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Abstract: This study proposes a high-performance organic–inorganic hybrid memristor for the devel-
opment of neuromorphic devices in the memristor-based artificial synapse. The memristor consists of
a solid polymer electrolyte (SPE) chitosan layer and a titanium oxide (TiOx) layer grown with a low-
thermal-budget, microwave-assisted oxidation. The fabricated Ti/SPE–chitosan/TiOx/Pt-structured
memristor exhibited steady bipolar resistive switching (BRS) characteristics and demonstrated excel-
lent endurance in 100-cycle repetition tests. Compared to SPE–chitosan memristors without a TiOx

layer, the proposed organic–inorganic hybrid memristor demonstrated a higher dynamic range and
a higher response to pre-synaptic stimuli such as short-term plasticity via paired-pulse facilitation.
The effect of adding the TiOx layer on the BRS properties was examined, and the results showed that
the TiOx layer improved the chemical and electrical superiority of the proposed memristor synaptic
device. The proposed SPE–chitosan organic–inorganic hybrid memristor also exhibited a stable
spike-timing-dependent plasticity, which closely mimics long-term plasticity. The potentiation and
depression behaviors that modulate synaptic weights operated stably via repeated spike cycle tests.
Therefore, the proposed SPE–chitosan organic–inorganic hybrid memristor is a promising candidate
for the development of neuromorphic devices in memristor-based artificial synapses owing to its
excellent stability, high dynamic range, and superior response to pre-synaptic stimuli.

Keywords: microwave; organic–inorganic hybrid memristor; biocompatible; chitosan; analog switching;
synaptic weight change; neuromorphic computing system

1. Introduction

Current state-of-the-art computing systems face enormous challenges when dealing
with large amounts of unstructured data and real-time decision-making processes because
of the von Neumann bottleneck limitations [1,2], which have necessitated the development
of new intelligent computing platforms that can overcome these limitations. One such
platform is the two-terminal metal-insulator-metal (MIM) structure memristor, which of-
fers several advantages such as simplicity, nonvolatile memory, and computations using
consecutive analog resistive switching (RS) in the insulator layer [3–5]. Several studies
have investigated the development of computing systems capable of performing com-
plex computations based on analog RS. The synaptic plasticity RS layer of memristors
has been extensively studied using various materials, including inorganic, organic, and
hybrid nanocomposites [6,7]. Numerous studies have reported on RS behaviors of bio-
inspired organic materials, including chitosan, cellulose, albumen, and gelatin [8–10]. For
compatibility with advanced biocompatible electronic devices, such as wearable devices
that require high flexibility, stretchability, and transparency, potential materials must be
low-temperature, processable, natural, organic materials based on a solution state, which
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offer diverse engineering platforms and are viable alternatives to inorganic-based solutions
owing to their biodegradability, non-toxicity, biocompatibility, and bio-absorbability [6,11].
Among the various bio-inspired natural organic materials, chitosan electrolytes have several
advantages suitable for solid polymer electrolyte (SPE)-based memristor devices. Firstly,
chitin, the main ingredient of chitosan, is the second most abundant polysaccharide after cel-
lulose. Secondly, chitosan’s amine and hydroxyl groups are particularly reactive with metal
ions. Thirdly, although it naturally is an insulator, the ion conductivity can be modulated
by adding an acidic solution. Fourthly, chitosan powder can be easily dissolved in a diluted
acetic acid solution. Therefore, a thin film made from chitosan, which has low-cost solu-
tion processability, exhibits remarkable flexibility and transparency [12–14]. However, the
low endurance and unstable retention of bio-organic-based memristors must be resolved.
Therefore, RS layers using hybrid nanocomposites have been actively investigated in recent
years [15,16]. The first report of chemical reactions via microwave irradiation (MWI) dates
back to 1986 [17]. MWI induces friction and rotation of polar molecules, enabling direct and
uniform internal heating, which has been considered an eco-friendly and high-efficiency
heating method. MWI is effective in the manufacturing of various materials and in organic
synthesis [18,19]. Furthermore, MWI provides more benefits than traditional heat treatment
methods as it can selectively heat samples with a high heat transfer efficiency, a short
processing time, low energy consumption, and cost-effectiveness [20–22].

