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Abstract: A bimetallic core–shell nanostructure is a versatile platform for achieving intriguing optical
and catalytic properties. For a long time, this core–shell nanostructure has been limited to ones
with noble metal cores. Otherwise, a galvanic replacement reaction easily occurs, leading to hollow
nanostructures or completely disintegrated ones. In the past few years, great efforts have been
devoted to preventing the galvanic replacement reaction, thus creating an unconventional class of
core–shell nanostructures, each containing a less-stable-metal core and a noble metal shell. These
new nanostructures have been demonstrated to show unique optical and catalytic properties. In
this work, we first briefly summarize the strategies for synthesizing this type of unconventional
core–shell nanostructures, such as the delicately designed thermodynamic control and kinetic control
methods. Then, we discuss the effects of the core–shell nanostructure on the stabilization of the
core nanocrystals and the emerging optical and catalytic properties. The use of the nanostructure
for creating hollow/porous nanostructures is also discussed. At the end of this review, we discuss
the remaining challenges associated with this unique core–shell nanostructure and provide our
perspectives on the future development of the field.

Keywords: galvanic replacement prevention; core–shell nanostructure; noble metal; optical property;
catalytic property

1. Introduction

Bimetallic nanocrystals are receiving increasing interest in optics [1–3], catalysis [4–10],
and many other fields [11–15]. For example, bimetallic nanocrystals are an excellent class of
catalysts for many industrial processes and energy conversion thanks to their intriguing cat-
alytic properties arising from the electronic and geometric interactions between constituent
metals [8–10]. Among the different types of bimetallic nanocrystals, core–shell structured
nanocrystals have attracted significant attention in recent years [1,15–18]. These core–shell
nanostructures may show many advantages, including convenient shape and facet con-
trol [3,6,19], the high utilization efficiency of the shell metals [17,20,21], and well-controlled
properties due to the core–shell interactions [9,19,22,23].

Generally, most bimetallic core–shell nanostructures investigated to date are those
with noble metal cores, such as Au, Pd, and Pt [16,18,24,25]. Such metal cores are highly
stable, and thus can well resist oxidative etching by the precursor of the shell metal.
When less stable metals are employed as the cores, a galvanic replacement reaction readily
occurs [26–29]. Upon mixing the less-stable-metal nanocrystals (cores) with noble metal
salts (shell metal precursors), the less-stable-metal nanocrystals are oxidatively etched,
while the noble metal salt is reduced and deposited onto the surface of the less-stable-metal
nanocrystals. Eventually, the galvanic replacement reaction leads to hollow nanostructures
or fully disintegrated ones [29–33]. As a result, it has been challenging to synthesize core–
shell nanostructures with less-stable-metal cores and noble metal shells. The lack of this
kind of unconventional core–shell nanostructure has restricted the pursuit of new materials
and properties.
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Recently, a few research groups have made significant progress in preventing the
galvanic replacement reaction in pursuit of unconventional bimetallic core–shell nanostruc-
tures [21,22,34–47]. The strategies developed to date generally fall into two categories. The
first category focuses on reaction thermodynamics [21,22,34–40]. An extra ligand is usually
introduced into the synthesis system to coordinate with the noble metal salt. As a result, the
reduction potential of the noble metal salt is decreased, making it less prone to react with
the less-stable-metal nanocrystals. The other category of strategies focuses on the reaction
kinetics [41–47]. A strong reducing agent is usually introduced into the reaction system so
that the reduction of the noble metal salt by the reducing agent becomes more predomi-
nant compared to the galvanic replacement reaction. Either way, the resulting core–shell
nanocrystals with less-stable-metal cores and noble metal shells showed unique optical
and catalytic properties, highlighting great potential impacts on the respective fields.

Herein, we provide a brief summary of recent progress in preventing the galvanic
replacement reaction to afford unconventional bimetallic core–shell nanostructures, in-
cluding results from a few research teams and those from our group. The effects of the
core–shell nanostructure on stabilizing the core metal nanocrystals [12,48], creating unique
optical and catalytic properties [4,19,21,46,49], and building various hollow nanostructures
or frameworks are also discussed [36,37,50–52]. Finally, we provide a personal perspective
on future research on the synthesis and applications of these novel bimetallic core–shell
nanostructures. We expect such a discussion to give rise to new thoughts and ideas in
advancing the synthetic chemistry of noble metal nanostructures with peculiar properties
and wide applications.

