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Abstract: Sequential reactions of aminoalkynes represent a powerful tool to easily assembly bio-
logically important polyfunctionalized nitrogen heterocyclic scaffolds. Metal catalysis often plays
a key role in terms of selectivity, efficiency, atom economy, and green chemistry of these sequen-
tial approaches. This review examines the existing literature on the applications of reactions of
aminoalkynes with carbonyls, which are emerging for their synthetic potential. Aspects concerning
the features of the starting reagents, the catalytic systems, alternative reaction conditions, pathways
and possible intermediates are provided.
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1. Introduction

Aminoalkynes are bifunctional derivatives that can undergo a diverse array of trans-
formations. They offer sequential reactions with an electrophile and a nucleophile, and are
ideal for cascade reactions. Sequential reactions represent a powerful tool to build up sim-
ple or more complex polyfunctionalized organic scaffolds from readily available reagents
with high efficiency, selectivity, and atom economy [1–3]. Recently, applications of sequen-
tial reactions of aminoalkynes have been a very active research field in organic synthesis
and medicinal chemistry. In particular, sequential reactions of β-, γ-, and δ-aminoalkynes
to afford a variety of heterocyclic scaffolds were explored. Inactivated alkynes moieties
are not very reactive toward nucleophiles. Their behavior changes by activation of the
C-C triple bond by a metal catalyst. Various biologically important nitrogen heterocycles
were directly synthesized in an easy way by means of intramolecular hydroamination of
aminoalkynes in the presence of several transition metal as well as lanthanide catalysts [4,5].
The aptitude to form π- and σ-complexes can help in the choice of catalysts for the desired
transformations when bi- or polyfunctional substrates are involved [6]. The reaction of γ-
and δ-aminoalkynes with sulfonyl azides in the presence of Ru3(CO)12 catalyst efficiently
afforded cyclic amidines of relevance in medicinal and coordination chemistry as well
as in materials science [7]. The gold(I)-catalyzed tandem cyclization of γ-aminoalkynes
with alkynes in water led to diversely substituted pyrrolo[1,2-a]quinolines [8]. Zhou et al.
extended this reaction using less active terminal amidoalkynes in similar conditions [9].
The CuCl-catalyzed cascade transformation of internal β-aminoalkynes with alkynes under
microwave irradiation gave diversely substituted tetrahydropyrrolo[1,2-a]quinolones [10].
An intramolecular gold-catalyzed hydroamination/aza-Diels–Alder tandem process of
β-/γ-aminoalkynes with high regio- and diastereoselectivity and up to almost complete
chemoselectivity showed great efficiency in a one-pot approach to the complex nitrogen
heterocyclic derivatives of medicinal importance, such as the one-step synthesis of in-
cargranine B aglycone and (±)-seneciobipyrrolidine (I) [11]. Faňanás, Rodríguez, and
co-workers [12] described the preparation of complex pyrrolidines from readily available
N-Boc-derived β-aminoalkynes and alkenes or alkynes through relay actions of PtII or
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Brønsted acids [13]. The reaction of α-aminoalkynes with carbon monoxide and selenium
yielded 5-alkylideneselenazolin-2-ones stereoselectively via cycloaddition of in situ gen-
erated carbamoselenoates to a carbon–carbon triple bond. β-Aminoalkyne also afforded
the corresponding six-membered selenium-containing heterocycle with the aid of CuI [14].
An operationally simple palladium-catalyzed intramolecular hydroaminocarbonylation
of a variety of aminoalkynes directly provided a viable approach to a variety of valuable
seven- and eight-membered lactams with high chemoselectivity and regioselectivity [15].
A sequential heterogeneous PtI2-catalyzed hydration of δ-aminoalkynes followed by in-
tramolecular cyclization and intermolecular addition as well as ring-expansion cascade
reaction with another electron-deficient alkynes was developed for the synthesis of various
eight-membered nitrogen heterocycles with excellent yields under mild reaction conditions.
The simple PtI2 could be easily recycled [16]. Moreover, a PtI2-catalyzed formal three-
component cascade cycloaddition reactions between γ-aminoalkynes and electron-deficient
alkynes gave highly functionalized cyclohexadiene-b-pyrrolidines with good yields [17].
Finally, among the domino and multicomponent processes that involve aminoalkynes, their
cascade reactions with carbonyl derivatives stand out as a highly versatile tool to build
up libraries of nitrogen-containing heterocyclic scaffolds with diversity and molecular
complexity. This review will examine the literature on this last topic and is organized
according to the structure of the aminoalkyne substrate. Aspects concerning the features
of the catalytic systems, the substrate scope, insight into the reaction pathways, possible
intermediates, and alternative conditions are discussed.

2. Sequential Reactions of α-Aminoalkynes (Propargylamines) with Carbonyls

Propargylic amine derivatives represent useful α-aminoalkynes building blocks for the
construction of nitrogen-containing heterocyclic scaffolds through their sequential reactions
with carbonyls. The gold-catalyzed reaction of propargylamine 1 with dialkyl acyclic/cyclic
ketones, methyl, aryl/heteroaryl ketones and aldehydes bearing α-hydrogens 2 allowed a
simple approach to pyridines 3 through a sequential amination–cyclization–aromatization
cascade (Scheme 1) [18].
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Scheme 1 Scheme 1. Gold-catalyzed synthesis of pyridines from propargylamine and carbonyls.