In this study, we employed a low-thermal-budget microwave (MW)-assisted oxidation
method to fabricate a titanium oxide (TiOx) layer, which has high carrier mobility and
inherent chemical stability [23]. Inspired by the unique characteristics of chitosan and TiOx,
we fabricated solid polymer electrolyte (SPE)-chitosan memristors with TiOx and evaluated
their endurance in RS behavior and resistance distribution, as well as their artificial synaptic
behaviors. To verify the efficiency of MW-assisted oxidation, we prepared an RS layer with-
out TiOx for comparison. We evaluated the bipolar resistive switching (BRS) operation and
memristive switching properties of the proposed devices. Additionally, we analyzed the
short- and long-term plasticity for crucial artificial synaptic behaviors such as paired-pulse
facilitation (PPF), spike-timing-dependent plasticity (STDP), and potentiation/depression.
The results demonstrated the feasibility of using TiOx-based SPE–chitosan memristors as
efficient and reliable synaptic devices for electronic synaptic systems.

2. Materials and Methods
2.1. Materials

The materials used to fabricate two-terminal memristors in this study included p-type
(100) Si wafers with a resistivity range of 1–10 Ω·cm purchased from LG SILTRON Inc.
(Gumi, Republic of Korea), Pt pellets (purity, >99.95%) and Ti pellets (purity, >99.99%)
purchased from TIFINE Co. (Seoul, Republic of Korea), and chitosan powder (deacetylation
degree, >75%) and acetic acid solution (purity > 99%) purchased from Sigma-Aldrich
(Seoul, Republic of Korea).

2.2. Preparation of the Chitosan Solution

For the preparation of a biocompatible chitosan solution, a mixture of chitosan powder
derived from shrimp shells and acetic acid solution was used. Specifically, 2 wt% chitosan
powder was added to a 2 wt% acetic acid solution, which was then diluted with 10 mL of
deionized water. The mixture was stirred constantly at 800 rpm for 6 h at 50 ◦C using a
magnetic stirrer until the powder entirely dissolved. To remove various impurities, the
solution was filtered using a polytetrafluoroethylene syringe filter with a pore size of 5 µm
(Whatman International Ltd., Maidstone, UK).

2.3. Fabrication of the SPE–Chitosan Memristor with TiOx through MW-Assisted Oxidation

We fabricated highly stable SPE–chitosan memristors with an embedded TiOx layer
through MW-assisted oxidation. The process started with cleaning the p-type Si wafer
((110) planes silicon wafers) with a 300 nm-thick thermally grown oxide using a standard
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Radio Corporation of America (New York, NY, USA) cleaning method. To form the bottom
electrode (BE) of the memristor with a MIM structure, a 10 nm-thick Ti adhesive layer
and a 100 nm-thick Pt layer were sequentially deposited using an electron beam (E-beam)
evaporator deposition system. Then, to form the RS layer, a 150 nm-thick Ti layer was
deposited using an E-beam evaporator. Subsequently, TiOx was formed with MW-assisted
oxidation under the following conditions: rated power, 1800 W for 10 min and ambient O2,
MW frequency, 2.45 GHz. The SPE–chitosan solution was spin-coated on the TiOx layer
at 6000 rpm for 30 s, dried in ambient air for 24 h, and oven-baked at 80 ◦C for 10 min.
The thickness of the baked chitosan layer was 80 nm. Finally, a 150 nm-thick and 200 µm
diameter Ti top electrode (TE) was deposited onto the RS layer using the E-beam evaporator
and a shadow mask. The effect of MW-assisted oxidation was verified by fabricating an
SPE–chitosan memristor without the TiOx layer. Figure 1a depicts a schematic diagram
of the SPE–chitosan memristor with a TiOx layer developed with MW-assisted oxidation,
and Figure 1b,c show optical microscopy images of a SPE–chitosan memristor without and
with the TiOx layer, respectively, at a magnification of 150×.
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Figure 1. (a) Schematic diagram of a SPE–chitosan memristor with an embedded TiOx layer devel-
oped with MW-assisted oxidation. Optical microscopy images of SPE–chitosan memristor without
TiOx (b) and with TiOx (c) at a magnification of 150×.

