Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach
Abstract
:1. Introduction
2. Results and Discussions
2.1. Optimization of UPLC-QQQ/MS Conditions
2.2. Validation of the Method
2.3. Content Determination of Six Ginsenosides in Black Ginseng
2.4. Exploring of Chemical Markers of Black Ginseng Based on Multivariate Statistical Analysis
2.5. Brief Summary
3. Materials and Methods
3.1. Chemical Reagents and Materials
3.2. Sample Preparation
3.3. Method Validation
3.4. UPLC-QQQ/MS Analysis
3.5. UPLC-Q-TOF/MS Analysis
3.6. Multivariate Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, C.; Xiao, P. Recent advances on ginseng research in China. J. Ethnopharmacol. 1992, 36, 27–38. [Google Scholar] [PubMed]
- Liliana, G.; Joana, S.A.; Joana, C.; Mafra, I. Towards authentication of Korean ginseng-containing foods: Differentiation of five Panax species by a novel diagnostic tool. LWT 2021, 151, 112211. [Google Scholar]
- Chen, J.; Du, B.; Cai, W.; Xu, B. Ginsenosides and amino acids in flavored ginseng chips as affected by food formulation and processing technology. LWT 2015, 62, 517–524. [Google Scholar] [CrossRef]
- Zhu, L.; Luan, X.; Dou, D.; Luqi, H. Comparative Analysis of Ginsenosides and Oligosaccharides in White Ginseng (WG), red Ginseng (RG) and Black Ginseng (BG). J. Chromatogr. Sci. 2019, 57, 403–410. [Google Scholar] [CrossRef]
- Sun, B.S.; Gu, L.J.; Fang, Z.M.; Wang, C.Y.; Wang, Z. Determination of 11 Ginsenosides in Black Ginseng Developed from Panax ginseng by High Performance Liquid Chromatography. Food Sci. Biot. 2009, 18, 561–564. [Google Scholar]
- Sun, B.S.; Gu, L.J.; Fang, Z.M.W.; Chun, Y.; Wang, Z.; Lee, M.R.; Li, Z.; Li, J.-J.; Sung, C.K. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J. Pharmaceut. Biomed. 2009, 50, 15–22. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Zhu, L.; Huang, L.; Dou, D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019, 24, 1856. [Google Scholar]
- Ban, Y.J.; Yang, B.W.; Baik, M.Y.; Hahm, Y.T.; Kim, B.Y. Optimization of the Manufacturing Process for Black Ginseng. J. Korean Soc. Appl. Bi. 2010, 53, 71–77. [Google Scholar] [CrossRef]
- Lee, M.R.; Kim, B.C.; Kim, R.; Oh, H.I.; Sung, C.K. Anti-obesity effects of black ginseng extract in high fat diet-fed mice. J. Ginseng Res. 2013, 37, 308–349. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.N.; Liu, Z.; Wang, Z.; Li, X.D.; Zhang, L.X.; Li, W.; Wang, Y.P. Ameliorative Effects and Possible Molecular Mechanism of Action of Black Ginseng (Panax ginseng) on Acetaminophen-Mediated Liver Injury. Molecules 2017, 22, 664. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Kim, Y.J.; Jeon, J.N.; Wang, C.; Min, J.W.; Noh, H.Y.; Yang, D.C. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Food Hum. Nutr. 2015, 70, 141–145. [Google Scholar] [CrossRef]