The catalyst was envisaged to promote both the amination of carbonyl compounds 2
and the regioselective 6-endo-dig cyclization of the N-propargylenamine (N-propargyldienamine)
intermediate 5 (Scheme 2).
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A variety of catalysts were tested in the reaction of 1 with 2. In particular, NaAuCl4·2H2O
resulted in a highly efficient catalyst. Moreover, Au 8 was synthesized and applied as
bifunctional catalyst. It was found that imidazolyl group acted as a Lewis base to catalyze
the condensation of carbonyl compounds with propargylamine to form the imino inter-
mediate, and the involved Au+-complex species activated the alkynyl moiety to give the
dehydropyridine derivative, which underwent auto-oxidation reaction to afford the target
pyridines (Scheme 3) [19].
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Scheme 3 Scheme 3. Sequential reactions of carbonyl compounds and propargylamine catalyzed by
Au-complex 8.

Copper salts were also effective catalysts in the reaction of cyclic ketones with propar-
gylamine, and the highest product yields were observed in isopropanol (i-PrOH) in the
presence of 5.0 mol% CuCl2 in air. Decreased yields among cyclic ketones were observed
in the following order: six-membered >> eight-membered > five-membered ∼ seven-
membered. However, the inexpensiveness of the catalyst and the tolerance to a wide
number of functional groups (FG) in the ketone make the procedure very suitable for
large-scale preparation of fused pyridines (Scheme 4) [20].
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Selective aspects of the reaction of steroidal carbonyls with propargylamine were
investigated. According to the results, the regioselective pyridine fusion to the cyclic
skeleton was addressed by suitable choice between the substrate bearing a saturated or
conjugated carbonyl group (Scheme 5) [18].
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Analogously, new A-ring pyridine fused androstanes in 17a-homo-17-oxa (D-homo lac-
tone), 17α-picolyl or 17(E)-picolinylidene series were obtained by reacting 4-en-3-one or 4-
ene-3,6-dione D-modified androstane derivatives with propargylamine under the presence
of a Cu(II) catalyst, and evaluated for potential anticancer activity in vitro (Scheme 6) [21].
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Similarly, the efficient synthesis of pyridine rings fused to the 3,4-positions of the
steroid nucleus was described via the Cu(II)-catalyzed reaction of propargylamine with 17β-
hydroxyandrost-4-en-3-one, 17α-methyl-17β-hydroxyandrost-4-en-3-one, or 17β-hydroxyestr-
4-en-3-one [22]. The procedure was also applied to the synthesis of heterocyclic betulin
derivatives (Scheme 7) [23,24].
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Scheme 7 Scheme 7. Copper-catalyzed synthesis of betulin derivatives.

Optimization of the synthesis of steroidal pyridines was tried by prolonging the
reaction time and varying the catalyst loading. In some cases, the use of NaAuCl4·2H2O
instead of CuCl and the addition of activated molecular sieves (MS) to the reaction mixture
led to significant improvement (Scheme 8) [25].
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Several other applications of the methodology accomplished the preparation of signif-
icant scaffolds. Indeed, the chemical synthesis of highly potent and acid-stable inhibitors
of hedgehog signaling carbacyclopamine analogue 11 was reported. The gold-catalyzed
amination–annulation–aromatization sequence applied to the inseparable mixture of the
isomers 9 and 10 regioselectively furnished, after removal of the tert-butyldimethylsilyl
ether (tetrabutylammonium fluoride, THF, 25 ◦C), carbacyclopamine analogue 11 with 36%
overall yield for the two steps (Scheme 9) [26].
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Furthermore, the gold-catalyzed reaction of 1-benzylpiperidin-4-one with propargy-
lamine efficiently afforded the potassium channel modulator 6-benzyl-5,6,7,8-tetrahydro-
1,6-naphthirine 12 (Scheme 10) [27].
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Moreover, the gold-catalyzed sequential condensation–cyclization–aromatization pro-
cedure was extended as the key step for the preparation of BMS-846372, a potent and orally
active human CGRP receptor antagonist employed for migraine therapy (Scheme 13) [31].
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The methodology also resulted in a viable tool for the preparation of aryl and het-
eroaryl derivatives of benzomorphanes 13, pharmacologically active as inhibitors of 11ß-
hydroxysteroid dehydrogenase (HSD1) (Scheme 14) [32].
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The synthetic approach has yielded a number of scaffolds suitable for the design of
performance-diverse screening libraries (Scheme 15) [33].
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The reaction of 2-tetralones and propargylamine in the presence of complexes of gold
or copper, preferably NaAuCl4 and CuC1, was employed to synthesize octahydroben-
zoquinoline derivatives 16 as inhibitors of 11β-hydroxysteroid dehydrogenase for the
treatment of metabolic disorders, such as metabolic syndrome, diabetes, obesity, and dys-
lipidemia. The reaction is usually run in alcohols at temperatures ranging from 20 to
120 ◦C through conventional heating or microwave irradiation. The resulting pyridine was
reduced to the corresponding piperidine (Scheme 16) [34].
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The sequential gold-catalyzed condensation/annulation reaction of the 1,3-dihyrdo-
2H-inden-2-one with the propargylamine provided the corresponding 9H-indeno pyridine
17 as the ligand for the synthesis of an olefin polymerization catalyst (Scheme 17)[35].
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The gold(III)-catalyzed reaction of simple β-ketoesters with propargylamines achieved
the synthesis of potentially bioactive 2,5-dihydropyridines 18 with satisfactory yields. The
best results were observed using 5 mol% of the cheaper NaAuCl4 in MeOH as solvent. The
dichloro(2-pyridinecarboxilato)gold (pic)AuCl2) resulted in a less effective catalyst, and
the reaction failed to occur in the presence of (Ph3P)AuCl/AgOTf catalytic system or by
using platinum(II) and platinum(IV) catalysts. Recovery of the starting materials when
triflic acid (TfOH) was used instead of NaAuCl4 ruled out the formation of the product
by Brønsted acid catalysis. Propargylamines unsubstituted at the triple bond (R4=H) or
with an aromatic ring at this position gave higher yields than propargylamines bearing an
aliphatic chain at the same position (Scheme 18) [36].
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Substituted pyridinium salts 19 were obtained under mild conditions by a con-
densation reaction between carbonyls and propargylamine under the presence of an
Ag2CO3/HNTf2 synergistically acting catalyst system. The one-pot transformation should
proceed via sequential 6-endo-dig cyclization of the in situ generated propargylenamine/
protonolysis of the resulting vinyl–silver intermediate. The silver(I)-catalyzed cyclization
reaction was exclusively selective for the formation of six-membered rings. Only 6-endo-dig
cyclized pyridinium products were obtained, even with substrates bearing an electron-
withdrawing group at the acetylenic position, which underwent unusual inversion of the
reactivity usually observed in Michael-type reactions. CH3CN was the solvent of choice in
this one-pot transformation (Scheme 19) [37].
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Interestingly, hetero-anthracene derivatives such as 20, used in the preparation of
organic light-emitting devices, were practically obtained under metal-free conditions
(Scheme 20) [38].
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Moreover, substituted dihydrophenanthrolines 21 were easily obtained from 2-substituted
6,7-dihydroquinoline-8(5H)-ketones and propargylamine in alcohol at 70–130 ◦C. This
metal-free method has the advantages of safety, cleanness and wide substrate applicability.
The product can be efficiently isolated by adjusting the temperature or prolonging the
reaction time (Scheme 21) [39].
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The reaction of readily available α,ß-unsaturated carbonyl compounds with propar-
gylamine provided a high atom- and pot-economy strategy for the synthesis of polyfunc-
tionalized pyridines under metal-free conditions with relevant functional group tolerance.
The exploration of bases (CsCO3, NaHCO3, NaOAc, K2HPO4, DBU) and solvents (toluene,
DCE, THF, DMSO, DMF) achieved the optimization of the reaction conditions by reacting
the propargylamines with the unsaturated aldehydes in DMF in the presence of NaHCO3
at 80 ◦C [40]. The application to the synthesis of a variety of natural products was reported
(Scheme 22) [41].
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The method was applied to the synthesis of pyridines from the cosmetic, flavor
and fragrance agent (S)-(−)-perillaldehyde and the flavoring agent found in cardamom,
(1R)-myrtenal (Scheme 23).
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The process also achieved the total syntheses of suaveoline alkaloids (Scheme 24) [42].
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The reaction of propargylamines with (hetero)aromatic aldehydes efficiently afforded
β-carbolines, γ-carbolines and other fused azaheteroaromatics under metal-free conditions
(Scheme 26) [44].
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Scheme 26 Scheme 26. Synthesis of β- and γ-carbolines from indole aldehydes and substituted propargylic
amines.