2.4. Characterization

During measurement, the SPE–chitosan memristors with and without a TiOx layer
developed with MW-assisted oxidation were placed on a two-point probe station within
a dark shielded box to mitigate electrical noise and external light interference. The RS
characteristics and memristive synaptic functions were measured using an Agilent 4156B
Precision Semiconductor Parameter Analyzer (Hewlett-Packard Co., Palo Alto, CA, USA).
To verify synaptic modulation behavior, electrical pulse stimulations were applied using
an Agilent 8110A Pulse Generator (Hewlett-Packard Co.). The fabricated memristors
were imaged under an optical microscope using a Sometech SV-55 microscope system
(Seoul, Republic of Korea).

3. Results and Discussion

Fourier-transform infrared spectroscopy (FT-IR) was used to analyze the chemical
composition of the chitosan electrolyte membrane, an insulating layer, prior to estimating
the electrical properties and synaptic operation of the memristors. Figure 2a shows the FT-
IR spectrum of the chitosan electrolyte film at wavelengths ranging from 4000 to 900 cm−1,
revealing stretching peaks of O-H and C-H around 3350 and 2860 cm−1, respectively.
The 1700–1600 cm−1 range was primarily influenced by the amide I region, with the
peak at approximately 1640 cm−1 attributed to C=O stretching. The peaks at 1398 and
1101 cm−1 were owing to C-N and C-O stretching, respectively. In general, the spectrum
of the chitosan electrolyte film displayed peaks related to amide and -OH groups, which
are crucial components of proteins and contribute to the conductivity and mobility of
protons [24,25]. Next, we used X-ray photoelectron spectroscopy (XPS) to investigate the
Ti2p peak of the embedded TiOx layer. As shown in Figure 2b, the primary peaks in Ti4+
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of Ti2p1/2, Ti4+ of Ti2p3/2, and Ti3+ of Ti2p3/2 signals that corresponded with the TiOx
component were detected, with binding energies of 464.6, 459.1, and 457.2 eV, respectively.
The Ti metallic peak was not observed, indicating nearly complete oxidation of TiOx. In
Figure 2c, the O1s peak was deconvoluted using two peaks. The peaks at the binding
energies of 529.9 and 530.6 eV may be attributed to oxygen bound to the TiOx layer lattice
and oxygen ions near the oxygen vacancy (Vo) in the TiOx layer, respectively. The presence
of Vo is a key factor in endowing this material system with RS performance [26–28].
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Figure 3a,b depict the endurance characteristics of SPE–chitosan memristors prepared
without and with TiOx during 100 DC cycles. These characteristics were measured by
applying DC bias while grounding the BE. When the TE voltage was applied in the positive
direction (as indicated by green arrow 1), the memristor entered the SET (ON) state,
indicating a change in resistance from a high-resistance state (HRS) to a low-resistance
state (LRS). Conversely, when the voltage was swept in the negative direction (as indicated
by green arrow 3), the device changed its resistance state from LRS to HRS, resulting
in a RESET (OFF) operation. Thus, both SPE–chitosan memristors exhibited typical BRS
properties. The contact between the electrode and the chitosan electrolyte can be utilized for
cation-based electrochemical conversion owing to the redox reaction of mobile ions in the
polymer electrolyte [6,29]. The electrochemical metallization reaction significantly affects
the RS operation when an electric field is applied to the electrode of the chitosan–TiOx
nanocomposite film. Metal electrodes that are reactive to electrochemistry supply and
discharge mobility cations allow the development of highly conductive filaments [30]. The
HRS and LRS were extracted from repetitive BRS I–V curves at a read voltage of 0.1 V, as
shown in Figure 3c,d. For the SPE–chitosan memristor without TiOx, the average resistance
values of the HRS and LRS were 1.03 × 103 Ω and 1.55 × 102 Ω, respectively, with standard
deviations (SDs) of 7.24 × 101 Ω and 8.15 Ω. In contrast, the average resistance values of
the HRS and LRS for the SPE–chitosan memristor with embedded TiOx were 2.42 × 103 Ω
and 1.43 × 102 Ω, respectively, with SDs of 1.06 × 102 Ω and 6.71 Ω. This indicates that the
SPE–chitosan memristor with TiOx has a larger RS memory window and lower SD than the
one without TiOx. Furthermore, the RS window, defined as the minimum HRS/maximum
LRS, increased from 4.1 to 12.0 due to the embedded TiOx. This can be attributed to the
abundant oxygen lattice and ions in TiOx, leading to a stable RS operation and higher HRS,
resulting in a larger memory window [31].

