AD
8 4Da11 Class 5 out of AD Class 5 in AD Class 5 in AD Class 4 in AD
9 4Db6 Class 4 out of AD Class 4 in AD Class 4 out of AD Class 3 in AD

In the equilibration phase, the temperature was set to 310 K (36.85 0C, approximately
physiological temperature) with a gradient of 10 K/ps. In the production phase, the
following settings were made: Andersen barostat—pressure 1.0132 bar, relaxation time
1.5; Nose thermostat—emperature 310 K, relaxation time: 0.2. The entire simulation time
was set to 100 ns. The energy values resulting from the molecular dynamics simulation for
compound 4Db6 are included in Table 12.

Table 12. Molecular dynamics simulation results for compound 4Db6 [144].

Step Time (fs) Potential Energy (J) Kinetic Energy (J)

0 0.0 341.630730 86.279577
100 0.1 335.578989 92.292502
200 0.2 351.037095 77.385248
300 0.3 333.800802 94.478719
400 0.4 353.520040 74.902008
500 0.5 363.225563 65.233746
600 0.6 365.055252 63.321001
700 0.7 359.244207 69.127817
800 0.8 333.010201 95.326086
900 0.9 336.650457 91.597157

1000 1 362.614614 65.517278

Geometry optimisation was performed following the Gaussian model, and we used
the standard topology for non-protein molecules. Most biological processes involve, at the
atomic scale, the recognition of one molecule by another. Estimation of such interactions at
the molecular level is performed by docking methods [146]. In the molecular docking study,
the interaction of the 4Db6 derivative with the GS enzyme was evaluated in comparison
with phosphinothricin ((2S)-2-amino-4-(hydroxy-methyl-phosphoryl)butanoic acid), whose
PDB code is PPQ [67,69,70,142,147]. Phosphinothricin, a GS inhibitor, shows the closest
similarity (86.9%) to compound 4Db6, as scored by SwissSimilarity (Score = 0.869) [148].
The comparison was made to identify the most probable binding site in the enzyme
structure [149].

The study was conducted using SwissDock [150–152], PatchDock [136,153,154], and
AutoDockVina 1.1.2 [151,155]. In a study evaluating a crystalline structure of GS inhibited
by phosphinothricin, the inhibitor molecule preferentially binds to the enzyme in the D
subunit’s active site. Phosphinothricin occupies the glutamate pocket and stabilises the
Glu327 residue in a position that prevents glutamate from entering the active site [149].
This crystal structure (PDB code: 1FPY) was observed using the Mol* Viewer web app
of RCSB PDB [142,156]. The preference for the D subunit was also confirmed by results
obtained using the PatchDock app, which estimated the most probable binding site for the
4Db6 compound [136,153,154]. The top 10 best solutions are shown in Table 13. Figure 4
illustrates the first best result generated.
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Table 13. Molecular docking results for the 4Db6 compound using PatchDock [136,153,154].

No. Score Interface Area Coordinates

1 2900 318.4 −1.34; −0.09; 1.38; −23.80; −22.56; −39.82
2 2858 318.3 1.02; 0.08; 0.88; −48.08; 21.92; −56.70
3 2834 310.4 −1.95; 0.16; −1.70; −74.21; −8.23; −46.64
4 2830 306 1.32; 0.01; −2.83; −44.00; −28.47; −52.58
5 2814 318.5 −1.33; −0.27; 1.59; −27.20; −37.47; −60.51
6 2792 316.6 −1.14; −0.17; −1.48; −66.81; 35.58; −67.43
7 2792 308.1 −1.78; −0.03; 2.84; −41.83; 28.83; −45.53
8 2790 301.5 −1.64; 0.44; 1.33; −71.19; −15.76; −81.43
9 2786 310.8 2.09; −0.02; −1.89; −16.57; 19.50; −51.15
10 2786 296.7 −2.08; 0.27; −1.76; −57.26; −20.74; −68.35
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However, the selected derivative does not bind to the active site. Thus, these deriva-
tives will probably not show inhibitory activity towards the enzyme. Molecular docking
was performed using SwissDock [134,150,152] and AutoDockVina 1.1.2 [151,155] to increase
the accuracy of the study.

For PPQ, SwissDock found 257 conformations. The most probable binding site was
chosen according to the conformation with the lowest energy, having ∆G =−10.43 kcal/mol
and a FullFitness value of −2192.23 kcal/mol [150,152,157]. The FullFitness parameter
for a cluster is calculated using the average of 30% of the most favourable energies of its
elements to lower the risk of inhibition of the entire cluster by some complexes. This energy
is represented by the sum of the system’s total energy and a solvation term [158]. For
example, for compound 4Db6, SwissDock found 160 conformations. By comparing the
PPQ binding site with the sites of the 160 conformations, we consider that clusters 1, 6 and
33 could bind to the same site in a relatively similar way (Table 14).

