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Abstract: The development of highly active and low-cost catalysts for use in oxygen reduction
reaction (ORR) is crucial to many advanced and eco-friendly energy techniques. N-doped carbons
are promising ORR catalysts. However, their performance is still limited. In this work, a zinc-
mediated template synthesis strategy for the development of a highly active ORR catalyst with
hierarchical porous structures was presented. The optimal catalyst exhibited high ORR performance
in a 0.1 M KOH solution, with a half-wave potential of 0.89 V vs. RHE. Additionally, the catalyst
exhibited excellent methanol tolerance and stability. After a 20,000 s continuous operation, no obvious
performance decay was observed. When used as the air–electrode catalyst in a zinc–air battery (ZAB),
it delivered an outstanding discharging performance, with peak power density and specific capacity
as high as 196.3 mW cm−2 and 811.5 mAh gZn

−1, respectively. Its high performance and stability
endow it with potential in practical and commercial applications as a highly active ORR catalyst.
Additionally, it is believed that the presented strategy can be applied to the rational design and
fabrication of highly active and stable ORR catalysts for use in eco-friendly and future-oriented
energy techniques.

Keywords: oxygen reduction reaction; highly active and stable catalysts; hierarchical porous structures;
N-doped carbons; zinc–air battery

1. Introduction

The depletion of fossil fuels (e.g., oil, coal, and natural gas) and global warming due
to greenhouse gas emissions have prompted researchers worldwide to explore clean and
sustainable energy sources. Towards this end, many advanced energy technologies have
been developed, such as proton exchange membrane fuel cells (PEMFCs), direct methanol
fuel cells (DMFCs), metal–air batteries, etc. The oxygen reduction reaction (ORR) is a key
progress in these new energy technologies. Owing to its sluggish kinetics procedures, highly
active catalysts are required for this reaction. Generally, platinum (Pt)-based catalysts are
still the state-of-the-art and most widely used ORR catalysts to now. However, their high
cost, limited reserves, and poor stability have hampered the scale-up of their application
in practice. Thus, developing highly active and low-cost electrocatalysts to accelerate the

Molecules 2023, 28, 4257. https://doi.org/10.3390/molecules28114257 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28114257
https://doi.org/10.3390/molecules28114257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4608-0451
https://doi.org/10.3390/molecules28114257
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28114257?type=check_update&version=1


Molecules 2023, 28, 4257 2 of 15

ORR is crucial for the scale-up and expansion of the application scope of those advanced
and eco-friendly energy techniques mentioned above [1–20].

Carbons, especially N-doped carbons, have received intensive attention and became
among the hottest topics in the area of new energy thanks to their advantages such as high
ORR performance, low cost, abundant resources, high stability, etc. The past several years
have seen great progress in the design of carbon-based ORR catalysts. Despite this, their
performances still fail to fulfill the practical requirements for use.

For N-doped carbons, pyridinic and graphitic N species are generally regarded as
being ORR-active [21–25]. Thus, appropriately increasing pyridinic and graphitic N content
is expected to facilitate the enhancement of their ORR performance by creating more active
sites. Unlike graphitic N, which can be only formed during the high-temperature pyrolysis
procedures, pyridinic N can stably exist in numerous compounds in the form of a pyridine
ring [4,26]. During the pyrolysis procedure, these pyridinic N (or pyridine rings) can be
further converted into a graphitic N species [4]; this supplies an opportunity to facially
increase the content of these two active N species in carbons. In addition to pyridinic and
graphitic N species, Zn-N and Zn-O were recently discovered to be ORR-active as well [27].
Thus, compounds with a high content of pyridinic N coordinated with Zn2+ ions can be
the precursors to high-performance ORR catalysts.

In addition to creating active sites, access to mass transport and the accessibility
of active sites are also important for ORR catalysts. Towards this end, the creation of
hierarchically meso-/microporous structures can be helpful as they not only promote mass
transport, but also increase the intensity of exposed active sites, as well as their affinity and
accommodation (high surface area) [28–31]. The hard template method is one of the most
efficient approaches to produce porous carbons with exceptional pore structures and pore
size distributions [32]. As the structural characteristics of porous carbons largely depend
on the properties of the used templates, choosing suitable templates is crucial. SBA-15 has
been widely used as the template for the fabrication of hierarchically meso-/microporous
carbons thanks to their unique properties like parallel open mesochannels with narrow
pore-size distributions, thin pores wall of about 3–4 nm, a large pore volume and high
surface areas [33].