- Lee, M.R.; Yun, B.S.; Sung, C.K. Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity. J. Ginseng Res. 2012, 36, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.Y.; Saba, E.; Irfan, M.; Kim, M.; Chan, J.Y.-L.; Jeon, B.S.; Choi, S.K.; Rhee, M.H. The anti-inflammatory and anti-nociceptive effects of Korean black ginseng. Phytomedicine 2018, 54, 169–181. [Google Scholar] [CrossRef]
- Seo, Y.S.; Shon, M.Y.; Kong, R.; Kang, O.H.; Zhou, T.; Kim, D.Y.; Kwon, D.Y. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J. Ethnopharmacol. 2016, 190, 231–240. [Google Scholar] [CrossRef]
- Wu, W.; Song, F.; Guo, D.; Mi, J.; Qin, Q.; Yu, Q.; Liu, S. Mass Spectrometry-Based Approach in Ginseng Research: A Promising Way to Metabolomics. Curr. Anal. Chem. 2012, 8, 43–66. [Google Scholar] [CrossRef]
- Wu, W.; Sun, L.; Zhang, Z.; Guo, Y.; Liu, S. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Pharmaceut. Biomed. 2015, 107, 141–150. [Google Scholar] [CrossRef]
- Angelova, N.; Kong, H.W.; Heijden, R.V.D.; Yang, S.Y.; Choi, Y.H.; Kim, H.K.; Wang, M.; Hankemeier, T.; Greef, J.V.D.; Xu, G.; et al. Recent methodology in the phytochemical analysis of ginseng. Phytochem. Anal. 2008, 19, 2–16. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, W.Z.; Yao, C.L.; Shi, X.J.; Li, J.Y.; Lou, Y.; Duan, Y.N.; Wu, W.Y.; An, G.D. Malonylginsenosides with Potential Antidiabetic Activities from the Flower Buds of Panax ginseng. J. Nat. Prod. 2017, 80, 899–908. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, W.Z.; Shi, X.J.; Yao, C.L.; Yang, M.; Liu, X.; Jiang, B.H.; Wu, W.Y. A green protocol for efficient discovery of novel natural compounds: Characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study. Anal. Chim. Acta 2015, 893, 65–76. [Google Scholar] [CrossRef]
- Sun, B.S.; Xu, M.Y.; Li, Z.; Wang, Y.B.; Sung, C.K. UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming. J. Ginseng Res. 2012, 36, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ma, L.; Guo, Y.; Liu, W.; Wang, Y.; Liu, S. Analysis of oligosaccharides from Panax ginseng by using solid-phase permethylation method combined with ultra-high-performance liquid chromatography-Q-Orbitrap/mass spectrometry. J. Ginseng Res. 2020, 44, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Li, Y.; Zhu, H.; Feng, B. A pseudotargeted method based on sequential window acquisition of all theoretical spectra MS acquisition and its application in quality assessment of traditional Chinese medicine preparation-Yuanhu Zhitong Tablet. J. Sep Sci. 2021, 45, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Liu, S. Application of pseudotargeted method combined with multivariate statistical analysis for the quality assessment of traditional Chinese medicine preparation, Sanhuang Tablet as a case. Anal. Bioanal. Chem. 2020, 412, 5863–5872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, B.; Zhao, P.; He, F.; Xiao, W.; Zhu, J.; Ding, Y. A comprehensive evaluation protocol for sulfur fumigation of ginseng using UPLC-Q-TOF-MS/MS and multivariate statistical analysis. LWT 2021, 145, 111293. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Ma, W.; Cheng, T.; Liu, Y. Ginsenoside Rh2 inhibits invasiveness of glioblastoma through modulation of VEGF-A. Tumor Biol. 2016, 37, 15477–15482. [Google Scholar] [CrossRef]
- Kim, J.H.; Pan, J.H.; Cho, H.T.; Kim, Y.J. Black ginseng extract counteracts streptozotocin-induced diabetes in mice. PLoS ONE 2016, 11, e0146843. [Google Scholar] [CrossRef] [Green Version]
- Oh, C.-H.; Kim, G.-N.; Lee, S.-H.; Lee, J.-S.; Jang, H.-D. Effects of heat processing time on total phenolic content and antioxidant capacity of ginseng Jung Kwa. J. Ginseng Res. 2010, 34, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Jeong Oog, L.; So Hyeon, H.; Ting, S.; Ji Hye, K.; Long, Y.; Weicheng, H.; Jae Youl, C. Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes. J. Ginseng Res. 2021, 45, 354–360. [Google Scholar]
- Wang, Y.; Chen, T.; Yang, C.; Li, Q.; Ma, M.; Xu, H.; Shi, Q.; Wang, Y.; Wang, Y.; Liang, Q. Huangqi Guizhi Wuwu Decoction Improves Arthritis and Pathological Damage of Heart and Lung in TNF-Tg Mice. Front. Pharmacol. 2022, 13, 871481. [Google Scholar] [CrossRef]
- Christensen, L.P. Ginsenosides: Chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 2008, 55, 1–99. [Google Scholar]
- Nam, K.-Y.; Lee, N.-R.; Moon, B.-D.; Song, G.-Y.; Shin, H.-S.; Choi, J.-E. Changes of ginsenosides and color from black ginsengs prepared by steaming-drying cycles. Korean J. Med. Crop. Sci. 2012, 20, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Dong, C.; Shang, Y.; Sun, Y.-A.; Fu, D.; Zhao, J. Characterization of radix rehmanniae processing procedure using FT-IR spectroscopy through nonnegative independent component analysis. Anal. Bioanal. Chem. 2009, 394, 827–833. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Li, J.; Zhang, H.; Ding, L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 2007, 102, 664–668. [Google Scholar] [CrossRef]
- Sun, B.-S.; Pan, F.-Y.; Sung, C.-K. Repetitious steaming-induced chemical transformations and global quality of black ginseng derived from Panax ginseng by HPLC-ESI-MS/MS n based chemical profiling approach. Biotechnol. Bioprocess. Eng. 2011, 16, 956. [Google Scholar] [CrossRef]
Analyte | Formula | RT (min) | Precursor Ion | Product Ion | Collision Energy (eV) | Declustering Potential (V) |
---|---|---|---|---|---|---|