2. Galvanic Replacement and Its Prevention to Synthesize Unconventional Core–Shell
Nanostructures: The Case of Ag@M (M: Au, Pt, Pd, etc.) Nanostructures
2.1. Galvanic Replacement Reaction

The galvanic replacement reaction is an electrochemical process that involves the oxi-
dation of one metal by the ions of another metal with a higher reduction potential [2,27,33].
Table 1 lists the standard reduction potentials (E0) of representative metal salts [53]. The
driving force for a galvanic replacement reaction is the reduction potential difference
between two metals, with one metal acting principally as the cathode and the other
metal as the anode. Thus, the process of the galvanic replacement reaction can be di-
vided into two half-reactions: At the anode, metal nanocrystals (M1) lose electrons and
become oxidized:

M1 →M1
m+ + me−

Table 1. Standard reduction potentials of representative metal salts at 25 ◦C [53].

Half Reaction E0 (V)

Au+ + e− = Au 1.83
Au3+ + 3e− = Au 1.52
Pt2+ + 2e− = Pt 1.188

Pd2+ + 2e− = Pd 0.915
Ag+ + e− = Ag 0.80

Cu2+ + 2e− = Cu 0.34
Ni2+ + 2e− = Ni −0.257

At the cathode, metal ions (M2
n+) gain electrons and become reduced, followed by

deposition on the surface of the M1 nanocrystals:

M2
n+ + ne− →M2

In the case of Ag nanocrystals, they readily react with noble metal salts, such as
HAuCl4, via a galvanic replacement reaction (Figure 1) [33]. This is because the standard
reduction potential of AuCl4− + 3e− = Au + 4Cl− (E0 = 1.002 V vs. SHE) is substantially
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larger than that of Ag+ (Ag+ + e− = Ag, E0 = 0.7996 V). Thus, the oxidation of Ag nanocrys-
tals accompanying the reduction of AuCl4− becomes a thermodynamically favorable and
spontaneous process. The Au atoms are then deposited onto the surface of Ag nanocrystals,
which stabilizes the Ag surface. This process thus causes etching of Ag, preferentially
from the interior of the nanocrystals, forming hollow nanostructures [26–30,32,40,54]. The
galvanic replacement reaction also causes the mixing of Au and Ag to create a random
alloy [29,32]. All these features make it a significant challenge to synthesize core−shell
nanostructures, each containing a less-stable-metal core and a noble metal shell, with
controllable arrangements of metal atoms.
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Figure 1. A scheme of the galvanic replacement reaction between Ag nanocrystals and Au salt
(HAuCl4) in an aqueous solution, illustrating the morphological and structural changes at different
reaction stages. (1) One Au atom is deposited onto the nanocrystal, accompanied by the removal
of three Ag atoms. (2,3) Continuous deposition of Au and removal of Ag lead to an Au–Ag alloy
hollow nanostructure. (4,5) The hollow nanostructure is further disintegrated by extensive galvanic
replacement reaction. Reproduced from ref. [33]. Copyright (2013), with permission from Wiley-VCH.

Multiple efforts have been made to prevent the galvanic replacement reaction for
the synthesis of unconventional core–shell nanostructures. Taking the growth of Au or
platinum group metals (PGM, such as Pt and Pd) on Ag nanocrystals as an example,
two strategies have been proven effective in suppressing the galvanic replacement, i.e.,
thermodynamic control strategies and kinetic control strategies. In the following sections,
we briefly discuss the concepts behind these two strategies.

2.2. Thermodynamic Control Strategy

The origin of a galvanic replacement reaction is the reduction potential difference
between the metals used. Therefore, it is straightforward to prevent a galvanic replacement
reaction by decreasing the reduction potential of the noble metal salt to be deposited on
the nanocrystals of less stable metals, such as Ag. In principle, the reduction potential
of the metal salt is closely related to the coordination environment. When coordinating
with a strong ligand, the concentration of free metal ions is significantly decreased, due
to the coordination—dissociation equilibrium, leading to a significantly lower reduction
potential. In other words, the standard reduction potential of a metal–ligand complex can be
significantly lower than that of its free ion counterpart. Table 2 lists the standard reduction
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potentials of some typical noble metal ions coordinated to different types of ligands. More
data can be found in the CRC Handbook of Chemistry and Physics [53]. Ligand engineering
provides a convenient way to regulate the reduction potential of the noble metal salt for its
galvanic-replacement-free reduction and deposition on less-stable-metal nanocrystals.

Table 2. Standard reduction potentials of typical noble metal salts with different ligands at 25 ◦C [53].