Thus, in this work, we demonstrate a zinc-mediated template synthesis strategy for
a highly active ORR catalyst with hierarchical porous structures by using 4,4′–bipyridine
(Bpy) and SBA-15 as the precursor and mesoporous templates, respectively. The optimal
catalyst exhibited high ORR performance in a 0.1 M KOH solution, with a half-wave
potential of 0.89 V vs. RHE. Additionally, the catalyst exhibited excellent methanol tolerance
and stability. After a 20,000 s continuous operation, no obvious performance decay was
observed. When used as the air–electrode catalyst in a zinc–air battery (ZAB), it delivered
an outstanding discharging performance, with peak power density and specific capacity
as high as 196.3 mW cm−2 and 811.5 mAh gZn

−1, respectively. Its high performance and
stability are expected to endow it with potential in practical and commercial applications
as highly active ORR catalyst. Additionally, it is believed that the presented strategy can be
applied for the rational design and fabrication of highly active and stable ORR performance
for those eco-friendly and future-oriented energy techniques.

2. Results
2.1. Physicochemical Characterization

To confirm the coordination of Bpy and Zn2+, the precursors were characterized
using X-ray photoelectron spectroscopy (XPS). Figure 1a illustrates the high-resolution N1s
spectra of Bpy and Bpy-0.5Zn derived from the XPS results. In the N1s spectra of Bpy, only
a single peak was observed at approximately 398 eV; this was assigned to the pyridinic
N in Bpy. For the blend of Bpy and ZnCl2 (Bpy-0.5Zn), the N1s peak was deconvoluted
into two peaks at approximately 399 and 398 eV, respectively, which were assigned to the
coordinated (N-Zn) and uncoordinated pyridinic N, respectively. The atomic composition
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of N1s in Bpy-0.5Zn revealed that N-Zn accounted for 60.3 at% (Figure 1b), suggesting that
a large portion of pyridinic N species in Bpy was coordinated with Zn2+.
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In order to study the influence of the addition of Zn2+ and SBA-15 on the thermal
stability of Bpy, thermogravimetric analysis (TGA) was conducted. Figure 1c shows the
TGA results. From the TGA curve of Bpy, it can be seen that a drastic mass loss was
observed when the temperature was above 100 ◦C. As the temperatures further rose, the
mass loss became more serious. When the temperature reached 200 ◦C, little Bpy residue
was detected, which should be attributed to the low melting and boiling points of Bpy (109
and 305 ◦C, respectively). After introducing ZnCl2, the thermal stability of the precursor
(Bpy-0.5Zn) was drastically enhanced, with approximately 10% of its mass being preserved
even after pyrolysis, suggesting Zn2+ addition was able to effectively enhance the thermal
stability of Bpy. This was attributed to the coordination between Zn2+ and Bpy, a fact
confirmed by its XPS results (Figure 1a). As for the precursor with SBA-15 (Bpy-SBA), the
mass retention rate reached approximately 10% after pyrolysis. This suggested an enhanced
thermal stability of Bpy-SBA, which we suggest was attributable to the confinement effect
of SBA-15. In the case of Bpy-0.5Zn-SBA, which contains both Zn2+ and SBA-15, the mass
retention rate ran as high as 40%, suggesting the synergistic effect of Zn2+ and SBA-15 in
enhancing the thermal stability of precursors.

To analyze the morphologies and microstructures, the obtained catalysts were observed
using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

The SEM image of NC-0.5 (Figure 2a), obtained without any SBA-15 usage, exhibited
an irregular bulk-like morphology. In contrast, NC-0-S and NC-0.5-S, as well as other cata-
lysts prepared from the precursors containing SBA-15 (Figures 2b,c and S1), demonstrated
bar-like morphologies identical to those of the SBA-15 templates (Figure 2d). Clearly,
these bar-like morphologies were inherited from SBA-15. In addition to bar-like mor-
phologies, SBA-15 also provided catalysts with ordered porous structures, as shown in
the TEM images in Figure 2e,f. Additionally, such porous structures enabled catalysts to
possess smoother mass transfer, better accessibility and more exposed active sites. To clarify
the distribution of various elements in NC-0.5-S, scanning TEM (STEM) and correspond-
ing energy-dispersive X-ray spectroscopy (EDS) mapping procedures were conducted
(Figure 2g,h). In the EDS mapping profiles (Figure 2h), C, N, and O signals were observed,
suggesting that C, N, and O were homogeneously dispersed in NC-0.5-S (Figure 2g,h).
However, in the case of Zn, the signal was weak, suggesting that most of the Zn was
removed during the preparation. This was also validated by the XPS and inductively
coupled plasma-atomic emission spectroscopy (ICP-AES) results (Table S1 and Figure S2),
where the Zn content was measured to be only 0.19 wt%.
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To further analyzed the porosity of the obtained catalysts, their N2 adsorption–
desorption isotherms were recorded and the results are shown in Figure 3a. From the
isotherms, we observed that all the three isotherms of NC-0.5, NC-0-S, and NC-0.5-S
demonstrated hysteresis loops in the medium pressure region, suggesting that there were
mesopores in all the catalysts. Comparing NC-0.5 with NC-0-S and NC-0.5-S, we also found
that the adsorbed volume of NC-0.5-S in the low-pressure region was much higher. The
pore size distribution of the obtained catalysts revealed that the catalysts derived from the
precursors that contained both Zn and SBA-15 had much higher pore densities of around
1 nm, which further confirms the synergistic effect of Zn and SBA-15 in improving the
porous structures of the catalysts. From the t-plot results, it can be observed that both the
micropore and external surface areas first increased and then decreased when the mass
ratio between ZnCl2 and Bpy increased from 0.4 to 0.6, which can be attributed to the
increasing carbon consumption caused by Zn2+ [8,34]. As Zn2+ was reduced into metallic
Zn by carbon, thus, moderate Zn2+ addition helped to create more porous structures by
consuming the carbon. As a result, the surface area increased. However, when too much
Zn2+ was introduced, the consumption of carbon substrate also become more serious. In
addition, excessive carbon consumption destroy the as-form porous structures as well,
especially microporous structures. Thus, excessive Zn2+ addition eventually led to a de-
crease in surface area. Consequently, NC-0.5-S had the highest surface area of 471.1 m2 g−1