Rg1 | C42H72O14 | 5.20 | 846 | 800 | 15 | −80 |
Re | C48H82O18 | 5.20 | 946 | 638 | 30 | −120 |
Rb1 | C54H92O23 | 7.76 | 1108 | 946 | 25 | −130 |
Rh1 | C36H62O9 | 7.78 | 684 | 638 | 15 | −80 |
Rg3 | C42H72O13 | 13.87 | 784 | 460 | 35 | −120 |
Rh2 | C36H62O8 | 15.08 | 668 | 622 | 15 | −90 |
Analyte | LOD (ng/mL) | LOQ (ng/mL) | RSD (%) of Intra-Day Precision (n = 6) | RSD (%) ofRepeatability (n = 6) | Regression Equation | Linear Range (μg/mL) | Correlation Coefficient(r) | Recovery (%) |
---|---|---|---|---|---|---|---|---|
Rg1 | 11.1 | 22.2 | 1.74 | 1.33 | y = 81,546x − 10,860 | 0.0222–5.55 | 0.9993 | 104.85% |
Re | 18.2 | 45.5 | 1.12 | 2.86 | y = 20,558x − 4043 | 0.0455–4.55 | 0.9955 | 95.24% |
Rb1 | 20.4 | 51.0 | 1.41 | 3.74 | y = 17,022x − 3209 | 0.0510–10.20 | 0.9995 | 89.31% |
Rh1 | 5.3 | 10.6 | 0.90 | 1.74 | y = 159,799x − 681 | 0.0106–2.65 | 0.9998 | 112.39% |
Rg3 | 4.0 | 8.0 | 2.20 | 2.64 | y = 98,863x + 8345 | 0.0080–4.00 | 0.9956 | 86.16% |
Rh2 | 5.4 | 10.8 | 1.86 | 2.91 | y = 63,590x + 8546 | 0.0108–5.40 | 0.9965 | 99.76% |
Times of Steaming Process and Drying | Concentration of Analytes (μg/g) | |||||
---|---|---|---|---|---|---|
Re | Rg1 | Rb1 | Rh1 | Rg3 | Rh2 | |
0 | 1599.97 ± 164.67 | 2651.98 ± 658.15 | 3201.75 ± 197.14 | 11.88 ± 0.91 | 6.361 ± 0.41 | 0 |
1 | 1212.02 ± 55.26 | 1954.23 ± 630.68 | 2013.57 ± 131.65 | 90.28 ± 20.69 | 226.95 ± 41.18 | 0 |
2 | 704.60 ± 61.62 | 1726.80 ± 149.11 | 1769.65 ± 103.98 | 160.25 ± 41.78 | 449.94 ± 64.74 | 0.39 ± 0.27 |
3 | 590.59 ± 153.03 | 595.11 ± 265.37 | 1365.81 ± 286.76 | 183.88 ± 67.00 | 659.84 ± 85.91 | 4.95 ± 3.48 |
4 | 254.12 ± 132.65 | 591.49 ± 215.37 | 1023.85 ± 223.20 | 247.52 ± 68.80 | 714.56 ± 70.65 | 11.62 ± 5.55 |
5 | 87.07 ± 23.64 | 151.32 ± 74.67 | 764.30 ± 179.73 | 306.75 ± 78.06 | 895.07 ± 61.20 | 18.59 ± 4.06 |
6 | 53.37 ± 30.78 | 102.93 ± 67.09 | 500.37 ± 181.51 | 339.32 ± 46.78 | 1071.67 ± 67.74 | 24.48 ± 8.91 |
7 | 17.82 ± 12.41 | 30.99 ± 25.04 | 232.25 ± 122.69 | 369.26 ± 43.33 | 1202.24 ± 54.82 | 35.18 ± 9.29 |
8 | 9.67 ± 5.89 | 0 | 158.19 ± 95.84 | 373.67 ± 55.53 | 1376.93 ± 186.82 | 44.29 ± 18.55 |
9 | 7.42 ± 3.14 | 0 | 82.35 ± 51.89 | 376.60 ± 60.01 | 1343.91 ± 198.74 | 49.12 ± 15.45 |
No. | RT (min) | Measured m/z | Mass Deviation (ppm) | Adducts | Productions | Compounds | Formula | Molecular Weight | Variation |
---|---|---|---|---|---|---|---|---|---|
1 | 4.41 | 1007.5529 | 9.63 | [M + HCOO]− | 961.53, 799.48 | Re1 | C48H82O19 | 962.545 | ↓ |
2 | 4.44 | 701.4477 | −0.71 | [M + HCOO]− | 655.44, 493.39 | 494-Glc | C36H64O10 | 656.4499 | ↑ |
3 | 4.71 | 847.5099 | 4.48 | [M + HCOO]− | 801.50, 655.44, 493.39 | Rf2 | C42H74O14 | 802.5078 | ↑ |
4 | 5.37 | 845.4924 | 2.37 | [M + HCOO]− | 799.49, 637.43, 475.38 | Rg1 a | C42H72O14 | 800.4922 | ↓ |