Half Reaction E0 (V)

Au3+ + 3e− = Au 1.52
AuCl4− + 3e− = Au + 4Cl− 1.002
AuBr4

− + 3e− = Au + 4Br− 0.854
AuI4

− + 3e− = Au + 4I− 0.56
Au(SO3)2

3− + e− = Au + 2SO3
2− 0.111

Pt2+ + 2e− = Pt 1.188
PtCl42− + 2e− = Pt + 4Cl− 0.758
PtBr4

2− + 2e− = Pt + 4Br− 0.698
Pd2+ + 2e− = Pd 0.915

PdCl42− + 2e− = Pd + 4Cl− 0.62
PdBr4

2− + 2e− = Pd + 4Br− 0.49
Pd(NH3)4

2+ + 2e− = Pd + 4NH3 0.0

Dating back to the year 2012, our research team led by Yin first demonstrated the
feasibility of this thermodynamic control strategy by depositing a thin layer of Au on Ag
nanoplates for stabilizing the Ag nanoplates in surface plasmon resonance (SPR) biosensing
applications [34] (Figure 2a). In that work, an inorganic anion, I−, was introduced into the
synthesis system, which served as a strong ligand for the Au salt, HAuCl4, to decrease
its reduction potential. The standard reduction potential of the Au salt was reduced from
1.002 V (AuCl4−) to 0.56 V (AuI4

−), which is even lower than that of Ag+ (0.80 V). Thus, the
galvanic replacement reaction between Ag nanoplates and Au precursor can be prevented.
In this way, Ag@Au core–shell nanoplates were successfully obtained from this synthesis.
As shown in Figure 2a, the original triangular/hexagonal shapes of the Ag nanoplates were
without significant hollowing. An elemental distribution analysis by energy-dispersive
X-ray spectroscopy (EDS) confirmed the uniform deposition of Au on the Ag nanoplate
surface. However, in this synthesis, the introduction of I− may also help the etching of Ag
by forming AgI, a stable coordination compound. Therefore, this synthesis failed to produce
a thick Au layer on the surface of Ag nanocrystals. To make the synthesis more robust,
our group further developed an improved thermodynamic control strategy by introducing
sulfite (SO3

2−) as a ligand [35] (Figure 2b). Sulfite can strongly coordinate with Au salt to
form Au(SO3)2

3−, which possesses an even lower standard reduction potential of 0.111 V.
In addition, the ligand sulfite is mild and proven incapable of triggering the ligand-assisted
oxidative etching of the Ag nanoplates. In this way, controllable epitaxial growth of Au
on Ag nanocrystals was achieved layer by layer without involving a galvanic replacement
reaction, leading to the formation of well-defined Ag@Au core–shell nanoplates. The
high-angle annular dark field scanning transmission electron microscopy (HAADF−STEM)
image and the EDS elemental mappings in Figure 2b reveal the core–shell nanostructure,
confirming the absence of a galvanic replacement reaction during the synthesis.

Apart from the inorganic anion-type ligands, some organic compounds can also be
employed as ligands to coordinate with noble metal salts to regulate their reduction poten-
tials and prevent galvanic replacement reactions for the synthesis of the unconventional
core–shell nanostructures. In pursuit of Ag@Pt core–shell nanocrystals, our group suc-
cessfully prevented a galvanic replacement reaction between Ag nanocrystals and the Pt
salt by employing acetonitrile (CH3CN) as the ligand [36,37]. Nuclear magnetic resonance
(NMR) confirmed that the nitrile group effectively coordinates with the Pt salt. As a result,
Ag@Pt core–shell nanoplates and nanowires were successfully obtained without involving
a galvanic replacement reaction (Figure 3a,b). Similarly, we discovered that Pd could grow
on Ag nanocrystals to form a Ag@Pd core–shell nanostructure when glucose (C6H12O6)
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was used as the ligand to the Pd salt (Figure 3c) [22]. The solution containing NaPdCl4
and C6H12O6 showed a gradual increase in ultraviolet–visible (UV–vis) absorbance, which
suggests the formation of the coordination compound. In a similar way, Li found that oley-
lamine (OAm) and triphenylphosphine are also excellent ligands for Au, Pd, and Pt salts
when targeting their galvanic-replacement-free growth on Ag nanoparticles (Figure 3d) [40].
All these facts confirm the versatility of the thermodynamic control strategy in synthesizing
unconventional Ag@M core–shell nanostructures.
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2.3. Kinetic Control Strategy