A one-pot, three-component method allowed the preparation of 3-substituted pyridines
and carbolines 22 via copper-free, palladium-catalyzed Sonogashira cross-coupling with
aryl iodides, followed by 6π-aza cyclization. This method selectively provided the fused
pyridines with good yields (67–92%) (Scheme 27) [45].
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Scheme 27 Scheme 27. Synthesis of 4-benzylated carbolines 22.

Alternatively, a further preparation method for the polysubstituted pyridine deriva-
tives comprised the employment of an α,β-unsaturated carbonyl compound and propar-
gylamine hydrochloride as raw materials in chlorobenzene (PhCl) with the sequential
addition of 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) and magnesium sulfate (MgSO4)
(Scheme 28). The advantage of this alternative procedure is a relatively strong industrial
application prospect [46].
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Accordingly, an easy synthesis of onychine 23, an azafluorenone alkaloid isolated from
a plant of the Annonaceae family, was reported to occur through aza-Claisen rearrangement,
tautomerization, 1,5-sigmatropic hydrogen shift, 6π-electron cyclization, and oxidation
of the N-propargyl enamine, obtained in a yield of 61% by dehydration condensation of
but-2-yn-1-amine with 1,3-indanedione (Scheme 29) [47].
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Scheme 29 Scheme 29. Total synthesis of onychine 23.

The sequential O-propargylation of aromatic hydroxyaldehydes/condensation reac-
tion with propargylamine allowed a simple approach to the synthesis of chromenopyridine
and chromenopyridinone derivatives. The intramolecular cycloaddition reaction between
the alkyne and azadiene of 24, which is formed as an intermediate, furnished the desired
skeleton of chromenopyridine 25 (Scheme 30) [48].
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Moreover, the N-propargylation of aromatic aminobenzaldehydes, followed by reac-
tion with propargylamine in the presence of DBU, gave the corresponding benzo[h][1,6]-
naphthyridines 30 (Scheme 31) [49]. The lack of reactivity of the 2-(prop-2-yn-1-ylamino)
benzaldehyde was surmounted by double propargylation of the aniline derivative leading
to the intermediate 27, which cyclized in refluxing ethanol to afford the N-propargyl deriva-
tive 28 with 80% yield. The 3-methylbenzo[h][1,6]-naphthyridine 30 was isolated by increas-
ing the reaction time to 48 h. Oxidation of 28 with CrO3 in pyridine in dichloromethane at
room temperature gave the desired product 29 with 95% yield.
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Moreover, a variety of starting materials 31 synthesized by Sonogashira coupling
reactions afforded the corresponding naphthyridine derivatives 32 by reacting with propar-
gylamine in refluxing EtOH in the presence of DBU (Scheme 32).
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The approach was extended to the synthesis of the chromenopyrazinone 33 (Scheme 33).
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Scheme 33 Scheme 33. Synthesis of the chromenopyrazinone 33.