(Figure 3b), as well as the highest external surface and micropore areas, which are believed
to supply more effective mass transfer and offer more exposed active sites.
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In order study the atomic surface compositions of the various catalysts, XPS measure-
ments were conducted. Among the obtained catalysts, Bpy-0.5Zn exhibited obvious Zn2p
peaks at approximately 1020 and 1045 eV (Figure 4a and Table S1). However, after pyrolysis
and hydrofluoric acid leaching, the Zn2p peaks disappeared; this suggested that most of
the Zn species were removed during the preparation. The total N content of the various
catalysts derived from the XPS results is shown in Figure 4b. As can be seen, NC-0.5 had
the lowest N content among the obtained catalysts at 4.82 at%, while the N content of
the catalysts prepared from the precursors containing SBA-15 or Zn were much higher
than that of NC-0.5. This suggestedthat SBA-15 and Zn helped to reserve more N content
during pyrolysis, an occurrence which was also attributed to the confinement effect and the
coordination between Bpy and Zn2+. Among the catalysts prepared from the precursors
with different degrees of Zn addition, NC-0.6-S had the highest N content of 7.95 at%, vs.
6.62 and 7.14 at% for NC-0.4-S and NC-0.5-S (Table S1). The high-resolution N1s spectra of
NC-0.5, NC-0-S, and NC-0.5-S revealed that there were five N species in catalysts derived
from the precursors containing Zn (Figures 4c–e and S3), including oxidized, graphitic,
pyrrolic, N-Zn and pyridinic N species. Figure 4f shows the atomic compositions of the
five N species in various catalysts. After pyrolysis, NC-0.5-S maintained the highest N-Zn
content of 26.8 at% among the obtained catalysts, which were recently discovered to be
ORR-active [27,35]. Regarding the oxidized N species that are considered inactive for the
ORR, the oxidized N contents in NC-0.5 and NC-0.5-S were much lower than that in NC-0-S,
suggesting that Zn addition also assisted the removal of O species in the catalysts.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 15 
 

 

Figure 3. (a) N2 adsorption–desorption isotherms for NC-0.5, NC-0-S, and NC-0.5-S; (b) pore size 

distributions for obtained catalysts; (c) external surface area, micropore area derived from the t-

plots, and BET surface areas for various catalysts. 

In order study the atomic surface compositions of the various catalysts, XPS meas-

urements were conducted. Among the obtained catalysts, Bpy-0.5Zn exhibited obvious 

Zn2p peaks at approximately 1020 and 1045 eV (Figure 4a and Table S1). However, after 

pyrolysis and hydrofluoric acid leaching, the Zn2p peaks disappeared; this suggested that 

most of the Zn species were removed during the preparation. The total N content of the 

various catalysts derived from the XPS results is shown in Figure 4b. As can be seen, NC-