In 2014, Qin and co-workers reported a kinetic control strategy in the synthesis of
Ag@Au core–shell nanocubes without involving a significant galvanic replacement reaction
(Figure 4) [41]. Success in preventing the galvanic replacement reaction relies on the
introduction of a strong reducing agent. They found that by increasing pH, ascorbic
acid (AA) as a reducing agent will be deprotonated, which shows significantly enhanced
reducing power (Figure 4a). In this case, the Au salt (HAuCl4) will react preferentially with
the deprotonated AA rather than the Ag nanocrystals. The galvanic replacement reaction
becomes less competitive and thus significantly suppressed. Using this kinetic control
strategy, the authors demonstrated the synthesis of an ultrathin Au shell of 0.6 nm thickness
on the surface of Ag nanocubes, forming a well-defined core–shell nanostructure (Figure 4b).
They demonstrated that the same principle could be extended to grow conformal, ultrathin
shells of Pt on the surface of Ag nanocubes for the generation of Ag@Pt core–shell nanocubes
with a shell as thin as three atomic layers (Figure 4c) [42]. Thus, introducing a faster
reduction parallel reaction to compete with the galvanic replacement reaction is another
effective and general method to suppress the galvanic replacement reaction in pursuit of
unconventional Ag@M core–shell nanostructures.
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Figure 4. Preventing the galvanic replacement reaction by introducing a competing reduction parallel
reaction. (a) Tuning the reducing power of AA by pH. (b) Preventing the galvanic replacement reac-
tion between Ag nanocubes and HAuCl4 in the presence of AA at high pH values. Reproduced from
ref. [41]. Copyright (2014), with permission from the American Chemical Society. (c) Preventing the
galvanic replacement reaction between Ag nanocubes and H2PtCl6 by a similar method. Reproduced
from ref. [42]. Copyright (2017), with permission from the Royal Society of Chemistry.
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Apart from increasing the power of the reducing agent, similar kinetic control can be
achieved by lowering the concentration of the metal salt (Figure 5). This leads to an increase
in the reducing agent/metal salt ratio, thus making the parallel reduction of the metal salt
by the reducing agent more competitive than the galvanic replacement reaction. Gun’ko
and co-workers reported an epitaxial deposition of a thin layer of Au on Ag nanoprisms
by dropwise addition of low concentrations of HAuCl4 (0.5 mM) in Ag nanoprisms and
ascorbic acid solution (Figure 5a) [55]. Qin and co-workers successfully prevented the
galvanic replacement reaction between Ag nanocubes and Na2PdCl4 in the synthesis of
Ag@Pd-Ag core–shell nanocubes by adding Na2PdCl4 (0.2 mM) and AgNO3 (0.1 mM)
into an aqueous suspension of Ag nanocubes in the presence of AA at a slow injection
rate (Figure 5b) [51]. By increasing the total volume of precursor solutions added into
the reaction system, the growth pattern can be controlled so that Pd and Ag atoms are
progressively deposited on the edges, corners, and then side faces of the Ag nanocubes.
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3. Synthesis of 3d Transition Metal@noble Metal Core–Shell Nanostructures without
Involving a Galvanic Replacement Reaction

Compared with the Ag cores discussed above, 3d transition metals, such as Fe, Co,
Ni, and Cu, have lower prices and even stronger electronic interactions with noble metals.
These 3d transition metals may induce strong compressive strains in the coherent noble
metal shells, thus broadening their d-band, downshifting the d-band center position, and
imposing a significant impact on their catalytic properties [8,49,56]. The overall core–shell
nanomaterials show low cost and high stability, and thus may find even broader applica-
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tions. However, it is a great challenge to prevent the galvanic replacement reaction between
the 3d transition metals and the noble metal salt due to the former’s ultralow reduction
potential values (e.g., Cu2+ + 2 e− = Cu, E0 = 0.340 V; Ni2+ + 2 e− = Ni, E0 = −0.257 V)
and thus the huge reduction potential gap from the noble metal salts [53]. Basically, both
the thermodynamic and the kinetic control strategies may be applicable to prevent the
galvanic replacement reaction. Between the two, the thermodynamic control strategy, i.e.,
the reduction potential engineering of the noble metal salt, should be more reliable, con-
sidering the huge reduction potential gaps. In addition, the 3d transition metals are prone
to oxidization, making it difficult to achieve a controlled synthesis. Therefore, during the
synthesis, great care should also be taken in handling the 3d transition metal nanocrystals
to avoid their possible oxidation by O2 dissolved in the solution or in ambient air.