Pyrazines 34 were also synthesized through the gold-catalyzed coupling reaction of
aldehydes with propargylamine by means of a different sequential process; 1,2-dichloroethane
(DCE) was the best choice as solvent. The addition of five equivalents of H2O under other-
wise identical conditions was advantageous for the reaction outcome. The [(Ph3P)AuNTf2]
catalyst (5 mol%) was identified as the most effective. The feature of the phosphine showed
little effect. Any significant difference was observed by the substitution of [(Ph3P)AuNTf2]
with [P(tBu)2(o-biphenyl)AuNTf2]. AuCl3 resulted in a less effective catalyst, while differ-
ent Lewis acid catalysts, such as PtCl2, InCl3, Bi(OTf)3, ZnCl2, and AgNTf2, failed to afford
the product. The reaction of aromatic and α,β-unsaturated aldehydes with two equivalents
of propargylamine gave the corresponding pyrazine derivatives with high yields. The
catalyst loading could be reduced from 5 mol% to 1 mol% without significant loss of yield
of the product when the reaction was carried on a 1 gram scale (Scheme 34) [50].
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Scheme 34 Scheme 34. Gold-catalyzed synthesis of pyrazines 34 from the reaction of propargylamine with
aldehydes.

The following reaction mechanism was suggested on the base of labeling experiments
and density functional theory (DFT) (Scheme 35). In situ generated gold(I)-imine complex
A undergoes a chemo- and regioselective hydroamination reaction with propargylamine to
produce the intermediate B. The following protonolysis of the Au-C bond generates the
intermediate C, which cyclizes to afford the intermediate D. This new cationic species read-
ily releases benzaldehyde by hydrolysis, regenerating the gold catalyst and producing the
2,5-dimethylenepiperazine E, which readily isomerizes to its more stable 2,5-dimethyl-1,4-
dihydropyrazine isomer F. Then, an intermolecular enamine addition from F towards the
gold-activated benzaldehyde occurs to produce the intermediate G. Finally, the subsequent
isomerization–aromatization sequence gives the reaction product 34.
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Scheme 35 Scheme 35. Proposed mechanism for the Au-catalyzed formation of pyrazines 34.

The heterogeneous gold(I)-catalyzed version of the cascade reaction of aldehydes
with propargylamine occurred in 1,2-dichloroethane (DCE) at 40 ◦C under the presence
of the readily available mesoporous MCM-41-immobilized phosphine gold(I) complex
(MCM-41-PPh3-AuNTf2). The easy-to-prepare heterogeneous gold(I) catalyst could be
recovered by filtration and recycled (Scheme 36) [51].
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Scheme 36 Scheme 36. Sequential reaction of propargylamine with aldehydes catalyzed by MCM-41-
immobilized phosphine gold(I) complex [MCM-41-PPh3-AuNTf2].

A variant of a sequential multicomponent assembly process (MCAPs)–cyclization ap-
proach in accord with the plan outlined in Scheme 37 was explored for preparing a variety
of 1,2,3-triazolo-1,4-benzodiazepines 35 of possible medical relevance by a sequential re-
ductive amination of 2-azidobenzaldeyde derivatives with propargylamine/intramolecular
Huisgen cycloaddition [52].
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A wide library was obtained through N-functionalizations, palladium-catalyzed cross-
coupling reactions, and applications of α-aminonitrile chemistry (Scheme 38). [53]
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Scheme 38 Scheme 38. Diversely substituted 1,2,3-triazolo-1,4-benzodiazepine 36.

An atom-economical multicomponent sequential InCl3-catalyzed cyclocondensation/
azide-alkyne 1,3-dipolar cycloaddition of 2-azidobenzaldehydes with propargylamines un-
der the presence of α-diketone and ammonium acetate efficiently afforded the correspond-
ing 9H-benzo[f ]imidazo [1,2-d][1,2,3]triazolo [1,5-a][1,4]diazepines 37 (Scheme 39) [54].
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3. Sequential Reactions of β-Aminoalkynes with Carbonyls

Versatile β-aminoalkyne building blocks for the synthesis of nitrogen-containing
heterocyclic compounds are represented by 2-alkynylanilines 38 [55–57]. Their sequential
reaction with carbonyl derivatives was directed towards the formation of different scaffolds
by changing the reaction conditions. The reaction of 38 with simple ketones or β-ketoesters
selectively afforded the corresponding N-(Z)-alkenyl indoles 40 under the presence of
InBr3 catalyst. The sequential reaction was considered to proceed through the activation of
the β-ketoesters/formation of β-enamino esters 39/intramolecular 5-endo-dig cyclization
promoted by activation of the acetylene (Scheme 40) [58].
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Scheme 40 Scheme 40. Indium-catalyzed synthesis of β-(N-indolyl)-α,β-unsaturated esters 40.

Conversely, the divergent cyclization–alkenylation sequence to give the indole deriva-
tive 41 occurred by reacting the 2-alkynylanilines 38a with 1,3-dicarbonyls in the presence
of NaAuCl4·2H2O as the catalyst in a sealed tube (Scheme 41) [59].
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Scheme 41 Scheme 41. Divergent sequential gold-catalyzed cyclization/alkenylation reaction of
2-alkynylanilines with 1,3-dicarbonyl compounds.

Moreover, reactions between readily available 2-alkynylanilines and activated ketones
promoted by p-toluenesulfonic acid (p-TsOH) afforded 4-alkyl-2,3-disubstituted quinolines
42. The features of substituents at the other end of the triple bond of 2-alkynylanilines
achieved access to the 4-alkylquinolines, difficult to obtain by classical Friedländer reaction
(Scheme 42) [60].
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The procedure also accomplished the preparation of quinoline dimers 43 with alkyl or
aryl linkers at C-4 (Scheme 43).

Molecules 2023, 28, x FOR PEER REVIEW 43 of 87 
 

 

. p-TsOH promoted synthesis of 4-alkyl-2,3-disubstituted quinolines 42. 