5 | 5.44 | 991.5546 | 6.35 | [M + HCOO]− | 945.54, 799.49, 637.43, 475.38 | Re a | C48H82O18 | 946.5501 | ↓ |
6 | 6.11 | 699.428 | −6.43 | [M + HCOO]− | 653.43, 491.38, 161.04 | noto-R8/noto-R9 /M7cd/notopanaxoside-A | C36H62O10 | 654.4343 | ↑ |
7 | 6.71 | 887.5053 | 4.85 | [M + HCOO]− | 841.49, 781.47, 475.38 | 6′-O-acetyl-Rg1 | C44H74O15 | 842.5028 | ↓ |
8 | 7.03 | 863.499 | −2.32 | [M + HCOO]− | 817.49, 655.44, 493.39 | Rf3 | C42H74O15 | 818.5028 | ↑ |
9 | 7.05 | 1007.5419 | −1.29 | [M + HCOO]− | 961.54, 799.49, 637.43 | Re3 | C48H82O19 | 962.5450 | ↓ |
10 | 7.08 | 829.4966 | 1.33 | [M + HCOO]− | 783.49, 637.43, 619.42, 475.38 | Isomer of Rg2 | C42H72O13 | 784.4973 | ↑ |
11 | 7.11 | 683.4384 | 1.17 | [M + HCOO]− | 637.43, 475.38 | F1 | C36H62O9 | 638.4394 | ↑ |
12 | 7.28 | 1033.5623 | 3.29 | [M + HCOO]− | 987.56, 945.55, 927.53, 637.43 | 6′-O-acetyl-Re | C50H84O19 | 988.5607 | ↓ |
13 | 7.34 | 887.5059 | 5.52 | [M + HCOO]− | 841.49, 781.48, 437.43 | yesanchinoside D | C44H74O15 | 842.5028 | ↓ |
14 | 8.41 | 650.3175 | 3.08 | [M + 2HCOO]2− | 1209.62, 1077.58, 945.54, 783.49, 621.44 | Ra1 | C58H98O26 | 1210.6346 | ↓ |
15 | 8.47 | 683.4381 | 0.73 | [M + HCOO]− | 637.43, 475.38 | Rh1 a | C36H62O9 | 638.4394 | ↑ |
16 | 8.49 | 1285.6510 | 5.91 | [M + HCOO]− | 1107.60, 1077.57, 945.54 | R4/Ra3 | C59H100O27 | 1240.6452 | ↓ |
17 | 8.55 | 1153.6011 | 0 | [M + HCOO]− | 1107.60, 945.54, 783.49 | Rb1 a | C54H92O23 | 1108.6029 | ↓ |
18 | 8.61 | 829.4938 | −2.05 | [M + HCOO]− | 783.49, 637.43, 475.38 | Rg2 | C42H72O13 | 784.4973 | ↑ |
19 | 8.82 | 1077.5833 | −1.67 | [M − H]− | 945.54, 915.53, 783.49 | Rc | C53H90O22 | 1078.5924 | ↓ |
20 | 8.85 | 650.3211 | 8.61 | [M + 2HCOO]2− | 1209.63, 1077.58, 945.54, 783.49, 621.44 | Ra2 | C58H98O26 | 1210.6346 | ↓ |
21 | 9.13 | 1077.5958 | 9.93 | [M − H]− | 945.54, 915.53, 783.49 | Rb2 | C53H90O22 | 1078.5923 | ↓ |
22 | 9.3 | 845.4962 | 6.86 | [M + HCOO]− | 799.48, 637.43, 475.38 | Rg7/Ib/majoroside F2 | C42H72O14 | 800.4922 | ↑ |
23 | 9.48 | 1195.615 | 2.76 | [M + HCOO]− | 1149.60, 1107.59, 1189.58, 945.55 | quinquenoside-R1 | C56H94O24 | 1150.6135 | ↓ |
24 | 9.78 | 945.5385 | −4.55 | [M − H]− | 783.49, 621.44 | Rd | C48H82O18 | 946.5501 | ↓ |
25 | 9.81 | 605.2981 | −2.64 | [M + 2HCOO]2− | 1119.59, 1059.58 | Rs1 | C55H92O23 | 1120.6029 | ↓ |
26 | 9.88 | 845.4927 | 2.72 | [M + HCOO]− | 799.48, 637.43, 475.38 | Rg7/Ib/majoroside F2 | C42H72O14 | 800.4922 | ↑ |
27 | 10.1 | 1165.5989 | −1.89 | [M + HCOO]− | 1119.60, 1077.59, 783.49 | Rs2 | C55H92O23 | 1120.6029 | ↓ |
28 | 10.23 | 845.4913 | 1.06 | [M + HCOO]− | 799.45, 637.43, 475.38 | Rg7/Ib/majoroside F2 | C42H72O14 | 800.4922 | ↑ |
29 | 10.27 | 991.5427 | −5.65 | [M + HCOO]− | 945.54, 783.48, 621.43, 459.38 | gypenoside-XVII /chikusetsusaponin-FK7 | C48H82O18 | 946.5501 | ↓ |