0.5 had the lowest N content among the obtained catalysts at 4.82 at%, while the N content 

of the catalysts prepared from the precursors containing SBA-15 or Zn were much higher 

than that of NC-0.5. This suggestedthat SBA-15 and Zn helped to reserve more N content 

during pyrolysis, an occurrence which was also attributed to the confinement effect and 

the coordination between Bpy and Zn2+. Among the catalysts prepared from the precur-

sors with different degrees of Zn addition, NC-0.6-S had the highest N content of 7.95 at%, 

vs. 6.62 and 7.14 at% for NC-0.4-S and NC-0.5-S (Table S1). The high-resolution N1s spec-

tra of NC-0.5, NC-0-S, and NC-0.5-S revealed that there were five N species in catalysts 

derived from the precursors containing Zn (Figures 4c–e and S3), including oxidized, gra-

phitic, pyrrolic, N-Zn and pyridinic N species. Figure 4f shows the atomic compositions 

of the five N species in various catalysts. After pyrolysis, NC-0.5-S maintained the highest 

N-Zn content of 26.8 at% among the obtained catalysts, which were recently discovered 

to be ORR-active [27,35]. Regarding the oxidized N species that are considered inactive 

for the ORR, the oxidized N contents in NC-0.5 and NC-0.5-S were much lower than that 

in NC-0-S, suggesting that Zn addition also assisted the removal of O species in the cata-

lysts. 

 

Figure 4. (a) XPS spectra for various catalysts. (b) Total N content of various catalysts. High-reso-

lution N1s spectra: (c) NC-0.5, (d) NC-0-S, and (e) NC-0.5-S. The red line and hollow cycles refer to 

the raw data and sum of the peaks derived from the deconvolution of the N1s XPS spectra, respec-

tively. (f) Atomic compositions of N1s in NC-0.5, NC-0-S, and NC-0.5-S. 

2.2. Electrochemical Characterization 

In order to evaluate the ORR performances of the obtained catalysts, the cyclic volt-

ammetry (CV) and linear sweep voltammetry (LSV) curves were recorded, as illustrated 

in Figure 5a,b. Additionally, the half-wave potentials of the obtained catalysts, derived 

from their LSV curves, are summarized in Figure 5c. It can be observed from the CV curves 

Figure 4. (a) XPS spectra for various catalysts. (b) Total N content of various catalysts. High-
resolution N1s spectra: (c) NC-0.5, (d) NC-0-S, and (e) NC-0.5-S. The red line and hollow cycles
refer to the raw data and sum of the peaks derived from the deconvolution of the N1s XPS spectra,
respectively. (f) Atomic compositions of N1s in NC-0.5, NC-0-S, and NC-0.5-S.

2.2. Electrochemical Characterization

In order to evaluate the ORR performances of the obtained catalysts, the cyclic voltam-
metry (CV) and linear sweep voltammetry (LSV) curves were recorded, as illustrated in
Figure 5a,b. Additionally, the half-wave potentials of the obtained catalysts, derived from
their LSV curves, are summarized in Figure 5c. It can be observed from the CV curves that
NC-0.5 and NC-0-S exhibited poor ORR performance, with peak potential (Epeak) values of
0.75 and 0.79 V, respectively. The catalysts prepared from the precursors containing ZnCl2
and SBA-15 exhibited significantly higher performances, with Epeak values of 0.80, 0.86,
and 0.82 V for NC-0.4-S, NC-0.5-S, and NC-0.6-S, respectively. This was also confirmed by
assessing their half-wave potentials derived from the LSV curves, suggesting that Zn2+ and
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SBA-15 effectively synergistically enhanced catalyst performance. In particular, NC-0.5-S
exhibited the highest performance among the prepared catalysts and outperformed the
commercial Pt/C catalyst, with a 50 mV more positive half-wave potential (0.89 vs. 0.84 V).
To our knowledge, it is also one of the most active ORR catalysts used for ZABs (Table S3).
In order to evaluate the catalytic kinetic process on our catalysts, Tafel analysis was per-
formed. As illustrated in Figure 5d, NC-0.5-S had the lowest Tafel slope of 36.7 mV dec−1,
validating that it had the lowest overpotential and fastest kinetics during the ORR com-
pared with other catalysts. To further investigate the catalytic process of our catalysts, we
conducted rotating ring-disk electrode (RRDE) measurements in an oxygen-saturated 0.1 M
KOH solution at a rotating rate of 1600 rpm and calculated the corresponding peroxide
yields, as well as the electron transfer numbers. As illustrated in Figure 5e,f, NC-0.5-S had
the lowest peroxide yield (<10%) and the highest electron transfer number approaching
4. This was consistent with the values calculated from the Koutecký—Levich (K–L) slope
derived from the LSV curves under different rotating rates [36–38] (Figure S3), suggesting
that the ORR was accelerated almost completely through an ideal four-electron path in
NC-0.5-S.
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In addition to high ORR performance, methanol tolerance and stability are also impor-
tant for ORR catalysts, especially in practical applications. Thus, methanol tolerance and
stability of NC-0.5-S were also evaluated using chronoamperometry. From Figure 6, it can
be observed that NC-0.5-S also exhibited outstanding methanol tolerance and stability. As
shown in Figure 6a, the performance of Pt/C decreased sharply with methanol addition;
conversely, no significant changes were observed for NC-0.5-S, suggesting its high tolerance
upon the methanol addition. After 20,000 s continuous testing, NC-0.5-S maintained 96.1%
of its initial performance, whereas Pt/C lost almost one-fifth of its performance under the
same test conditions (Figure 6b).
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where the arrow indicates the methanol addition; (b) continuous i–t curves for NC-0.5-S and Pt/C.
During the test, the i–t curves were recorded at 0.62 V (vs. RHE) for both methanol tolerance and
stability evaluation.

