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Water is a precious resource of paramount importance on Earth, playing a critical role
in the evolution of life [1]. Despite water covering approximately 71% of the Earth’s surface,
saline water constitutes 97.5% of the total. Out of the remaining 2.5% of freshwater re-
sources, merely 0.03% of the world’s total water is renewable freshwater directly accessible
for human consumption [2]. Reports and studies conducted by the World Health Organi-
zation reveal that severe water scarcity affects 80 countries and regions worldwide, with
over 55% of the global population facing a shortage of water resources [3]. Conventional
water treatment technologies, including thermal distillation, adsorption filtration, catalytic
degradation, and membrane techniques, suffer from high energy consumption, expensive
equipment investment, low energy utilisation efficiency, and inadequate production of
clean water [4,5]. As such, there is an urgent need to develop economical, efficient, and
sustainable water purification and recycling technologies to alleviate the pressing issue of
water scarcity.

Interfacial solar vapour generation (ISVG) systems effectively absorb and convert
solar radiation into heat, concentrating the heat at the interface where evaporation takes
place. This leads to a substantial enhancement in the solar water evaporation rate, offering
effective, affordable, and off-grid access to recover impaired and unconventional water
that is critical to a sustainable, safe, and potable water supply [6–9]. Currently, continuous
efforts are being devoted to advancing ISVG systems through rational material/structural
engineering of solar evaporators and solar distillers for high-output clean water harvest-
ing. The regulation strategies are composed of light absorption, heat localisation, extra
energy harvesting, and reduced evaporation enthalpy, all directed towards achieving ef-
ficient solar-to-thermal conversion [10–13]. Additionally, practical applications are being
explored, encompassing water purification from seawater and complex wastewaters, as
well as the development of diverse prototype solar distillers for water collection in natural
environments [14–16].

Despite the rapid developments and significant improvements made in ISVG systems,
with solar thermal conversion efficiency approaching 100%, the practical applications of
ISVG still face challenges. Specifically, long-term fouling resistance and high stability
towards complex wastewaters remain major concerns. Furthermore, the final water yield
of solar distillers is limited by slow water condensation, ineffective heat transfer, and low
energy efficiency. In this regard, we highlight several challenges and opportunities to
substantially advance ISVG-based water purification for addressing clean energy needs
and water scarcity issues.

(1) Constructing novel-type solar evaporators for high-rate water evaporation: Solar
evaporators should be designed with a comprehensive consideration of low cost, scal-
ability, stability, and adaptability to enable their practical application in addressing
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water scarcity. To achieve this, strategies may include reducing the cost of solar evapo-
rators, simplifying the preparation process, and enhancing long-term stability for use
in harsh environments (e.g., strong mechanical stability, resistance to pollutants, etc.).

(2) Upgrading the configuration of solar distillers for high-yield water harvesting: Un-
der prolonged sunlight exposure, the high temperature and humidity inside solar
distillers, coupled with inefficient heat transfer at the condensation interface, hinder
rapid and effective water vapor condensation and latent heat recovery, resulting in
clean water collection yields below 50%. To address this challenge, optimisation of
the solar distiller’s exterior design can enhance sunlight utilisation; modification of
the condenser’s surface microstructure and chemical properties can promote water
droplet condensation; and improvements in heat and mass transfer can effectively
manage thermal energy. Furthermore, the next generation of solar distillers should
prioritise considerations of stability, cost, and maintenance as core issues.

(3) Deeper understanding of the underlying mechanisms in the ISVG system: An in-
depth understanding of key factors, such as efficient photothermal conversion, light
absorption, water transport, and heat transfer processes, is essential for improving
energy utilisation efficiency. Although some studies are gradually focusing on the
interaction between materials and water and the great influence of this interaction
on the evaporation behaviour of water, these studies are still in their infancy, and the
core steps and related mechanisms are not clearly elaborated. For example, precise
modelling or characterisation of the interaction of surface functional groups with
water molecules has not yet been established, and there is a lack of unity between
energy transfer processes and evaporation mechanisms on the microscopic scale
involving mass transport, fluid dynamics, heat transfer, and interactions between
protons, phonons, electrons, molecules, and ions.

(4) Promoting the practical application of ISVG-based clean water collection: For the field
of ISVG systems, which has been explored for sustainable clean water harvesting,
more external practical explorations should be initiated, including the evaluation of
multiple dimensions such as cost, environmental impact, and substitution of existing
technologies, so as to advance the practical application of interfacial evaporation
technology. More unremitting efforts and research are needed to solve the above
key issues.

This emerging ISVG technology for water purification fits within the scope of the
Special Issue entitled “Advanced Materials for Energy Conversion and Water Sustainabil-
ity”, which holds the potential to enhance thermal utilisation efficiency, thereby playing a
positive role in addressing real-world issues such as the energy crisis and water scarcity.

Finally, we anticipate that more intriguing findings and research associated with this
Special Issue can be published in Molecules. These contributions will provide valuable guide-
lines for advancing low energy consumption and environmentally friendly approaches to
clean water harvesting.
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