Table 14. Energetic values of the most probable ligand (4Db6 compound)–receptor complexes
[144,150,152,157].

Cluster ∆G (kcal/mol) FullFitness (kcal/mol) Ki

1 −8.1 −2139.9 11.264 × 10−7

6 −7.6 −2137.1 22.904 × 10−7

33 −6.8 −2126.6 94.047 × 10−7

The inhibition constant (Ki) was calculated using the following formula: Ki = eˆ((∆G× 1000)/
(R × T)), where e = 2.7182, R = 1.98719 cal/(mol × K) (Regnault constant) and
T = 298.15 K = 25 ◦C [159]. It can be seen that cluster 1 shows the lowest energy according to
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the ∆G value, but Ki and the maximum FullFitness value belong to complex 33. Visualisa-
tion and processing of the results obtained in the molecular docking study (Figure 5) were
performed using UCSF Chimera 1.15 [144,145]. The grid sizes used in SwissDock for cluster
1 are (x, y, z) = (15.5, 15.5, 20.5) with centre coordinates (x, y, z) = (−98, 13.711, −87.161).
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Figure 5. Ligand (PPQ and 4Db6 compound conformers)–receptor (active subunit of GS enzyme)
complexes: GS–PPQ; GS–cluster1; GS–cluster6; GS–cluster33. Visualised with UCSF Chimera
1.15 [144,145].

To perform molecular docking using AutoDock Vina (a new version of the Webina
online platform), the exhaustiveness of the search was set to 8 and the maximum energy
difference to 3 kcal/mol. The space in which the test took place is represented by the
volume of a cube (having the following dimensions: width = 20.4346, length = 27.864,
height = 18.3759), and whose centre is defined by the coordinates x =−4.86256, y =−15.0503,
z = −67.7222) [160]. Preparation for docking involves the insertion of hydrogen atoms on
the chemical structure of both the ligand and the receptor molecule and the removal of the
solvent. The protonation state corresponding to histidine was used, and Gasteiger partial
charges were assigned (Figure 6).
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Figure 6. Hydrogen bonds made between the ligand molecule (4Db6 compound) and the threonine
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[144,145,150–152,155,157].

The molecular docking results performed with AutoDock Vina are shown in Table 15,
and the corresponding figures are presented in Figure S2 (Supplementary Materials). We
chose to work further with model no.1 due to its low free energy (−6.3 kcal/mol) and
root-mean-square deviation (RMSD) values that were below 2 Å. The 2 Å limit is often
used as a criterion for predicting the correct binding site. The RMSD for two structures, a
and b, of an identical molecule can be defined as follows:



Molecules 2023, 28, 4123 18 of 28

Table 15. Molecular docking results for the 4Db6 compound obtained using AutoDock Vina. Run
time: 28.3 s.

Mode Affinity (kcal/mol) Dist. from RMSD L. B Dist. from RMSD U. B

1 −6.3 0 0
2 −6 1.805 4.092
3 −5.7 2.296 2.819
4 −5.3 4.405 5.497
5 −5.3 9.763 11.591
6 −5.3 2.674 3.792
7 −5.3 3.029 5.193
8 −5.2 2.142 2.893
9 −5.1 2.042 2.793

RMSDab = max(RMSD′ab, RMSD′ba)

RMSD′ab =

√
1
N ∑

i

min
j

r2
ij′ (1)

where rij represents the interatomic distance and the sum is over all N HA in structure
a; the minimum is over all atoms in structure b with the same element type as the atom
in structure a. RMSD is a measure of the distance between experimental and predicted
structures that takes into account symmetry, partial symmetry (e.g., within a rotating
branch), and near-symmetry [160–164].

The main residues in the D subunit of the GS enzyme involved in interactions (within
1.49–2.81 Å) with the 4Db6 ligand are THR-223 (2 bonds) and GLU-129. Hydrogen bond
connections play a key role in determining protein–ligand interactions [160,165]. In addi-
tion, the first conformation shows four active torsions: between C4 and P8, CA6 and C7, P8
and C9, and P8 and O11 [160].

3. Materials and Methods

Several series of analogous compounds (123 derivatives) have been theoretically
designed based on the structure of glutamic acid to build a compound library of glutamic
acid derivatives. From simple structure groups to more complex molecules, the chemical
structures of the compounds were designed using BIOVIA Draw 21.1. [166]. The number of
123 compounds was reached after analysing the structure of glutamic acid to make as many
specific structural modifications as possible. The classes of compounds and the structural
changes made to the fundamental molecule were selected following the information found
in the scientific literature. Our purpose was initially to design as many structural derivatives
as possible because, after characterising and selecting these compounds based on well-
established steps, we would be left with as many derivatives with optimal properties as
possible to study further.