2.3. Theoretical Calculation

In order to investigate the influence of the N dopant on the kinetics of the ORR, four
typical models with different N distributions and concentrations were selected (Figure 7a)
and studied using the density functional theory (DFT) approach (Figures S5–S8). The
obtained Gibbs free energy diagrams (Figure 7b,c) show that the intermediate species
adsorbed onto the N-bonded C atoms were significantly more stable than those adsorbed
onto C atoms that were surrounded by other C atoms. Moreover, the adsorption energies of
the intermediates were found to be lowered upon the introduction of an N dopant (Table S2),
rendering the adjacent carbon atoms less dense in terms of charge, which favoured the
adsorption of intermediates.
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Figure 7. DFT results for the ORR activities of the different carbon sites. (a) The various N-doped
carbon-type configurations examined in this study (gray spheres = carbon, blue spheres = nitrogen).
The carbon atoms denoted by red circles represent the active sites under investigation. (b) Free
energy diagrams for the ORR pathways on the C1, C2, C3, and C4 sites at U = 1.23 V. (c) Free energy
diagrams for the ORR pathways on the C1, C2, C3, and C4 sites at U = 0 V.

When a C atom was attached simultaneously to two N atoms, the adsorption energy
for the intermediate was further reduced (C2 model). This observation was attributed to
the lower electron density of the carbon atom, which was induced by the synergistic effect
of the two N atoms. In terms of the reaction kinetics, the calculation results suggested that
the rate-determining steps on the C1, C2, and C3 sites were the adsorption and activation
of oxygen. Thus, the stable adsorption of oxygen facilitated the ORR. Correspondingly,
the ORR overpotentials on the C2 and C3 sites dropped to 1.09 and 1.00 V, respectively,
in relation to that of the C1 site (i.e., 1.62 V), suggesting a superior ORR performance for
the C3 site. In terms of the C4 site, the rate-determining step was the desorption of *OH,
however. Although the lowest intermediate adsorption energy was determined for the C4
site, the corresponding ORR overpotential was 3.2 V, which was the highest value among
the four sites examined, thereby revealing that the desorption of the intermediate from the
C4 site was difficult. These results suggest that increasing the N content and concentrating
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the N dopants not only increased the number of active sites but also enhanced the intrinsic
activity of the nearby C active sites (C3). Among the models studied, the C3 active site,
which was surrounded by four N atoms in a square planar structure similar to that of
phthalocyanine or porphyrin, exhibited the highest intrinsic ORR activity.

2.4. Battery Test

In order to evaluate the potential of our catalyst for use in practical devices, we
fabricated a ZAB using NC-0.5-S as the air–electrode catalyst. For comparison, the ZAB
was also fabricated using a Pt/C catalyst. As shown in Figure 8a, NC-0.5-S exhibited a
much higher discharging performance compared with Pt/C in terms of a much higher
discharging current density and a much higher peak power density of 196.3 mW cm−2

vs. 145.5 mW cm−2 for Pt/C. After complete discharging, the ZAB based on NC-0.5-S
exhibited a specific capacity as high as 811.5 mAh gZn

−1 (Figure 8b). This was much higher
than that of the ZAB based on Pt/C (607.9 mW cm−2) and approached the theoretical
capacity of ZAB (820 mAh gZn

−1) [39]. So far as we know, it also ranks amongst the highest
values recently reported (Table S3) [40]. These results further confirm the outstanding
performance of NC-0.5-S in practical devices, which, we believe, will make it suitable and
potential for practical and commercial applications.
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3. Materials and Methods
3.1. Materials

The materials known as 4,4′–bipyridine (Bpy), zinc chloride anhydrous (ZnCl2), potas-
sium hydroxide (KOH), and hydrofluoric acid solution were purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). SBA-15 was purchased from
XFNANO (Nanjing, China). Nafion 5 wt% (DuPont D520) was purchased from DuPont Co.
(Wilmington, DE, USA). Carbon paper (TGP-H-060) was purchased from Toray industries
(Tokyo, Japan). All of the chemicals were of an analytical grade. Additionally, all the
materials were utilized directly without additional purification.