The procedure also accomplished the preparation of quinoline dimers 43 with alkyl 
or aryl linkers at C-4 (Scheme 43). 

 
Scheme 43 Scheme 43. Synthesis of dimeric quinolines 43.

Alternatively, the one-pot synthesis of 4-methyl-2,3-disubstituted quinolines 44 was
allowed by means of the inexpensive iron(III)catalyzed sequential condensation, cyclization
and aromatization of 1,3-diketones with 2-ethynylaniline derivatives (Scheme 44) [61].
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Furthermore, a cost-effective p-TsOH promoted synthetic strategy for the synthesis of
substituted quinolines was explored by the reaction between levulinic acid with different
2-alkynylanilines under mild metal-free solventless conditions (Scheme 45) [62].
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The combination of CuBr and trifluoroacetic acid (TFA) directly afforded the corre-
sponding quinolines by reacting the 2-ethynylaniline with ethyl glyoxylate (Scheme 46) [63].
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Scheme 46 Scheme 46. Copper(I)-catalyzed synthesis of 2-acylquinolines.

N,O-acetals also functioned as a C1 part leading to the preparation of quinoline
derivatives 45 according to the following path (Scheme 47) [64].
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Scheme 47 Scheme 47. Copper-catalyzed synthesis of quinolines 45 from ethynylaniline and N, O-acetals.

A three-component, one-pot sulfuric acid-mediated reaction of 2-(2-(trimethylsilyl)
ethynyl)anilines with arylaldehydes in alcohol efficiently provided 4-alkoxy-2-arylquinolines
46 (Scheme 48) [65].
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Scheme 48 Scheme 48. Synthesis of 4-alkoxy-2-arylquinolines 46.

This strategy was extended to afford the unusual formation of 8-aryl-8,9-dihydro-3H-
pyrano [3,2-f ]quinoline-3,10(7H)-dione derivatives 48 with good yields by condensative
cyclization of 6-amino-5-[(trimethylsilyl)ethynyl]-2H-chromen-2-one 47 with aromatic alde-
hydes (Scheme 49) [66].
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Scheme 49 Scheme 49. Condensative cyclization of 6-amino-5-[(trimethylsilyl)ethynyl]-2H-chromen-2-one 47.

It was envisioned that the in situ generated N-(2-alkynylphenyl)imine might be
cyclized to give ring-fused quinoline derivatives. Indeed, a tandem reaction of 2-alkynylanilines
49 with aldehydes catalyzed by the combination of Pd(OAc)2 and p-TsOH allowed the
regioselective synthesis of ring-fused quinolines 50 (Scheme 50) [67].
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Scheme 50 Scheme 50. Synergistic effect of Pd(II) and acid catalysts on the synthesis of ring-fused quinolines.

Moreover, a Sc(OTf)3-catalyzed tandem aza-Prins cyclization reaction of 2-alkynylaniline
derivatives 51 with aldehydes afforded under mild reaction conditions fused tricyclic
derivatives 52. Interestingly, when the enantiopure optically active 2-alkynylaniline (R)-51b,
having a central chirality (99% ee), was subjected to the optimized reaction conditions
followed by subsequent treatment with NaOH, the quinoline derivative (R)-52b was ob-
tained directly (86% yield, 98% ee) (Scheme 51). Six- and seven-membered oxacyclo-fused
products were also easily synthesized [68].
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It is worth noting that the N-(2-alkynylphenyl) imines 53 readily available by means
of condensation of 2-iodoanilines with ketones or aldehydes followed by Sonogashira
coupling with acetylenes were prone to undergo different sequential processes. Ring-fused
indoles 54 were obtained from N-(2-alkynylphenyl) imines 53a with high yields under mild
conditions and in the presence of a gold (III) as a catalyst (Scheme 52) [69].
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Furthermore, the N-(2-alkynylphenyl) imines intermediates 53 treated with
N-iodosuccinimide (NIS) in DCM induced novel iodonium mediated domino reaction
cascades, which provided ring-fused indole compounds 55 or simply by changing the
reaction conditions ring-fused quinoline compounds 56 (Scheme 53) [70].



Molecules 2023, 28, 4725 23 of 42

Molecules 2023, 28, x FOR PEER REVIEW 53 of 87 
 

 

. Gold-catalyzed synthesis of polycyclic frameworks 54. 

Furthermore, the N-(2-alkynylphenyl) imines intermediates 53 treated with N-
iodosuccinimide (NIS) in DCM induced novel iodonium mediated domino reaction cas-
cades, which provided ring-fused indole compounds 55 or simply by changing the reac-
tion conditions ring-fused quinoline compounds 56 (Scheme 53) [70]. 

 
Scheme 53 Scheme 53. Iodonium-induced tandem cyclization of N-(2-alkynylphenyl) imines 53.

The application of the methodology to the synthesis of iodoquinolones from suit-
able N-(2-alkynylphenyl)imine [71] as well as to the construction of polycyclic indole
derivatives through the [3 + 2] cycloaddition of metal-containing azomethine ylides gen-
erated from N-(o-alkynylphenyl)imine derivatives and W(CO)5(L) was also reported [72].
A different sequential cycloisomerization/C3-functionalization of the in situ generated
2-alkynylanilines via Sonogashira coupling of 2-iodoanilines determined a one-pot synthe-
sis of 2,2′-disubstituted diindolylmethanes 57 (Scheme 54) [73].
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Scheme 54 Scheme 54. One-pot synthesis of 2,2′-disubstituted diindolylmethanes 57.