We also used the same software to generate the computational descriptors. To select
suitable candidates for our purpose, we evaluated some properties of the molecules and their
behaviour in the human organism. Physico-chemical characterisation of the desired compounds
was carried out using SwissADME [92,103] and MarvinSketch [105]. Water solubility was tested
using AquaSol [90], Chemicalize [91] and SwissADME [167,168]. Lipophilicity was analysed
using SwissADME to determine the partition coefficients [169–174]. Toxicity was assessed using
Toxtree [93] by applying the Cramer rules and the Kroess and Verhaar scheme, and GUSAR [175]
was used to evaluate the acute toxicity in rodents.

Pharmacokinetic properties were analysed in terms of permeability and interactions
with P-glycoprotein (P-gp) and some isoforms of cytochrome P450 using the SwissADME
program. In addition, we evaluated the “drug-likeness” criteria according to Lipinski,
Ghose, Veber, Egan, and Muegge rules using MarvinSketch, Chemicalize and DruLiTo [97].
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The metabolism of the compounds was assessed using Toxtree, SmartCyp [131], and
SOMP [132] and the bioactivity was evaluated using Molinspiration [134] and SWISSTarget
prediction [133] (to predict the most probable molecular targets). The anticarcinogenic
effect was assessed with the CLC-Pred software (Version 2.0) [135], which estimates in
silico the cytotoxic effect based on the structural formula; the mechanism of action and
adverse/toxic effects were tested using PASSonline [137].

Molecular docking was performed using SwissDock [150], PatchDock Beta 1.3. [153,176],
AutoDockVina 1.1.2. [155], and UCSF Chimera 1.15 [177]; the similarity between compounds
was evaluated using SwissSimilarity [178]. We assessed the irritant/corrosive effect on the
skin and eyes, the effect on the reproductive system, biodegradability, and protein and DNA
binding alerts using Toxtree and OSIRIS Property Explorer [94].

Considering all the computed properties and their biological potential, “lead” com-
pounds were selected.

We also attempted to validate our experimental procedures using positive and nega-
tive controls. Therefore, we chose methionine sulfoximine and phosphinothricin as positive
controls for their proven activity of inhibiting glutamine synthetase [66,149]. As a negative
control, we initially thought of glutamic acid, being the parent molecule for our deriva-
tives [179]. However, it was interesting to observe that, according to the CLC-Pred software,
it can show cytotoxic activity on four cell lines [135]. Therefore, in the end, we chose ampi-
cillin as the negative control, which, according to the software, does not show cytotoxicity
in any cancer cell line. All compounds were characterized using the previously described
platforms and programs, passing through the same steps as the designed glutamic acid
derivatives. Molecular docking was assessed using the ProteinsPlus online platform [180].
The results are presented in Tables S13–S18 and Figure S3 (Supplementary Materials).

To increase the accuracy of the study, molecular docking was carried out using several
programs since they provided us with different information. PatchDock/ProteinPlus
indicated the most probable binding sites in the protein’s structure, calculated the surface
area available for ligand binding, and generated the grid-box coordinates. Autodock Vina
used these data and refined them, generating the values of ligand affinity for the target
molecule and the distance from the RMSD lower bound and RMSD upper bound. It
also showed the active torsions between atoms. Finally, SwissDock generated additional
information, such as deltaG values and FullFitness, which were used to calculate the
inhibition constant Ki.

4. Conclusions

Glutamic acid is an amino acid that can be manipulated very easily, and molecules
derived from its structure have great potential to become innovative drugs. Of the 123 new
GLA derivatives, 9 molecules proved to have biological potential, but more studies and
optimisation are needed. The selected compounds show cytotoxicity against breast ade-
nocarcinoma, lung cancer cell lines, colon carcinoma, and T cells from acute leukaemia.
Compound 2Ba5 exhibited the lowest toxicity, while derivative 4Db6 exhibited the most
intense bioactivity and could act like an ion channel modulator, protease inhibitor or
enzyme inhibitor. A molecular docking study determined the binding site of the 4Db6
compound in the GS structure, D subunit, and found cluster 1 to be the most promising,
having the lowest free energy value. Since compounds 5Aa1–5Ea3 were eliminated due to
their increased toxicity, it is most probable that a single glutamic acid residue bound to the
parent molecule cannot reduce the side effects or increase its biological activity. The toxicity
of these compounds did not change significantly compared with the parent molecules,
except for 7-hydroxynuciferine derivatives, which showed a higher risk of irritation, neg-
ative effects on the reproductive system, genotoxic carcinogenicity, tumorigenesis, and
a higher risk of mutagenicity compared with 7-hydroxynuciferine. On the other hand,
GLA-lycorine and GLA-dehydrolycorine complexes were less irritating to the skin than
lycorine and dehydrolycorine, according to data provided by Toxtree and OSIRIS (Table S12;
Supplementary Material). Further studies can be performed using these plant-derived



Molecules 2023, 28, 4123 20 of 28

molecules combined with more glutamic acid residues or poly-L glutamic acid to obtain
more favourable results.