3.2. Preparation of Catalysts

Figure 9 shows the preparation schematics of the catalysts. First, 0.72 g of Bpy and
particular amounts of ZnCl2 (with the mass ratio of ZnCl2 to Bpy of 0, 0.4, 0.5 and 0.6)
were completely dissolved in 25 mL of ethanol. The mixture was vigorously stirred for
30 min, and then 0.3 g SBA-15 was added. The mixture was stirred for another 2 h and
filtered, followed by rinsing with ethanol and drying in a vacuum at 60 ◦C. The obtained
precursors were named Bpy-mZn-SBA, where “m” refers to the mass ratio of ZnCl2 to
Bpy. For comparison, the precursors without Zn or SBA-15 were also prepared and named
“Bpy-SBA” and “Bpy-0.5Zn”, respectively.



Molecules 2023, 28, 4257 9 of 15

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

comparison, the precursors without Zn or SBA-15 were also prepared and named “Bpy-

SBA” and “Bpy-0.5Zn”, respectively. 

 

Figure 9. Schematics of the catalyst preparation. 

The obtained precursors were first placed in a tube furnace and then heated at 950 °C 

in an N2 atmosphere for 1 h at a heating rate of 2 °C min−1. After it had cooleddown natu-

rally in an N2 atmosphere, the powder was collected and leached with a hydrofluoric acid 

solution (40 wt%) for 8 h at room temperature. This was followed by filtration, rinsing 

with deionized water and alcohol, and drying overnight in a vacuum at 60 °C. The ob-

tained catalysts were denoted as NC-m-S, where “m” refers to the mass ratio between 

ZnCl2 and Bpy in the precursor and “S” refers to the SBA-15 used. To enable a better com-

parison, catalysts without Zn or SBA-15 were also prepared and named NC-0-S and NC-

0.5, respectively. 

3.3. Preparation of Working Electrodes 

For electrochemical measurements, a glassy carbon electrode (GCE, ⌀ 5 mm) was 

used as the working electrode substrate. Before every measurement, the GCE was cleaned 

with ethanol in an ultrasonic bath, polished with α-Al2O3 slurry (50 nm) on a micro cloth, 

and rinsed with DI water. 

For catalyst ink preparation, 5.0 mg of catalyst and a 1 mL Nafion ethanol solution 

(0.25 wt%) were thoroughly mixed under ultrasound conditions for about 30 min. Addi-

tionally, 20 μL slurry was then coated onto the GCE and dried under an infrared lamp. 

The catalyst loading on the GCE was calculated to be 0.5 mg cm−2. For comparison, a com-

mercial Pt/C (20 wt%, Johnson Matthey Corp.) catalyst was also used for ORR (Pt loading: 

0.1 mgPt cm−2). 

3.4. Preparation of Air Electrode for ZAB 

For air electrode preparation, Toray carbon paper (TGP-H-060) was used as the sub-

strate. A diffusion layer was formed by painting a suspension of carbon black (XC-72R) 

and polytetrafluoroethylene (PTFE) onto one side of the carbon paper. During the prepa-

ration, the mass ratio between carbon black and PTFE was fixed at 3:2. 

For catalyst layer fabrication, a catalyst ink was first prepared through the same pro-

cedure described in the working electrode preparation section. The ink obtained was 

painted onto the other side of the carbon paper and dried under an infrared lamp. The 

catalyst loading for NC-S900 was calculated to be 1.0 mg cm−2. For comparison, Pt/C was 

also used to fabricate an air electrode through the same procedures (Pt loading: 0.2 mgPt 

cm−2). 

  

Figure 9. Schematics of the catalyst preparation.

The obtained precursors were first placed in a tube furnace and then heated at 950 ◦C
in an N2 atmosphere for 1 h at a heating rate of 2 ◦C min−1. After it had cooleddown
naturally in an N2 atmosphere, the powder was collected and leached with a hydrofluoric
acid solution (40 wt%) for 8 h at room temperature. This was followed by filtration,
rinsing with deionized water and alcohol, and drying overnight in a vacuum at 60 ◦C. The
obtained catalysts were denoted as NC-m-S, where “m” refers to the mass ratio between
ZnCl2 and Bpy in the precursor and “S” refers to the SBA-15 used. To enable a better
comparison, catalysts without Zn or SBA-15 were also prepared and named NC-0-S and
NC-0.5, respectively.