Modulating multi-step conduction is a key factor in achieving high-density mem-
ory storage for synaptic devices. Figure 4a,b demonstrate the analog RESET process
of SPE–chitosan nanocomposite memristors without and with TiOx, respectively. The
SPE–chitosan memristor without TiOx exhibited seven analog RESET states with a gradu-
ally decreasing range of the maximum negative RESET voltage between −1.8 and −2.4 V
with an interval of −0.1 V after a single positive digital SET operation. In contrast, the
SPE–chitosan memristor with TiOx had 21 analog RESET states with a compliance current
of 1 mA, and a RESET voltage range of −2 to −4 V with an interval of −0.1 V after one pos-
itive digital SET operation. The storage capacity corresponding to the memory window of
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the memristor depends on the size of the Ion/Ioff changes. The results shown in Figure 4a,b
demonstrate that our approach significantly increases the storage capacity density of a
memristor device. Figure 4c,d depict the resistance change in each device, extracted at a
read voltage of −1 V. Notably, the SPE–chitosan memristor with TiOx exhibited a signifi-
cantly higher resistance change value (∆9.20 kΩ) than the SPE–chitosan memristor without
TiOx (∆0.19 kΩ), indicating more stable and reliable memristive operation. Moreover, the
SPE–chitosan–TiOx nanocomposite memristor displayed multi-level changes in resistance,
allowing for the representation of multi-level weight changes in synapses. These findings
suggest that the SPE–chitosan–TiOx nanocomposite memristor holds great potential for
both memristive switching operation and artificial synaptic function [32].
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Neural facilitation, which is a dynamic increase in a transporter level and the decoding
of biological information, such as visual or auditory data, is an important concept in biolog-
ical neuroscience. PPF is a typical property of short-term synaptic plasticity and a form of
neural facilitation, whereby the second pre-synaptic spike amplifies the first post-synaptic
spike. Depending on the time interval (∆tinter) between two successive pre-synaptic spikes,
the second synaptic spike causes a larger excitatory post-synaptic current (EPSC) for PPF.
The proton transfer ions moved by the first spike accumulate between the electrolyte and
the interface. At short ∆tinter, mobile protons accumulate continuously at the interface
because they have insufficient time to return to their initial position [33,34]. Figure 5a,b
depict the EPSC responses triggered by paired pre-synaptic spikes with an amplitude of 1 V
and a duration of 100 ms applied at 50 ms intervals of SPE–chitosan memristors without
and with TiOx, respectively. Both memristors showed a higher response in the second
EPSC (A2) than in the first (A1), with the SPE–chitosan memristor with TiOx exhibiting
a larger EPSC than the one without. The PPF index, calculated as the ratio of the EPSC
peak amplitudes (A2/A1), is shown in Figure 5c,d as a function of ∆tinter. The PPF index
increases for short ∆tinter and decreases for long ∆tinter, mimicking a biological synaptic
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response [35]. Notably, the SPE–chitosan memristor with TiOx had a higher PPF index
value (~129.2%) than the one without (~118.9%). The PPF index values were fitted using a
double-exponential decay function [36]:

PPF index = A + C1 exp(−∆t/τ1) + C2 exp(−∆t/τ2) (1)

where A is a constant fixed value, C1 and C2 indicate the initial facilitation magnitude
values, and τ1 and τ2 represent typical relaxation times, respectively. The exponential decay
process of PPF can be well modeled by a double exponential decay relation, as shown by
the solid lines in Figure 5c,d [37]. For the SPE–chitosan memristor without TiOx, the values
of τ1 and τ2 were 28 ms and 245 ms, respectively, whereas for the memristor with TiOx, the
values were 23 ms and 362 ms, respectively. These values are in good agreement with those
observed in biological synapses and demonstrate that the proposed devices can mimic the
fast and slow timescales of synaptic events, which occur on the order of tens and hundreds
of milliseconds, respectively [38].
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(c,d) show the corresponding resistances extracted at a read voltage of −1 V.

The short-term plasticity of synapses is temporary, whereas long-term plasticity allows
for memory through changes in the synaptic weights. STDP is a crucial mechanism for
memory and learning in biological neural networks and is determined by the temporal
sequence of activity between pre- and post-synaptic neurons. STDP improves on Hebbian
learning rules, which regulate neural connection strength, through temporal correlation
neural learning. Its simplicity, biological relevance, and computational capabilities in neuro-
science make STDP highly interesting [39,40]. Long-term potentiation (LTP) and long-term
depression (LTD) in the proposed memristors are determined by STDP and characterized
by a constant increase and sustained weakening of synaptic weight, respectively. Figure 6
illustrates the STDP features in the excitatory response mode, wherein the synaptic weight
(∆T = tpost − tpre) for precise time differences is influenced by the pre-synaptic arrival time
(tpre) and the post-synaptic production time (tpost). The synaptic weight change (∆W) is
plotted as dots, showing asymmetric Hebbian learning STDP properties, which resemble
biological STDP functions. When the post-synaptic spike follows the pre-synaptic spike
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(∆T > 0), long-term potentiation occurs due to the strengthening of the synaptic weights,
resulting from a decrease in |∆T|. Conversely, when the post-synaptic spike precedes the
pre-synaptic spike (∆T < 0), long-term depression properties occur due to a weakening
of the synaptic weights. Additionally, as |∆T| increases, the synaptic weight change de-
creases. In the inverted STDP mode, the SPE–chitosan memristor’s response mode becomes
inhibitory. The STDP learning function can be defined using the following equation [41,42]:

∆W =

{
A+e−∆T/τ+

, if ∆T > 0
−A−e∆T/τ− , if ∆T < 0

(2)
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The time constant τ± represents the range of ∆T within which synaptic connections
can be either strengthened or weakened. When ∆T approaches zero, the maximal synaptic
weight change is determined by A+. Consequently, the synaptic weight change values (in
percentage) of SPE–chitosan memristors with TiOx exceed those of memristors without
TiOx. These findings suggest that SPE–chitosan memristors with TiOx more accurately
emulate the biological STDP operation than those without TiOx [43].

To investigate the gradual modulation of conductivity corresponding to crucial elec-
trical pulse stimulation for memristive switching, the changes in synaptic weight dur-
ing potentiation and depression were examined. Figure 7a,c illustrate the characteristics
of conductance modulation in response to repetitive pre-synaptic spikes. One cycle of
50 potentiation pulses (1 V/100 ms) and 50 depression pulses (−1 V/100 ms) clearly in-
duced conductivity changes. The inset schematics represent a single pre-spike indicating
potentiation and depression read pulses. Figure 7c shows that the dynamic range of con-
ductance modulation for SPE–chitosan memristors with TiOx was approximately 9.7 mS,
whereas, for memristors without TiOx, it was approximately 5.6 mS, as shown in Figure 7a.
The endurance properties for potentiation and depression over three cycles, which indicate
the reliability of weight modulation, are depicted in Figure 7b,d. The results demonstrate
that SPE–chitosan memristors with TiOx maintain stable operation with a wide conduc-
tance dynamic range during cycle repetition, whereas memristors without TiOx exhibit
small changes in conductance. Therefore, the proposed SPE–chitosan memristor with TiOx
is more effective in improving memory function and achieving uniform weight modulation
in response to potentiation and depression pulses. Moreover, the high conductivity of
the artificial synaptic device suggests its potential for enhanced learning effects, further
validating its feasibility for practical applications [44–46].
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without (a) and with (c) TiOx. Three consecutive cycles of conductance modulation operations were
successively performed by applying 300 pulses on SPE–chitosan memristors without (b) and with
(d) TiOx.