A one-pot strategy for the synthesis of 1-substituted 2-tosyl-2,3,4,5-tetrahydropyrido
[4,3-b]indole scaffolds 62 through a sequential gold-catalyzed hydroamination/Pictet–
Spengler cyclization of 2-(4-aminobut-1-yn-1-yl)aniline with aldehydes was demonstrated
(Scheme 55) [74]. The initial π-coordination of cationic Au(I) species with the alkyne moiety
of 2-(4-aminobut-1-yn-1-yl)aniline 58 forms a π-complex that gives the cyclic intermediate
59. The following protodemetalation affords the isotryptamine 60. Subsequently, activation
of aldehyde by Au(I) species followed by an intramolecular nucleophilic addition of
indole moiety of 60 to a highly reactive N-sulfonyliminium intermediate 61 provides the
tetrahydropyridoindole 62 with regeneration of the catalyst. Ag(I) also promotes the
Pictet–Spengler reaction.
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The sequential aminopalladation of N-tosyl-2-arylethynylanilines followed by the ad-
dition to the carbonyl group of an aldehyde as the quenching step of the carbon–palladium
bond gave corresponding 3-hyroxymethyl indole derivatives with good yields. Cationic
palladium complexes bearing bipyridine or dppp as ligands resulted in suitable catalysts,
and the best conditions were observed by carrying out the reaction in dioxane at 60 ◦C in
the presence of the catalyst Pd(bpy)(H2O)2(OTf)2 (Scheme 56) [75].
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A Cu(OTf)2-catalyzed intramolecular radical cascade reaction efficiently enabled the
synthesis of quinoline-annulated compounds 64 [76]. The method represents an effective
route to natural products and a variety of drug-like libraries (Scheme 57).
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The proposed mechanism for the synthesis of the polyheterocyclic scaffolds is shown
in the following Scheme 58. The intermediate 65 undergoes a copper salt-promoted one-
electron oxidation to generate the intermediate 66. Subsequent radical addition into the
C-C bond of 67 affords the radical 68, which cyclizes to give the radical 69. Finally, trapping
of the nitrogen radical by the iodine radical generated from the oxidation of iodide affords
the complex 70, which after iodide elimination furnishes the product 64.
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A regio- and stereoselective three-component, one-pot cascade reaction involving an
imination–annulation–cyanation sequence was achieved by combining palladium(II) triflu-
oroacetate and copper(II) acetate with the readily available 2-alkynylanilines, cyclic ketones
and trimethylsilyl cyanide in dimethyl sulfoxide to efficiently afford the corresponding
1-benzoazepine carbonitrile derivatives 71 (Scheme 59) [77].
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Scheme 59 Scheme 59. Palladium-catalyzed synthesis of 1-benzoazepine carbonitriles 71.

The construction of spirocyclic quinolones 72, which are difficult to synthesize through
traditional methodologies, was explored by selectively directing the reaction of 2-alkynylanilines
with ketones under suitable reaction conditions. Interestingly, the same starting reagents
selectively produced the quinolines 73 or the N-alkenyl indoles 74 under different reaction
conditions (Scheme 60) [78].
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Scheme 60 Scheme 60. Product-selectivity control of the sequential reaction of 2-alkynylaniline with ketones.

Very likely, the condensation reaction under the Brønsted acid-mediated conditions
in EtOH led to the iminium ion intermediate [I] which undergoes aza-Prins to afford
an intermediate, which—after quenching by ethanol, hydrolysis and tautomerization
reactions—generated the quinolinone 72 (Scheme 61).
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Conversely, isomerization of the iminium ion intermediate [I] to the intermediate [J]
should lead selectively to the indoles 74 via a 5-endo-dig cyclization or to the quinoline 73
via a regiodivergent 6-exo-dig cyclization (Scheme 62).
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Alternatively, the quinolines 73 could be generated from the 2-aminoaryl ketone
obtained by the fast hydration reaction of the 2-alkynylaniline, both in the presence of a sto-
ichiometric amount of p-TsOH·H2O or 0.2 equiv. of FeCl3 in toluene at 110 ◦C (Scheme 63).
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Interestingly, the features of the substituent bonded at the terminal position of the
triple bond of the 2-alkynylaniline and of the reaction medium determined the reaction
path. Internal alkynes allowed the p-TsOH·H2O-mediated preparation of quinolones 72
in EtOH at reflux or the formation of the quinolines 73 in toluene at 110 ◦C both in the
presence of a stoichiometric amount of p-TsOH·H2O or FeCl3 as the catalyst. Conversely,
the ZnBr2-catalyzed reaction in toluene at 110 ◦C of the same internal alkyne derivatives
gave only the N-alkenylindoles 75. The presence of a trimethylsilyl group or the absence of
substituents at the terminal position of the starting aminoalkyne resulted in the formation of
the corresponding quinolines. The Lewis acid-promoted reaction of 2-arylethynylanilines
with α-tetralones under the presence of the strong oxidant (diacetoxyiodo)benzene (PIDA)
triggered a decarbonylative cascade approach to the synthesis of acridines (Scheme 64) [79].
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Scheme 64 Scheme 64. Synthesis of acridine derivatives.

A general procedure was described for the direct preparation of 2-methyl-3,4-
diacylquinolines in short periods under mild reaction conditions by means of the Mn(OAc)3
mediated reaction in acetic acid of 2-alkynylanilines with β-ketoesters (Scheme 65). The
presence of molecular oxygen and Na2SO4 as desiccant displayed a key role. It was sug-
gested that the formation of the radical intermediate [L] generated by Mn(OAc)3 oxidation
of the enaminoate [K] underwent a fast 6-exo-dig cyclization, resulting in the formation
of the vinyl intermediate [M]. The subsequent addition of molecular oxygen to the vinyl
radical should provide a peroxy radical species [N], which—after protonation and loss of
water—produced the 2-methyl-3,4-diacylquinolines [80].
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β-ketoesters.