3.3. Preparation of Working Electrodes

For electrochemical measurements, a glassy carbon electrode (GCE,
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5 mm) was used
as the working electrode substrate. Before every measurement, the GCE was cleaned with
ethanol in an ultrasonic bath, polished with α-Al2O3 slurry (50 nm) on a micro cloth, and
rinsed with DI water.

For catalyst ink preparation, 5.0 mg of catalyst and a 1 mL Nafion ethanol solution
(0.25 wt%) were thoroughly mixed under ultrasound conditions for about 30 min. Addi-
tionally, 20 µL slurry was then coated onto the GCE and dried under an infrared lamp.
The catalyst loading on the GCE was calculated to be 0.5 mg cm−2. For comparison, a
commercial Pt/C (20 wt%, Johnson Matthey Corp.) catalyst was also used for ORR (Pt
loading: 0.1 mgPt cm−2).

3.4. Preparation of Air Electrode for ZAB

For air electrode preparation, Toray carbon paper (TGP-H-060) was used as the sub-
strate. A diffusion layer was formed by painting a suspension of carbon black (XC-72R) and
polytetrafluoroethylene (PTFE) onto one side of the carbon paper. During the preparation,
the mass ratio between carbon black and PTFE was fixed at 3:2.

For catalyst layer fabrication, a catalyst ink was first prepared through the same proce-
dure described in the working electrode preparation section. The ink obtained was painted
onto the other side of the carbon paper and dried under an infrared lamp. The catalyst
loading for NC-S900 was calculated to be 1.0 mg cm−2. For comparison, Pt/C was also
used to fabricate an air electrode through the same procedures (Pt loading: 0.2 mgPt cm−2).

3.5. Characterization

The morphologies and nanostructures of the catalysts were observed using scanning
electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM images
were obtained on a JSM-7100F field emission scanning electron microscope (JEOL, Tokyo,
Japan), with an acceleration voltage of 5 kV. Additionally, the TEM was operated on a
JEM-2100 transmission electron microscope (JEOL, Tokyo, Japan) at an acceleration voltage
of 200 kV. The surface atomic composition of various catalysts and precursors were studied
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using the X-ray photoelectron spectroscopy (XPS) on an ESCALAB 250 X-ray photoelectron
spectrometer (Thermo-VG Scientific, Waltham, MA, USA). During the XPS measurements,
the X-ray electron spectra were excited by monochromatized AlKα radiation. The N2
adsorption–desorption isotherms were recorded using a Tristar II 3020 automatic surface
area and pore analyser (Micromeritics, Atlanta, GA, USA) at 77 K. The thermal stabilities
of various precursors were evaluated using thermogravimetric analysis (TGA) on a Q600
thermal gravimetric analyser (TA Instrument, Newcastle, DE, USA). During the test, N2
was used as the protection gas. The temperature range used was 25–900 ◦C, and heating
rate is fixed at 10 ◦C min−1. The Zn contents in Bpy-0.5Zn and NC-0.5-S were evaluated
using inductively coupled plasma-atomic emission spectrometry (ICP-AES) on an Agilent
720ES inductively coupled plasma atomic emission spectrometer (Agilent, Santa Clara,
CA, USA).

3.6. Electrochemical Measurements

In order to evaluate catalysts’ electrochemical performance, a three-electrode glass
cell was used. Before every measurement, the KOH solution (0.1 M) was saturated with
O2 (99.999%) for at least 30 min. All the electrochemical measurements were carried out at
room temperature on an Interface 1010B electrochemical workstation (Gamry, Warminster,
PA, USA), coupled with a rotating ring-disk electrode (RRDE) system (Gamry, Warminster,
PA, USA). During the measurements, an Hg/HgO/KOH (1M) (Gaoss Union, Wuhan,
China) and a graphite stick were used as the reference and counter electrodes, respectively.
All the potentials, initially measured versus Hg/HgO/NaOH (1M) (Gaoss Union, Wuhan,
China), were converted into the ones assessed versus reversible hydrogen electrode (RHE)
according to Evs.RHE = Evs.Hg/HgO + Eθ

Hg/HgO + 0.059 pH. The Eθ
Hg/HgO value was 0.098 V.

All the current densities were normalized to the GCE’s geometric area (0.1964 cm2).
The linear sweep voltammetry (LSV) measurements were conducted at a scan rate of

5 mV s−1 in an O2-saturated 0.1 M KOH solution at a rotating rate of 1600 rpm.
The electron transfer number per oxygen molecule involved was first calculated based

on the Koutecký–Levich (K–L) equations following [36–38]:

J−1 = JL
−1 + JK

−1 = B−1ω−1/2 + JK
−1

B = 0.62nFC0D0
2/3ν−1/6

JK = nFκC0

The rotating ring-disk electrode (RRDE) measurements were also conducted at a
rotating rate of 1600 rpm in an O2 saturated 0.1 M KOH solution using a glassy carbon disk
with a Pt ring, which was biased at 1.42 V (vs. RHE). The peroxide yields (η) and the electron
transfer number (n) per oxygen molecule were calculated based on the following equations:

η = 200Ir(NId + Ir)−1

n = 4Id(Id + IrN−1)−1

where Ir and Id refer to the ring and disk currents, respectively, and N is the collection
efficiency, which was confirmed to be 0.36 based on the reduction of K3Fe(CN)6.