Based on the results provided by Molinspiration and CLC-Pred, further studies can
be performed on other enzymes, ion channels, or proteases specific to the colon HCT-116
carcinoma cell line to simulate an interaction with the tumour itself. By marking isotopes
at carbon 9 (bonded to the phosphorus atom) in the structure of 4Db6, the molecule can be
analysed as a radiopharmaceutical compound (radioligand) as a potential candidate for
anti-cancer therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28104123/s1, Table S1: Programs and tested param-
eters; Table S2: Chemical structures, ID codes, and computational descriptors of glutamic acid
derivatives obtained with Biovia Draw; Table S3: Structural and physicochemical properties: proto-
nation and electric charge; Table S4: Water solubility; Table S5: Lipophilicity—partition coefficients;
Table S6: Toxicity—I: Cramer rules, Kroess and Verhaar scheme; Table S7: Toxicity—II. Carcinogenic
(genotoxic and non-genotoxic) and mutagenic effects evaluated using two different apps (Toxtree
and OSIRIS); Table S8: Toxicity—III. Irritant/corrosive effect on the skin and eyes, effect on the re-
productive system, biodegradability, and protein and DNA binding alerts, as assessed using Toxtree
and OSIRIS; Table S9: Permeability and interactions with P-gp. Enzyme inhibitory effect on isoforms
of cytochrome P450; Table S10: The number of broken rules, according to Lipinski, Ghose, Veber,
Egan, and Muegge and the bioavailability score, the drug-likeness score, the lead-likeness score and
the synthetic accessibility score; Figure S1: Homododecameric structure of the bacterial GS enzyme
and D subunit; Figure S2: Molecular docking results visualised using UCSF Chimera and AutoDock
Vina (Webina); Table S11: Chemical structures of colchicine, neferine, 7-hydroxynuciferine, lycorine,
and 5,6-dehydrolycorine; Table S12: Toxicity comparison of vegetal compounds and their complexes
with glutamic acid; Table S13: Characterization of phosphinothricin, methionine sulfoximine, glu-
tamic acid, and ampicillin; Table S14: Molecular dynamics simulation results for phosphinothricin,
methionine sulfoximine, glutamic acid, and ampicillin; Table S15: Molecular docking results for phos-
phinothricin, methionine sulfoximine, glutamic acid, and ampicillin; Figure S3: Molecular docking
results. Interaction with glutamine synthetase of (a) hosphinothricin, (b) methionine sulfoximine,
(c) glutamic acid, and (d) ampicillin; Table S16: Grid sizes used in Swissdock and energetic values
of the most probable ligand–receptor complexes for phosphinothricin, methionine sulfoximine, glu-
tamic acid, and ampicillin; Table S17: Molecular docking results obtained using AutoDock Vina for
phosphinothricin, methionine sulfoximine, glutamic acid, and ampicillin; Table S18: Grid sizes used
in AutoDock Vina for phosphinothricin, methionine sulfoximine, glutamic acid and ampicillin.
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Abbreviations

ADME Absorption, Distribution, Metabolism and Excretion
HAA Heavy aromatic atoms
BBB Blood–Brain Barrier
BD Bioavailability
CLC-Pred Cell Line Cytotoxicity Predictor
CNS MPO Central Nervous System Multiparameter Optimisation
ESOL Estimating Aqueous Solubility Directly from Molecular Structure
GS Glutamine synthetase
GSH Glutathione
GPCR G-protein coupled receptor
GPL General Public License
GUSAR General Unrestricted Structure–Activity Relationships
HA Heavy atoms
HLB Hydrophilic Lipophilic Balance
Ki Inhibition constant
LD50 Lethal dose 50
MR Molar refractivity
PDB Protein Data Bank
P-gp P-glycoprotein
pI Isoelectric point
QSAR Quantitative Structure–Activity Relationships
QSPR Quantitative Structure–Property Relationships
RB Rotatable bonds
SA Synthetic accessibility score
SLC25 The solute carrier family 25
SN1 Nucleophilic substitution type 1
SN2 Aliphatic nucleophilic substitution type 2
SOMP Site of Metabolism Prediction
TPSA Total polar surface area
TTC Threshold of Toxicological Concern
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