Yang et al. found that the galvanic replacement reaction between Cu nanowires and
Au salts can be prevented by employing trioctylphosphine (TOP) as a ligand for the Au
salt (Figure 6) [38]. They found that TOP can modify the reaction thermodynamics by
reducing the reduction potential of Au3+ and thus changing the reduction kinetics of
the Au precursor. With appropriate reaction kinetics, Cu@Au core–shell nanowires were
successfully prepared. The TEM image and EDS elemental mapping well confirmed the
unconventional core–shell nanostructure.
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Figure 6. Preventing the galvanic replacement reaction between Cu nanowires and Au salts with
the ligand of TOP. Scheme of the reaction mechanism, TEM image, and EDS elemental mapping
of the resulting Cu@Au core–shell nanowires. Reproduced from ref. [38]. Copyright (2017), with
permission from the American Chemical Society.

In addition to Cu, Ni is also a good candidate for the 3d transition metal tem-
plate, possessing both face-centered cubic (fcc) and hexagonal close-packed (hcp) crystal
phases [57,58]. To address the challenge of galvanic replacement with noble metal salts,
our group developed a competent strategy by introducing oleylamine (OAm) as a strong
ligand to the Pt salt [21]. Moreover, the synthesis was carried out at a high temperature
(144 ◦C) with a low injection rate of Pt precursor, thus introducing extra kinetic control into
the synthesis. By this means, the coherent growth of a Pt skin on hcp−Ni nanobranches was
successfully achieved without involving a galvanic replacement reaction (Figure 7). The
core–shell structure can be confirmed by electron energy loss spectroscopy (EELS) mapping
with atomic resolution captured on a spherical aberration (Cs)-corrected high-resolution
scanning transmission electron microscope (HR−STEM) (Figure 7c). We also observed in-
teresting core–shell phase replication behavior in this system. At the tip of the nanobranch,
Pt atoms were observed in an abcabc stacking sequence, which is the packing structure
of the fcc phase (Figure 7c,d). Therefore, on (0001) facets of the hcp−Ni, the Pt skin does
not replicate the phase of the Ni substrate but takes its intrinsically stable fcc phase. On
non-(0001) side facets of the Ni branch, the Pt atoms align in the same abab sequence as
the Ni atoms in the core, suggesting successful phase replication. This is the first time that
metastable hcp−Pt can be synthesized in a controllable manner. Therefore, this synthesis
offers opportunities in the phase engineering of noble metal nanocrystals.
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Figure 7. Preventing the galvanic replacement reaction between hcp−Ni nanobranches and the Pt salts
with the aid of the ligand of OAm. (a) TEM images. (a-1) A low-magnification TEM image. (a-2) TEM
image of a branched Ni nanocrystal. (b) XRD patterns of the hcp−Ni@Pt core–shell nanobranches
and Pt shells after etching of Ni. (c,d) Cs-corrected HR-STEM analysis. (c) Atomic-resolution EELS
mappings acquired at the tip and side of the nanobranches. (d) Phase analysis of the nanobranches.
Inset: Scheme of the atomic arrangement with a, b, c indicating different layers of atoms. Reproduced
from ref. [21]. Copyright (2023), with permission from Springer Nature.

4. Applications of Unconventional Bimetallic Core–Shell Nanostructures
4.1. Enhancing the Stability of the Core Nanocrystals

Due to their excellent optical and electrical properties, Ag and Cu nanostructures can
be used in many fields, such as sensing and transparent conductors [59–61]. However, Ag
and Cu are highly active metals and show weak chemical and thermal stability, which
significantly limits their applications. Coating a thin layer of noble metal on the surface of
Ag and Cu nanostructures is an effective way to improve their stability. Our group found
that with the protection of a uniform Au layer, the Ag@Au nanoplates show excellent
chemical stability against chemical etching (Figure 8a) [34]. As monitored by UV–vis
spectra, the SPR bands of Ag@Au nanoplates were highly stable in a phosphate buffer
solution, a NaCl solution, and a phosphate-buffered saline (PBS) solution, without showing
a significant change in the position or intensity of the in-plane dipole SPR bands for
four days, and even longer. By contrast, the pristine Ag nanoplates were quickly etched
by PBS, NaCl, or H2O2, as evidenced by a significant shift in the peak position and a
dramatic decrease in the intensity over a relatively short period. Yang and co-workers
found that the stability of Cu nanowires can be greatly improved by coating a thin layer
of Au (Figure 8b) [38]. The Cu@Au core–shell nanowires were fabricated on a flexible
polyethylene terephthalate (PET). In 712 h of testing, the films maintained almost the
same level of conductivity under harsh conditions (80 ◦C, 80 ± 5% humidity in the air).
By contrast, the sheet resistance of pristine Cu nanowire mesh electrode showed a sharp
increase in 3 h. A Au layer can also be used to prevent the oxidation of Ag nanowires.
Yan and co-workers found that a Ag@Au core–shell nanowire mesh electrode exhibits
significant enhancement in stability under heat (80 ◦C) and moisture (100% humidity)
(Figure 8c) [62]. No significant change in sheet resistance was found for as long as 84 days.
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The UV–vis spectra further prove that Ag@Au core–shell nanowires show high stability
during treatment with an H2O2 solution overnight.
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Figure 8. Bimetallic core–shell nanostructures with enhanced stability. (a) Chemical stability of
Ag@Au core–shell nanoplates in different solutions. Reproduced from ref. [34]. Copyright (2012),
with permission from Wiley-VCH. (b,c) Chemical and thermal stability of Cu@Au (b) and Ag@Au
(c) core–shell nanowires. The star and spherical symbols in (c) indicate the resistances of films
prepared with Ag and Ag@Au nanowires, respectively, changing with time. Reproduced from
ref. [38]. Copyright (2017), with permission from the American Chemical Society. (c) Reproduced
from ref. [62]. Copyright (2021), with permission from Springer Nature.