For the Tafel plots, the kinetic current was calculated from the mass-transport correc-
tion of the RDE using the following equation [4,5,41]:

Ik =|ILI(IL − I)−1|

in which J is the measured current density; JK and JL are the kinetic and diffusion lim-
iting current densities, respectively; ω is the angular velocity of the disk (ω = 2πN, N
denotes the linear rotation rate); n is the electron transfer number involved in the reduc-
tion of one O2 molecule; F is the Faraday constant (F = 96,485 C mol−1); C0 is the bulk
concentration of O2; D0 is the diffusion coefficient of O2 in the KOH electrolyte; ν is the
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kinetic viscosity of the electrode; κ is the electron transfer rate constant; and n and JK are
obtained from the slope and intercept of the K–L plots, respectively. By using the values:
C0 = 1.2 × 10−3 mol L−1, D0 = 1.9 × 10−5 cm2 s−1, and ν = 0.01 cm2 s−1, the electron
transfer number (n) was calculated.

The methanol tolerance and stability of our catalysts were evaluated by using chronoam-
perometry measurements. During the measurements, the potential was set to 0.62 V
(vs. RHE).

3.7. Battery Tests

A home-made ZAB device was designed for the tests. A 6 M KOH solution containing
0.2 M zinc acetate was used as the electrolyte, and a zinc plate was used as the anode. The
discharging–charging polarization curves were obtained on an Interface 1010B potentiostat
(Gamry, Warminster, PA, USA). The complete discharging experiment was conducted using
galvanostatic technology on a BTS-3000 battery testing system (Newware, Shenzhen, China)
under a current density of 5 mA cm−2. The air electrode and Zn electrode areas exposed to
the electrolyte solution were all 1 cm2. Additionally, the Zn plate was directly used as the
electrode without any pre-treatments. After the electrolyte was added, the ZAB was let
stand still for 1 h before it was tested.

3.8. Theoretical Calculations

All the calculations were carried out in the Vienna ab initio simulation package (VASP)
based on spin-polarized density functional theory (DFT) [42]. The empirical dispersion
correction (DFT-D3) method was applied to describe the long-range van der Waals (vdW)
interactions in layered materials [43]. The exchange–correlation energy was expressed via
a generalized gradient approximation with the Perdew–Burke–Ernzerhof (GGA-PBE) func-
tional, and the projector augmented wave (PAW) pseudopotential was used to represent
core electrons effects [44,45]. For all the calculations, the cutoff energy was set to be 500 eV
and a Gaussian electron smearing method with σ = 0.05 eV were used. The convergence
tolerance for residual force and energy on each atom during structure relaxation was set to
0.05 eV/Å and 10−5 eV, respectively. For the model of pure carbon, we used a super cell of
lateral size 3 × 3, and the Brillouin zone was sampled with (5 × 5 × 1) Monkhorst–Pack
k-points. For the model of N-doped carbon, we used a super cell of lateral size 6 × 6, and
the Brillouin zone was sampled with (3 × 3 × 1) Monkhorst–Pack k-points. A vacuum
layer of 15 Å along was introduced the z direction to eliminate the spurious interactions
between adjacent sheets.

4. Conclusions

In summary, a zinc-mediated template synthesis strategy for a highly active ORR
catalyst with hierarchical porous structures was presented in this work. The optimal catalyst
exhibited high ORR performance in a 0.1 M KOH solution, with a half-wave potential
of 0.89 V vs. RHE. Additionally, the catalyst exhibited excellent methanol tolerance and
stability as well. After 20,000 s continuous operation, no obvious performance decay was
observed. When it was used an air–electrode catalyst in a zinc–air battery (ZAB), it delivered
an outstanding discharging performance, with peak power density and specific capacity
as high as 196.3 mW cm−2 and 811.5 mAh gZn

−1, respectively. Its high performance
and stability are expected to endow it with uses potential in practical and commercial
applications as a highly active ORR catalyst. Additionally, it is believed that the presented
strategy can be applied for the rational design and fabrication of highly active and stable
ORR performance for use in eco-friendly and future-oriented energy techniques.
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