All conductivity values were normalized to the maximum conductivity (G/Gmax)
shown in Figure 7a,c. We determined the dynamic range (DR), asymmetric ratio (AR),
and linearity, which are highly correlated with learning and recognition simulation, by
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examining the nonlinearity of the normalized conductance. The DR (Gmax/Gmin) of the
SPE–chitosan memristor with TiOx was 9.64, and the DR of the SPE–chitosan memristor
without TiOx was 3.5, which was 2.75 times that of the memristors without TiOx. Higher DR
values indicate improved precision and recognition performance [47]. The AR represents
the asymmetry of changes in conductance potentiation and depression. To evaluate the
asymmetry of changes in conductance potentiation and depression, we calculated the AR
using Equation (3), where Gp(n) and Gd(n) denote the conductance values during the
nth pulse of potentiation and depression, respectively [48]. The AR is a key parameter
that can provide insights into the learning and recognition performance of neuromorphic
computing systems and can aid in optimizing the design of artificial synapses:

AR =
MAX

∣∣Gp(n)−Gd(n)
∣∣

Gp(30)−Gd(30)
for n = 1 to 30 (3)

An AR value closer to 0 indicates a more symmetrical conductivity change, which can
lead to optimal learning performance. The AR values for the SPE–chitosan memristors with
and without TiOx were 0.7 and 0.72, respectively. The value of the device with TiOx was closer
to 0, indicating a more symmetrical conductivity change. Furthermore, the linearity of the
conductivity was confirmed by extracting the nonlinearity factor using Equation (4) [49]:

G =

{
{(Gmax

α −Gmin
α)× w + Gmin

α}1/α

Gmin × (Gmax/Gmin)
w

if α 6= 0,
if α = 0.

(4)

where Gmax and Gmin indicate the maximum and minimum conductivity, respectively, and
w is an internal variable between 0 and 1. The nonlinearity factor, denoted as α, controls
potentiation (αp) or depression (αd), with an ideal value of 1. The αp and αd values
for the SPE–chitosan memristors with and without embedded TiOx were 2.91 and −0.9,
respectively, indicating a higher linearity in the conductivity increase and decrease in the
memristors with TiOx than in that without TiOx (αp = 4.85, αd = −2.12). The SPE–chitosan
memristor with embedded TiOx allows for an efficient control of the conductivity through
lower amplitudes and fewer pulse numbers. Therefore, the proposed device enables
low-power and high-speed operation and is expected to achieve a more efficient learning
effect. Consequently, the SPE–chitosan memristor with embedded TiOx is expected to
demonstrate great potential as an artificial synapse for data processing compared to the
memristor without TiOx.

4. Conclusions

We developed a high-performance organic–inorganic hybrid memristor with embed-
ded TiOx, which was formed by applying low-thermal-budget MW-assisted oxidation to
an SPE–chitosan layer. Two types of memristors, with and without the TiOx layer, were
prepared to examine the effect of this layer on the organic–inorganic hybrid memristor
synaptic device properties. We characterized their resistive and memristive switching
properties, as well as various biological synapse functions. Both devices exhibited BRS
behavior, endurance, and consistent resistance distribution over 100 DC cycles. However,
the device with the TiOx layer demonstrated a larger memory window owing to the for-
mation of highly conductive filaments at the interface with the chitosan layer through
metal ion adsorption. Furthermore, the SPE–chitosan memristor with TiOx demonstrated
improved memristive switching operation, effectively emulating short- and long-term
synaptic plasticity through phenomena such as PPF, STDP, and potentiation properties.
These improvements were attributed to the larger change in synaptic weights than in
the device without TiOx. In conclusion, the SPE–chitosan memristor with an embedded
TiOx layer, which effectively mimics biological artificial synapses, holds great promise for
biocompatible and environmentally friendly neuromorphic systems.
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