Moreover, the sequential Brønsted acid mediated reaction with enolizable ketones
of the starting aminoalkynes β-(2-aminophenyl)-α,β-ynones 75 in EtOH resulted in an
efficient approach to only polycyclic quinolines 76 (Scheme 66) [81].
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Scheme 66 Scheme 66. Sequential amination–annulation–aromatization reactions of β-(2-aminophenyl)-α,β-

ynones 75 with enolizable ketones.

Steroids bearing a simple ketone group at position 3, such as 5α-cholestan-3-one,
formed only the corresponding linear cholestanoquinoline derivative in moderate yield.
On the contrary, the optimized methodology allowed the divergent generation of the an-
gular quinoline derivative, whose synthesis is generally considered more challenging and
demanding, from 3-keto-∆4-polycyclic steroidal derivatives. Interestingly, with steroidal
dicarbonyl derivatives, the condensation reaction took place selectively only on the con-
jugated carbonyl group at position 3, leaving the ketone group at position 17 unreacted
(Scheme 67). A- and D-ring fused steroidal quinoline analogues represent potential as
antibacterial agents [82].
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Scheme 67 Scheme 67. Product-selectivity control in the synthesis of polycyclic steroidal quinolines 76.
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The Brønsted acid-promoted reaction of β-(2-aminophenyl)-α,β-ynones with ketones
was expanded to activated carbonyl compounds, such as β-ketoesters and β-diketones.
The carbonyl group at position 3 of the quinoline nucleus could further react with the
other keto functionality in the alkyl substituent at position 4, generating an additional [3,4]-
fused six-membered ring whose structure depends on the type of β-dicarbonyl compound
used. Indeed, for β-ketoesters, a thorough screening of reaction conditions revealed that
catalytic amounts of p-TsOH·H2O were sufficient to efficiently promote a cascade double
cyclization leading to 4H-pyrano [3,4-c]quinoline-4-one derivatives 77. On the contrary,
with β-diketones, a stoichiometric amount of p-TsOH·H2O triggered a three-component
reaction, involving a molecule of the alcoholic solvent to afford 78. Both procedures appear
to be simple and versatile, and are expected to be of great impact because of the multiple
potential applications of the obtained organic compounds (Scheme 68) [83].
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Scheme 68 

Scheme 68. Domino reactions of β-(2-aminophenyl)-α,β-ynones with 1,3-dicarbonyls.

A sequential aminopalladation of β-amino alkyne derivatives 79, followed by in-
tramolecular nucleophilic addition of the generated carbon–palladium bond to a tethered
aldehyde group, accomplished the synthesis of a variety of benzo[a]carbazoles 80 with
remarkable diversification (Scheme 69) [84].
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The ongoing research activity devoted to the synthesis of indole derivatives encour-
aged the exploration of a highly flexible approach to 11H-indolo [3,2-c]quinolines 82
according to the retrosynthetic Scheme 70.

Molecules 2023, 28, x FOR PEER REVIEW 70 of 87 
 

 

. Sequential aminopalladation of β-amino alkynes 79. 

The ongoing research activity devoted to the synthesis of indole derivatives encour-
aged the exploration of a highly flexible approach to 11H-indolo [3,2-c]quinolines 82 ac-
cording to the retrosynthetic Scheme 70. 

 
Scheme 70 Scheme 70. Retrosynthetic assembly of 11H-indolo [3,2-c]quinolines.

Subsequently, the selective build-up of the 11H-indolo [3,2-c]quinoline 82 was carried
out through a two-step, one-pot, gold-catalyzed reaction in CH3CN at room tempera-
ture of aldehydes with the 2,2′-(ethyne-1,2-diyl)dianiline derivative 81a as the starting
β-aminoalkynes, which was cyclized under the presence of Au catalyst (5 mol%). Then, the
aldehyde (2 equiv.) was added and the reaction mixture was stirred till completion. This
alternative highly regioselective protocol is of wide applicability in mild neutral reaction
conditions (Scheme 71) [85].
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Surprisingly, the reaction of inexpensive aryl(heteroaryl)aldehydes with the same
starting 2,2′-(ethyne-1,2-diyl)dianiline derivatives 81 in the presence of a catalytic amount of
HCl achieved the synthesis of 2,2′-disubstituted-1H,1′H-3,3′-biindoles 83 (Scheme 72) [86].
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an acidic deep eutectic solvent (DES) able to exploit double activity, i.e., solvent and
Brønsted acid (BA) catalyst under microwave heating at 70 ◦C [88]. Very likely, the BA
promotes the formation of the iminium ion [O] by reaction of 83 with two equiv. of the
aldehyde. The iminium ion [O] undergoes an aza-Prins type 5-exo-dig cyclization to the
intermediate [P] quenched by the nucleophilic addition of water to give intermediate [Q].
The subsequent cyclization generates the stabilized benzylic carbocation intermediate [R]
which provides the desired biindoles 83 by the loss of a molecule of water and proton
regeneration (Scheme 73).
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Conversely, the tandem gold-catalyzed 5-endo-dig/spirocyclization of 2-[(2-aminophenyl)
ethynyl]phenylamines 81 with isatins regioselectively afforded the corresponding 5′,11′-
dihydrospiro-[indoline-3,6′-indolo [3,2-c]quinolin]-2-one derivatives 84 with good yields at
room temperature. The reaction with ketones gave the 6,6-disubstituted-6,11-dihydro-5H-
indolo [3,2-c]-quinolones 85 (Scheme 74) [89].
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A sequential intramolecular nucleophilic attack–intermolecular cycloaddition–dehydration
reaction addressed the synthesis of ring-condensed heteroaromatic compounds 86 start-
ing from 2-alkynylbenzaldehydes and 2-alkynylanilines in the presence In(OTf)3 catalyst
(Scheme 75) [90].
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An intriguing three-component reaction of 2-alkynylanilines, aldehydes and
α-(4-nitrophenyl)-α-isocyanoacetates in methanol at room temperature, followed by addi-
tion of toluene and heating to reflux, provided the polysubstituted furo[2,3-c]quinolines 87
with satisfactory yields (Scheme 76) [91].
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Scheme 76 Scheme 76. Synthesis of 2-alkoxyfuro [2,3-c]quinolones 87.