4.2. Tuning the Optical Properties

The optical properties of Ag and Cu are closely related to their size, morphology,
and surface properties [3,63–66], which provides the possibility for the regulation of their
optical properties by coating a noble metal layer and building core–shell nanostructures.
Our group and Yan’s group found that the localized surface plasmon resonance (LSPR)
of Ag@Au core–shell nanocrystals had a red shift and an increasing intensity compared
to Ag nanocrystals (Figure 9a,b) [35,62]. The red shift of the LSPR band can be attributed
to the increase in the aspect ratio of the Ag@Au core–shell nanocrystals during epitaxial
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growth, and the increasing intensity can be attributed to the effective separation of the
LSPR band from the interband transitions and the expanding volume of the nanoparticles.
Conversely, the LSPR will decrease and blue shift when coated with a layer of Pt [34]. As
shown in Figure 9c, the pristine Ag nanoplates showed an initial in-plane dipole-mode
localized LSPR band at 640 nm of the wavelength. At the early stage of the epitaxial growth
of Pt on the Ag nanoplates (after 1 h of growth), a blue shift of the LSPR can be witnessed
with a decreased extinction efficiency. It is worth noting that galvanic replacement usually
causes a red shift of the LSPR band due to the hollowing of the nanostructures. This distinct
shift of the LSPR band confirmed the absence of galvanic replacement in the epitaxial
growth. After the deposition of an appropriately thick layer of Pt (~2 nm, after 12 h of
growth), the LSPR band disappeared in the visible range of the spectrum. As a result, the
resulting Ag@Pt core–shell nanoplates displayed a grey/black color (Figure 9c). Therefore,
the optical properties of the metal nanoplates can be utilized as an indicator to inspect the
crystal growth process.
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Figure 9. Bimetallic core–shell nanostructures with tunable optical properties. (a–c) Evolution of the
UV–vis spectrum during the synthesis of the Ag@Au core–shell nanoplates (a); Ag@Au core–shell
nanowires (b); and Ag@Pt core–shell nanoplates (c). (a) Reproduced from ref. [35]. Copyright (2015),
with permission from Wiley-VCH. (b) Reproduced from ref. [62]. Copyright (2021), with permission
from Springer Nature. (c) Reproduced from ref. [37]. Copyright (2018), with permission from the
Royal Society of Chemistry.