30 | 10.66 | 827.4786 | −1.45 | [M + HCOO]− | 781.47, 619.42 | Rg8 | C42H70O13 | 782.4816 | ↑ |
31 | 10.76 | 829.5001 | 5.55 | [M + HCOO]− | 783.49, 621.44, 475.38 | Isomer of Rg2 | C42H72O13 | 784.4973 | ↑ |
32 | 10.91 | 961.539 | 1.25 | [M + HCOO]− | 915.53, 783.49, 621.43, 459.38 | vina-R16/gypenoside-IX /noto-Fe/noto-La/quinquenoside L10 | C47H80O17 | 916.5396 | ↓ |
33 | 10.92 | 827.4819 | 2.54 | [M + HCOO]− | 781.47, 619.42 | Rg9 | C42H70O13 | 782.4816 | ↑ |
34 | 11.12 | 829.4992 | 4.46 | [M + HCOO]− | 783.48, 621.44 | F2 | C42H72O13 | 784.4973 | ↑ |
35 | 11.37 | 797.4692 | −0.13 | [M + HCOO]− | 751.46, 619.42, 457.37 | Isomer of noto-T5 | C41H68O12 | 752.4711 | ↑ |
36 | 11.69 | 943.5249 | −2.44 | [M − H]− | 665.43, 619.42 | (L-1/2/5)-(Glc-Rha)-Glc | C48H80O18 | 944.5345 | ↑ |
37 | 12.03 | 829.4985 | 3.62 | [M + HCOO]− | 783.49, 621.44, 459.38 | Rg3 a | C42H72O13 | 784.4973 | ↑ |
38 | 12.19 | 521.3816 | −6.14 | [M + HCOO]− | - | Protopanaxatriol | C30H52O4 | 476.3866 | ↑ |
39 | 12.47 | 631.3824 | −4.43 | [M − H]− | 555.37, 455.35 | (I-1)-GlurA | C36H56O9 | 632.3924 | ↑ |
40 | 12.55 | 871.5073 | 1.38 | [M + HCOO]− | 825.50, 783.49, 621.44, 459.38 | Rs3 | C44H74O14 | 826.5079 | ↑ |
41 | 12.8 | 809.4991 | −8.15 | [M − H]− | 763.46, 601.41 | (F-1/2/3)-(Glc-Glc)-acetyl | C44H74O13 | 810.5129 | ↑ |
42 | 13.1 | 667.4390 | −5.54 | [M + HCOO]− | 621.44, 459.38 | Rh2 a | C36H62O8 | 622.4445 | ↑ |
43 | 14.07 | 649.4282 | −6.01 | [M + HCOO]− | 603.42, 441.37 | Rh3 | C36H60O7 | 604.4339 | ↑ |
44 | 14.16 | 953.4875 | −9.23 | [M + HCOO]− | 907.57, 783.49, 621.43, 161.05, 141.09 | 438-(Glc-Rha)-Glc | C44H76O19 | 908.4981 | ↑ |
45 | 14.75 | 505.3886 | −2.37 | [M + HCOO]− | - | Protopanaxadiol | C30H52O3 | 460.3916 | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Chang, Z.; Wei, K.; Tang, Y.; Chen, Z.; Zhang, H.; Wang, Y.; Zhu, H.; Feng, B. Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach. Molecules 2023, 28, 5251. https://doi.org/10.3390/molecules28135251
Li L, Chang Z, Wei K, Tang Y, Chen Z, Zhang H, Wang Y, Zhu H, Feng B. Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach. Molecules. 2023; 28(13):5251. https://doi.org/10.3390/molecules28135251
Chicago/Turabian StyleLi, Lele, Zhixia Chang, Keyu Wei, Yi Tang, Zhao Chen, Hongli Zhang, Yang Wang, Heyun Zhu, and Bo Feng. 2023. "Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach" Molecules 28, no. 13: 5251. https://doi.org/10.3390/molecules28135251
APA StyleLi, L., Chang, Z., Wei, K., Tang, Y., Chen, Z., Zhang, H., Wang, Y., Zhu, H., & Feng, B. (2023). Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach. Molecules, 28(13), 5251. https://doi.org/10.3390/molecules28135251