The reaction of the in situ formed imine intermediate 88 with α-isocyanoacetates
produces the 5-alkoxyoxazoles 89, which—through an intramolecular Diels–Alder cycload-
dition between the oxazole and the tethered triple bond—generate oxa-bridged heterocycles
90. Their subsequent fragmentation by a retro Diels–Alder process furnishes derivatives 91
and benzonitrile. Finally, oxidation mediated by atmospheric oxygen leads to the target
aromatic 2-alkoxyfuro [2,3-c]-quinolones 87 (Scheme 77).
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Similarly, the three-component reaction of an aminopentanoate, an aldehyde, and
an α-isocianoacetamide produced in a one-pot process the 4,5,6,7-tetrahydrofuro [2,3-
c]pyridines by simply heating the solution in toluene in the presence of ammonium chlo-
ride. [92] A base-promoted post-Ugi 5-exo-dig “Conia-ene”-type cyclization efficiently
afforded a variety of 2,2-disubstituted 3-methyleneindoline derivatives 93 (Scheme 78) [93].
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Scheme 78 Scheme 78. Sequential multicomponent approach to 2,2-disubstituted 3-methyleneindolines 93.

4. Sequential Reactions of γ- and δ-Aminoalkynes with Carbonyls

Sequential reactions of of γ- and δ-aminoalkynes with carbonyls have been less in-
vestigated. A library of 1-tosyl-2,3,4,5-tetrahydro-1H-indeno [1,2-b]-pyridines 95 has been
established by cascade cyclization/Friedel–Crafts reaction of 4-methyl-N-(pent-4-yn-1-
yl)benzenesulfonamides 94 and aldehydes with good yields. The reaction was performed
by using 2 equiv. of BF3·OEt2 in 1,2-dichloroethane (DCE). Worse results were obtained
under the presence of different Lewis and Brønsted acids or metal triflates. Both electron-
withdrawing and electron-donating groups in the aromatic ring of the aldehyde were
tolerated. The methodology was applied to the total synthesis of the antidepressant agent
(±)-5-phenyl-2,3,4,4a,5,9b-hexahydro-1H-indeno [1,2-b]pyridine 96 (Scheme 79) [94].
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The sequential rhodium(III)-catalyzed intramolecular annulation/aromatization of
o-alkynyl amino aromatic ketones 97 achieved a one-pot building up of the pyrrolo[1,2-
a]quinolines 98. [Cp*RhCl2]2 (Cp* = η5-1,2,3,4,5-pentamethylcyclopentadienyl) resulted
in a more effective catalyst under the presence of Cu(OAc)2·H2O as the oxidant. The
reaction did not occur under an air atmosphere. DCE was the solvent of choice, and
inferior yields of the product were isolated when the reaction was conducted in 1,4-dioxane,
acetonitrile, p-xylene, methanol, or acetic acid. The strategy provides a complementary
synthetic method for the construction of 4-aryl-5-alkylpyrrolo[1,2-a]quinolines or those
containing different aryl substituents at 4,5-positions, which are difficult to prepare by
the conventional methods. The protocol could be scaled up and allowed the synthesis of
challenging products suitable for further elaboration (Scheme 80) [95].
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Although the metal-catalyzed reaction of γ-aminoalkynes 99 with 1,3-diketones is
expected to afford a wide variety of products, unexpectedly the reaction accomplished the
isolation of only indolines 100 with up to 99% yield. Different solvents and a variety of
catalysts based on Cu, Co, Ni, Ag, Au, Pd, or Pt were screened. The results revealed that
the optimized reaction conditions were observed in methanol as the solvent at 40 ◦C in
the presence of K2PtCl4 (1 mol%) and 4Å molecular sieves. The reaction times could be
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shortened by subjecting the reaction to microwave irradiation. Very likely, the procedure
involves a platinum-catalyzed intramolecular hydroamination of aminoalkynes to generate
the corresponding enamine, which—after sequential nucleophilic attack of the enol form of
the 1,3-dicarbonyl/cyclization and elimination of two water molecules—gives the indoline
derivatives (Scheme 81) [96].
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The extension of the reaction to δ-aminoalkynes 101 gave with high yields the 1,2,3,4-
tetrahydroquinolines 102 of importance in medicinal chemistry (Scheme 82).
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5. Conclusions and Outlook

A variety of aminoalkynes can trigger sequential reactions with carbonyls to gener-
ate valuable heterocyclic scaffolds. The increasing number of aminoalkynes as building
blocks has greatly widened the scope of sequential approaches to large libraries of valuable
nitrogen-containing heterocyclic compounds that can be obtained from easily available
reagents. Coinage metals dominated the field, and in particular, gold complexes demon-
strated superior performance as catalysts for these transformations. Inexpensive and less
toxic iron and zinc salts are growing in importance as efficient catalysts. As for reaction
media, greener alternatives such as water, ionic liquids and solventless reactions have been
reported. Advantages of microwave irradiation over conventional heating have also been
highlighted. Extensive mechanistic studies allowed the identification of several intermedi-
ates and helped to explain the key role of the catalyst and the additives employed. Often,
the activation of the alkyne moiety by metal catalysis is essential to boost the sequential
process. We foresee that further advancements will achieve straightforward alternative easy
access to a wide array of polyheterocyclic scaffolds with potentially remarkable biological
activity.
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