4.3. Improving the Catalytic Activities

Building a core–shell structure is a promising way to realize the regulation of the
phase and electronic structure of noble metal catalysts [4,23,67]. The phase and facets of the
catalysts can be easily tuned by the core–shell structure [21,25,68]. The difference in work
function and electronegativity also makes the electronic properties easy to improve [17,21].
Moreover, the difference in atomic radius and lattice parameters between cores and shells
makes it possible to build tensile or compressive strain in the shell [21,22,46]. Based on the
above regulation, the optimization of the catalytic properties of noble metal nanomaterials
can be realized. It is found that by using Ag as the core, tensile strain can be constructed
in the noble metal shells for improved catalytic activities. For example, Ag@Pd core–shell
icosahedral nanocrystals developed by Xia and co-workers exhibited enhanced activities
in the electrocatalytic formic acid oxidation reaction (FAOR), which was explained by
the electronic interactions between the Ag core and the Pd shell (Figure 10a) [46]. Our
group disclosed the unambiguous efficacy of strong tensile strains in Pd, caused by Ag
cores in a Ag@AgPd core–shell nanostructure, in improving both the reaction kinetics
and the selectivity toward CO2 in the electrocatalytic ethanol oxidation reaction (EOR)
(Figure 10b) [22]. The Pd atoms in the shell are found to take precisely the same arrangement
as the Ag atoms in the core, leading to a substantial expansion of the lattice size by 4.5%.
The tensile strain significantly strengthens the interaction between the catalyst and the
intermediates involved in the EOR, leading to a substantial decrease in the energy barrier
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associated with the dehydration of ethanol of 39% and improved selectivity toward CO2
by 4.5 times, relative to the unstained monometallic Pd/C. As a result, the Ag@AgPd
core–shell catalysts demonstrated a mass activity of 12.7 A mgPd

−1, 12.8 times greater than
that of commercial Pd/C, making it an excellent catalyst for the EOR.
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lated electronic properties. The experimental and DFT calculation results confirm that the 
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Figure 10. Bimetallic Ag@M core–shell nanostructures with improved catalytic activities.
(a) FAOR performance of the Ag@Pd icosahedral nanocrystals. Electrolyte: N2-saturated 0.5 M
HCOOH + 0.1 M HClO4 at 20 ◦C. (b) A comparison of the mass activities at anodic peak potential.
Reproduced from ref. [46]. Copyright (2020), with permission from Wiley-VCH. (c) EOR performance
of the Ag@AgPd core–shell nanoplates. Electrolyte: N2-saturated 1 M KOH + 1 M EtOH. (d) Specific
and mass activities of the catalysts in terms of the anodic peak currents normalized to the mass of Pd
and the ECSA. Reproduced from ref. [22]. Copyright (2021), with permission from the Royal Society
of Chemistry.

In addition, building 3d transition metal@noble metal core–shell nanostructures offers
new opportunities in the phase engineering of noble metals for intriguing catalytic prop-
erties. Our group developed a synthesis for a metastable hcp−Pt phase by designing an
hcp−Ni@Pt core–shell nanostructure and revealed its improved activities in the alkaline
hydrogen evolution reaction (HER) (Figure 11) [21]. The metastable phase was proven
critical in achieving excellent activities. The well-defined core–shell nanostructure further
allows layer-by-layer electron transfer from the Ni core to the Pt skin, leading to modulated
electronic properties. The experimental and DFT calculation results confirm that the energy
barriers associated with the water dissociation and the hydrogen desorption processes
are significantly reduced. With these features, the as-designed catalyst (approximately
two atomic layers of hcp−Pt on Ni) demonstrated a high activity of 133 mA cmgeo

−2 and
17.4 mA µgPt

−1 at −70 mV in 1 M KOH.



Molecules 2023, 28, 5720 13 of 18Molecules 2023, 28, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 11. Bimetallic hcp−Ni@Pt core–shell nanostructures with improved catalytic activities. (a,b) 
LSV curves of the catalysts with 90% iR compensation in N2-saturated 1 M KOH at a scan rate of 10 
mV s−1. (c,d) Mass and specific activities at −70 mV. Reproduced from ref. [21]. Copyright (2023), 
with permission from Springer Nature. 

4.4. Building Hollow Nanostructures or Open Frameworks 
Bimetallic core–shell nanostructures obtained from a galvanic-replacement-free syn-

thesis can serve as starting materials for hollow nanostructures or open frameworks. Qin 
and co-workers synthesized such materials, including Au, Pd, and Pt nanocages, nano-
boxes, and nanoframes, by etching the corresponding Ag@M bimetallic core–shell 
nanostructures (Figure 12a) [47,50,51,69]. For example, when M atoms were selectively 
deposited on the edges of a Ag nanocrystal, a Ag@M core–frame nanocrystal was formed. 
Nanoframes can be obtained by further etching of the Ag cores. Alternatively, when M 
atoms were conformally deposited on the entire Ag surface, nanoboxes or cages were ob-
tained after removing the Ag cores (Figure 12b,c). Our group successfully synthesized 
hollow Pt nanoplates and nanotubes by etching Ag cores from Ag@Pt nanoplates and 
nanowires, respectively (Figure 12d–g) [36,37]. The morphology of the hollow nanostruc-
tures can be customized by choosing Ag nanocrystals of different shapes. The resulting 
nanostructures are composed of a Ag−Pt alloy, as confirmed by EDS, which can be caused 
by bimetallic intermixing during the synthesis and the etching processes. Interestingly, 
through a further thermal ripening process, porous hollow nanostructures can be ob-
tained (Figure 12g). In particular, the nanopores in AgPd nanoribbons (or nanotubes) ex-
hibit a regular rectangular shape, showing a typical edge length of ~8–10 nm. These 
unique structural and compositional features enabled excellent activity in the electrocata-
lytic methanol oxidation reaction (MOR). 
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(a,b) LSV curves of the catalysts with 90% iR compensation in N2-saturated 1 M KOH at a scan
rate of 10 mV s−1. (c,d) Mass and specific activities at −70 mV. Reproduced from ref. [21]. Copyright
(2023), with permission from Springer Nature.

4.4. Building Hollow Nanostructures or Open Frameworks

Bimetallic core–shell nanostructures obtained from a galvanic-replacement-free synthe-
sis can serve as starting materials for hollow nanostructures or open frameworks. Qin and
co-workers synthesized such materials, including Au, Pd, and Pt nanocages, nanoboxes,
and nanoframes, by etching the corresponding Ag@M bimetallic core–shell nanostructures
(Figure 12a) [47,50,51,69]. For example, when M atoms were selectively deposited on the
edges of a Ag nanocrystal, a Ag@M core–frame nanocrystal was formed. Nanoframes
can be obtained by further etching of the Ag cores. Alternatively, when M atoms were
conformally deposited on the entire Ag surface, nanoboxes or cages were obtained af-
ter removing the Ag cores (Figure 12b,c). Our group successfully synthesized hollow Pt
nanoplates and nanotubes by etching Ag cores from Ag@Pt nanoplates and nanowires,
respectively (Figure 12d–g) [36,37]. The morphology of the hollow nanostructures can be
customized by choosing Ag nanocrystals of different shapes. The resulting nanostructures
are composed of a Ag−Pt alloy, as confirmed by EDS, which can be caused by bimetallic
intermixing during the synthesis and the etching processes. Interestingly, through a further
thermal ripening process, porous hollow nanostructures can be obtained (Figure 12g). In
particular, the nanopores in AgPd nanoribbons (or nanotubes) exhibit a regular rectan-
gular shape, showing a typical edge length of ~8–10 nm. These unique structural and
compositional features enabled excellent activity in the electrocatalytic methanol oxidation
reaction (MOR).
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Ag nanocube in Ag@M core–frame and core–shell nanostructures, and eventual nanoframes and
nanocages. Reproduced from ref. [44]. Copyright (2017), with permission from the American
Chemical Society. (b) TEM image of Ag−Au{100} cuboctahedral nanoboxes. Reproduced from
ref. [52]. Copyright (2020), with permission from the Royal Society of Chemistry. (c) TEM image
of Ag−Pd nanoframes. Reproduced from ref. [51]. Copyright (2015), with permission from the
American Chemical Society. (d,e) TEM images of ultrathin hollow Pt nanoplates. Reproduced from
ref. [37]. Copyright (2018), with permission from the Royal Society of Chemistry. (f,g) TEM images
of Pt−Ag nanotubes and porous nanoribbons after a ripening process. Reproduced from ref. [36].
Copyright (2018), with permission from the American Chemical Society.

5. Conclusions and Outlook

This review article briefly discussed the background and recent processes in preventing
galvanic replacement reactions toward the synthesis of unconventional bimetallic core–
shell nanostructures, each containing a less-stable-metal core and a noble metal shell.
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The applications of these unconventional core–shell nanostructures were also discussed.
Overall, this unique technique will have a great impact on the synthetic chemistry of novel
noble-metal-based nanostructures. Although great progress has been made in this direction,
there remain great opportunities in designing new materials for SPR-based applications,
nanodevices, and catalysis.

To date, Ag nanocrystals are the most common templates for the synthesis of uncon-
ventional core–shell nanostructures. Although Ag is cheaper than other noble metals, its
price is still much higher than that of non-noble base metals. Creating bimetallic core–shell
nanostructures with base metal cores is a promising route to creating noble metal-based
materials with low costs and unique electronic properties. However, the synthesis is still
in its infancy, with only very limited success till now. Challenges in the synthesis of such
nanostructures are still to be addressed. In addition, the technique of preventing the gal-
vanic replacement reaction is essential for creating multiple-shell nanostructures among
many other exciting nanostructures. The different combinations and sequences of the metal
shells may lead to unique optical and catalytic properties. Overall, we expect significant
breakthroughs in these directions in the very near future.
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